Задачи по термодинамике с подробными решениями
Изменение внутренней энергии при теплообмене. Теплота сгорания топлива.
5.1.1 Тело нагрелось на 5 К, поглотив 10 кДж теплоты. Чему равна его теплоемкость?
5.1.2 На сколько градусов нагреется вода массой 0,5 кг, если ей сообщить 16,8 кДж тепла?
5.1.3 Сколько тепла выделится при сгорании 2 кг бензина?
5.1.4 На сколько увеличилась внутренняя энергия 1 кг воды при нагревании её на 2 К?
5.1.5 Сколько тепла было передано льдинке массой 50 г, если она нагрелась на 3 К?
5.1.6 Какая установится температура воды после смешивания 39 л воды при 20 C и 21 л при 60 C?
5.1.7 Железный стержень массой 5 кг, нагретый до 550 C, опускается в воду. Сколько теплоты
5.1.8 Сколько литров воды при 100 C нужно добавить к воде при 20 C, чтобы получить
5.1.9 В стакане было 50 г воды при температуре 20 C. В него долили 100 г воды при температуре
5.1.10 Реактивный самолет пролетает с постоянной скоростью 250 м/с путь 1800 км, затрачивая
5. 1.11 Гусеничный трактор развивает номинальную мощность 60 кВт и при этой мощности
5.1.12 В стакане имеется 250 г воды при температуре 80 C. На сколько понизится температура
5.1.13 Воду массой 4,65 кг, взятую при температуре 286 К, нагревают до 308 К погружением куска
5.1.14 Определить удельную теплоемкость трансформаторного масла, если для нагревания 5 т
5.1.15 Тепловая нагрузка горелки водонагревателя равна 25 МДж/ч, вместимость бака 80 л
5.1.16 В электрическом чайнике мощностью 800 Вт можно вскипятить 1,6 л воды, имеющей
5.1.17 Для закалки стальную деталь, нагретую до 1073 К, массой 0,5 кг опустили в воду массой 10 кг
5.1.18 Мощность, развиваемая двигателем самолета на скорости 900 км/ч, равна 3 МВт. При этом
5.1.19 Определите расход бензина автомобилем на 1 км пути при скорости 72 км/ч. Мощность
5.1.20 Горячее тело, температура которого 70 C, приведено в соприкосновение с холодным телом
5.1.21 Для экономии энергии стальной бак массой 4 кг заменили стальной сеткой массой 1,5 кг
5. 1.22 Смешали 24 кг цемента при температуре 5 C с 30 л воды при температуре 35 C. Определить
5.1.23 Для приготовления ванны необходимо смешать холодную воду при 11 C и горячую
5.1.24 Автомобиль расходует 5,67 кг бензина на 50 км пути. Определить мощность, развиваемую
5.1.25 Алюминиевый сосуд содержит 118 г воды при температуре 20 C. Кусок железа массой
5.1.26 Автомобиль, движущийся со средней скоростью 72 км/ч, развивает силу тяги 2500 Н
5.1.27 Определить КПД нагревателя, расходующего 80 г керосина на нагревание 3 л воды
5.1.28 На спиртовке нагревали воду массой 100 г от 16 до 71 C. При этом был сожжен спирт массой
5.1.29 Медное тело, нагретое до 100 C, опущено в воду, масса которой равна массе тела
5.1.30 На сколько километров пути хватит 40 л бензина автомобилю, движущемуся со скоростью
5.1.31 В ванне находится 400 л воды при температуре 30 C. Из крана вытекает горячая вода
5.1.32 Чтобы нагреть 1,8 кг воды от 18 C до кипения на горелке с КПД 25%, потребовалось
5. 1.33 У какого из тел теплоемкость больше и во сколько раз: у куска свинца массой 1 кг или
5.1.34 Для определения удельной теплоёмкости 0,15 кг вещества, взятого при температуре 100 C
5.1.35 Сколько керосина необходимо сжечь, чтобы 50 л воды нагреть от 20 C до кипения? КПД
5.1.36 На зажженную спиртовку с КПД 60% поставили сосуд с 500 г воды при 20 C. Через какое
5.1.37 Какое количество керосина потребовалось бы сжечь, чтобы вывести спутник массой
5.1.38 Какую массу керосина потребовалось бы сжечь, чтобы вывести спутник массой 1000 кг
5.1.39 В стеклянный сосуд массой 120 г, имеющий температуру 20 C, налили горячую воду
5.1.40 В батарею водяного отопления вода поступает при 80 C по трубе площадью поперечного
5.1.41 Газовая нагревательная колонка потребляет 1,8 м3 метана (Ch5) в час. Найти температуру
5.1.42 Какую массу керосина нужно сжечь, чтобы вывести спутник массой 1000 кг на круговую
5.1.43 Некоторая установка, выделяющая мощность 30 кВт, охлаждается проточной водой
5. 1.44 Теплоизолированный сосуд разделен на две части перегородкой, не проводящей тепла
5.1.45 Ванну емкостью 100 литров необходимо заполнить водой, имеющей температуру 30 C
5.1.46 В калориметр налили 500 г воды, имеющей температуру 40 C, и положили кусок льда
5.1.47 В сосуд, содержащий 1 кг льда при температуре 0 C, влили 330 г воды при температуре 50 C
5.1.48 Слой льда толщиной 4,2 см имеет температуру 0 C. Какова минимальная толщина слоя воды
5.1.49 В калориметр, содержащий 100 г льда при температуре 0 C, налили 150 г воды, имеющей
Фазовые переходы
5.2.1 Сколько требуется энергии для испарения 4 кг воды, взятой при температуре кипения?
5.2.2 Из 450 г водяного пара с температурой 373 К образовалась вода. Сколько теплоты
5.2.3 Сколько тепла выделится при конденсации 10 г пара и охлаждении получившейся воды
5.2.4 Монету из вещества с плотностью 9000 кг/м3 и удельной теплоёмкостью 0,22 кДж/(кг*К)
5.2.5 На сколько возрастёт потенциальная энергия взаимодействия между молекулами
5. 2.6 Кусок свинца массой 1,6 кг расплавился наполовину при сообщении ему количества
5.2.7 В теплоизолированном сосуде находится вода при 273 К. Выкачивая из сосуда воздух
5.2.8 На нагревание 5 кг воды от 303 К до кипения и на обращение в пар при температуре
5.2.9 Сколько было затрачено бензина в нагревателе с КПД 32%, если с его помощью 4 кг воды
5.2.10 При охлаждении 40 кг жидкого олова, взятого при температуре плавления 505 К
5.2.11 Нагретый алюминиевый куб положили на лёд, и он полностью погрузился в лёд. До какой
5.2.12 Водяной пар массой 200 кг при температуре 100 C пропустили через воду при температуре
5.2.13 Комок мокрого снега массой 0,3 кг поместили в 1,2 л воды при температуре 21 C. После того
5.2.14 В калориметре находится 1 кг льда при -40 C. В него впускают 1 кг пара при 120 C
5.2.15 Под невесомым поршнем в цилиндре находится 1 кг воды при температуре 0 C. В воду
5.2.16 Сколько энергии нужно затратить, чтобы 6 кг льда при -20 C обратить в пар
5. 2.17 В сосуд, содержащий 10 кг льда при 0 C, влили 3 кг воды при 90 C. Какая установится
5.2.18 В теплоизолированный сосуд малой теплоёмкости налили 0,4 кг воды при 293 К и положили
5.2.19 В холодильник, потребляющий мощность 200 Вт, поместили воду массой 2 кг
5.2.20 Через воду, имеющую температуру 10 C, пропускают водяной пар при 100 C. Сколько
5.2.21 Струя стоградусного водяного пара направляется на кусок льда массой 10 кг
5.2.22 В 5 кг воды, температура которой 288 К, опущен 1 кг льда с температурой 270 К. Какая
5.2.23 В литр воды при 20 C бросили комок мокрого снега массой 250 г. Когда весь снег растаял
5.2.24 Колба, теплоемкостью которой можно пренебречь, содержит 600 г воды при 80 C
5.2.25 На электрической плитке мощностью 600 Вт находится чайник с двумя литрами воды
5.2.26 В условиях Севера пресную воду получают из снега. Сколько дров нужно израсходовать
5.2.27 Тающий лёд массой 0,5 кг погрузили в калориметр с 0,3 кг воды при температуре 80 C
5. 2.28 При замораживании некоторого вещества в холодильнике потребовалось 4 мин для того
5.2.29 В ведре находится смесь воды со льдом массой m=10 кг. Ведро внесли в комнату
5.2.30 В сосуд с водой объемом 0,25 л при 20 C поместили 50 г расплавленного свинца
5.2.31 В сосуд, содержащий 2,3 кг воды при 20 C, бросают кусок стали, который передаёт воде
5.2.32 Калориметр содержит 250 г воды при температуре 15 C. В воду бросили 20 г мокрого
5.2.33 В калориметр теплоёмкостью 1254 Дж/К бросили 30 г мокрого снега
5.2.34 Сосуд, содержащий воду, внесли в теплую комнату, причем за 15 мин температура
5.2.35 Алюминиевый чайник массой 0,4 кг, в котором находится 2 кг воды при 10 C
5.2.36 В латунный калориметр массы 0,3 кг , содержащий 1 кг воды при 18 C, опускается
5.2.37 В калориметр, содержащий 1,5 кг воды при 20 C, положили 1 кг льда, имеющего
5.2.38 В сосуд с водой объемом 0,25 л при 20 C поместили 50 г расплавленного свинца
Изменение внутренней энергии тела при совершении работы
5. 3.1 Стальной шар падает с высоты 15 м. При ударе о землю вся накопленная им энергия
5.3.2 Многократное перегибание алюминиевой проволоки массой 2 г нагревает её на 40 C
5.3.3 На сколько температура воды у основания водопада с высотой 20 м больше
5.3.4 С какой скоростью должна лететь свинцовая пуля, чтобы при ударе о препятствие
5.3.5 При трении двух тел, теплоёмкости которых по 800 Дж/К, температура через 1 мин
5.3.6 Найти высоту, на которой потенциальная энергия груза массой 1000 кг равна количеству
5.3.7 Чему равна высота водопада, если температура воды у его основания на 0,05 C больше
5.3.8 С какой высоты упал свинцовый шар, если при падении изменение его температуры
5.3.9 Две одинаковых льдинки летят навстречу друг другу с одинаковыми скоростями
5.3.10 Вода падает с высоты 60 м. На сколько температура воды внизу водопада выше
5.3.11 С какой скоростью должна лететь льдинка при 0 C, чтобы при резком торможении
5.3.12 Снежок, летящий со скоростью 20 м/с, ударяется в стену. Какая часть его расплавится
5.3.13 Стальной шар, падая свободно, достиг скорости 41 м/с и, ударившись о землю
5.3.14 Свинцовая пуля массой 10 г, летящая горизонтально со скоростью 100 м/с, попадает
5.3.15 Свинцовая пуля, летящая со скоростью 430 м/с, пробивает стену, причем скорость
5.3.16 При выстреле вертикально вверх свинцовая пуля ударилась о неупругое тело
5.3.17 Свинцовая пуля пробивает доску, при этом её скорость падает с 400 до 200 м/с
5.3.18 Свинцовая пуля, летящая горизонтально со скоростью 500 м/с, пробивает
5.3.19 С какой скоростью должна лететь свинцовая пуля, чтобы расплавиться при ударе
5.3.20 Железный метеорит влетает в атмосферу Земли со скоростью 1,5·103 м/с
5.3.21 Сани массы 300 кг равномерно движутся по горизонтальной снежной поверхности
5.3.22 Найти работу газа, совершенную в процессе 1-2-3
5.3.23 Найти работу газа в процессе 1-2-3
5.3.24 Найти работу газа в процессе 1-2
5.3.25 Укажите, в каком из случаев работу внешних сил по изменению состояния идеального газа
Внутренняя энергия идеального газа.

5.4.1 Какова температура одноатомного идеального газа, если известно, что внутренняя энергия
5.4.2 На сколько увеличится внутренняя энергия 1,5 моль гелия при нагревании на 40 К?
5.4.3 Газ, занимающий объем 6,6 л, расширяется при постоянном давлении 515 кПа
5.4.4 При сжатии газа внешними силами была совершена работа 12 кДж. Какую работу
5.4.5 Газ, занимающий объем 460 л при температуре 280 К, нагрели до 295 К. Найти работу
5.4.6 Углекислый газ массой 220 г имеет температуру 290 К. Определить работу газа
5.4.7 Определить работу, которую совершает газ при изобарном нагревании на 50 C, если он
5.4.8 Газ был нагрет изобарно от 285 до 360 К. Какую работу совершил при этом газ
5.4.9 160 г гелия нагревают от 50 до 60 C. Найти работу газа при постоянном давлении
5.4.10 Рассчитайте внутреннюю энергию одноатомного идеального газа в количестве 3 моль
5.4.11 Какую работу совершил гелий массой 40 г при его изобарном нагревании на 20 К?
5. 4.12 На сколько изменится внутренняя энергия восьми молей идеального одноатомного газа
5.4.13 Вычислить работу, которую совершают 2 моля идеального газа при изобарном
5.4.14 Каково давление одноатомного газа, занимающего объем 2 л, если его внутренняя
5.4.15 На сколько изменится давление идеального одноатомного газа, если его внутреннюю
5.4.16 Во сколько раз изменится внутренняя энергия идеального газа, если его давление
5.4.17 Внутренняя энергия одноатомного газа массой m при температуре T равна U
5.4.18 На сколько градусов надо нагреть газ, чтобы его объем увеличился вдвое по сравнению
5.4.19 Какая масса водорода находится в цилиндре под поршнем, если при изобарном
5.4.20 Один моль газа, имевший начальную температуру 300 К, изобарно расширился
5.4.21 Какую работу совершил водород массой 3 г при изобарном нагревании на 100 К?
5.4.22 19 м3 воздуха имеют температуру 50 C. Какую работу совершит воздух, расширяясь
5.4.23 В координатах давление-объем график процесса в идеальном одноатомном газе имеет
5. 4.24 Объем 120 г кислорода при изобарном нагревании увеличился в два раза. Определите
5.4.25 В цилиндре под тяжелым поршнем находится 20 г углекислого газа. Газ нагревается
5.4.26 На диаграмме T (температура) – V (объем) график процесса представляет собой прямую
5.4.27 Над идеальным газом проводят два замкнутых процесса. Какое соотношение
5.4.28 Некоторая масса газа, занимающего объем 0,01 м3, находится при давлении 0,1 МПа
5.4.29 Кислород массой 0,3 кг при температуре 320 К охладили изохорно так, что его давление
5.4.30 Некоторое количество газа нагревается от температуры 300 до 400 К. При этом объем газа
5.4.31 Газ изобарно увеличился в объеме в три раза при давлении 3000 кПа. Определить
5.4.32 В цилиндре находится газ, удерживаемый в объеме 1 м3 силой тяжести поршня и силой
5.4.33 Газообразный водород массой 1 кг при начальной температуре 300 К охлаждают
5.4.34 Определите работу, совершаемую одним молем газа за цикл, если
5.4.35 В сосуде объемом 2 л находится гелий при давлении 100 кПа и температуре 200 К
5. 4.36 Два одинаковых сосуда, содержащих одинаковое число молекул азота, соединены
5.4.37 Два сосуда, содержащие одинаковое количество атомов гелия, соединены краном
5.4.38 Два одинаковых сосуда, содержащие одинаковое число молекул азота, соединены
5.4.39 Два теплоизолированных сосуда соединены трубкой с закрытым краном. В первом
Первый закон термодинамики. Тепловой двигатель
5.5.1 Газ при изотермическом расширении получил 10 кДж теплоты. Чему равна
5.5.2 Какое количество теплоты получил гелий массой 1,6 г при изохорном нагревании
5.5.3 В адиабатическом процессе газ совершил работу 50 кДж. Чему равно приращение
5.5.4 Сколько тепла получил газ, если известно, что для его сжатия была совершена работа
5.5.5 При адиабатном расширении внутренняя энергия газа уменьшилась на 120 Дж. Какую
5.5.6 При изохорном нагревании 10 г неона его температура увеличилась на 205 К
5.5.7 Какое количество теплоты сообщили гелию массой 640 г при изобарном нагревании
5. 5.8 Определить, какое количество теплоты надо сообщить неону массой 400 г, чтобы
5.5.9 Какой процесс произошёл при сжатии идеального газа, если работа, совершаемая
5.5.10 При постоянном давлении 5 молям одноатомного газа сообщили теплоту 10 кДж
5.5.11 В закрытом сосуде объемом 2,5 л находится гелий при температуре 17 C и давлении
5.5.12 Один моль идеального газа, находящегося при температуре T0, нагревают. Какое
5.5.13 Закрытый баллон емкостью 50 л содержит аргон под давлением 200 кПа. Каким
5.5.14 Криптон массой 1 г был нагрет на 100 К при постоянном давлении. Какое количество
5.5.15 При изобарном расширении газа на 0,5 м3 ему было передано 0,26 МДж теплоты
5.5.16 В изотермическом процессе газ совершил работу 2 кДж. На сколько увеличится
5.5.17 Какой график соответствует процессу, в котором температура газа изменяется только
5.5.18 Количество теплоты, передаваемое газу, одинаково. В каком газовом процессе нагрев
5.5.19 Сколько молей одноатомного газа нагрели на 10 К, если количество подведенной
5. 5.20 Один моль одноатомного идеального газа нагревается при постоянном объеме
5.5.21 При нагревании 1 кг неизвестного газа на 1 К при постоянном давлении требуется
5.5.22 При изобарном расширении 40 г гелия его объем увеличили в два раза. Начальная
5.5.23 Идеальный одноатомный газ в количестве 5 моль сначала охлаждают
5.5.24 Один моль идеального одноатомного газа находится при нормальных условиях. Какое
5.5.25 При расширении одноатомного газа от 0,2 до 0,5 м3 его давление росло линейно
5.5.26 Двигатель Дизеля, КПД которого равен 35%, за некоторое время выбросил в атмосферу
5.5.27 Коэффициент полезного действия тепловой машины 20%. Какую работу совершает
5.5.28 Определить коэффициент полезного действия теплового двигателя, если температура
5.5.29 Идеальная тепловая машина совершает за цикл работу 1 кДж и отдаёт холодильнику
5.5.30 В идеальной тепловой машине температура нагревателя в три раза выше температуры
5.5.31 Во сколько раз максимально возможный КПД газовой турбины больше максимально
5. 5.32 Идеальная тепловая машина совершает работу 200 Дж, при этом холодильнику
5.5.33 Каков КПД идеальной паровой турбины, если пар поступает в турбину при температуре
5.5.34 КПД тепловой машины равен 15%. Какое количество теплоты передано от нагревателя
5.5.35 В результате циклического процесса газ совершил работу 100 Дж и передал
5.5.36 Тепловая машина работает по циклу Карно. Температура нагревателя 400 C
5.5.37 Газ в идеальной тепловой машине 70% теплоты, полученной от нагревателя
5.5.38 Идеальная тепловая машина, работающая по циклу Карно, получает от нагревателя
5.5.39 В идеальной тепловой машине за счёт каждого килоджоуля теплоты, получаемой
5.5.40 Двигатель работает по циклу Карно. Во сколько раз изменится его КПД, если при
5.5.41 Тепловой двигатель работает по циклу Карно. Количество теплоты, отдаваемое
5.5.42 Тепловая машина имеет максимальный КПД 35%. Определить температуру нагревателя
5.5.43 Коэффициент полезного действия тепловой машины равен 25%. В результате её
5.5.44 Тепловая машина с максимально возможным КПД имеет в качестве нагревателя
5.5.45 Один моль одноатомного газа совершает цикл, состоящий из двух изохор и двух изобар
5.5.46 Над одним молем идеального газа совершают цикл, показанный на рисунке
5.5.47 В некотором процессе внутренняя энергия газа уменьшилась на 300 Дж, а газ
5.5.48 При изобарном расширении гелия совершена работа, равная 500 Дж. Какое
5.5.49 Если в некотором процессе газу сообщено 900 Дж теплоты, а газ при этом совершил
5.5.50 В каком из представленных на рисунке процессов AB, протекающих в данной массе газа
5.5.51 Два моля идеального газа совершают замкнутый цикл, изображенный на рисунке
5.5.52 В некотором процессе газу сообщено 800 Дж теплоты, а его внутренняя энергия
5.5.53 В некотором процессе газу сообщено 900 Дж теплоты, а его внутренняя энергия
5.5.54 На p-V диаграмме изображен цикл, проводимый с одноатомным идеальным газом
5.5.55 В идеальном тепловом двигателе за счёт каждого килоджоуля энергии, полученной
5. 5.56 Холодильник идеального теплового двигателя имеет температуру 27 C. Как изменится
5.5.57 Холодильник идеального теплового двигателя имеет температуру 27 C. Как изменится
5.5.58 Идеальный тепловой двигатель совершает за один цикл работу 30 кДж
5.5.59 Температура нагревателя идеального теплового двигателя равна 327 C, а температура
Пожалуйста, поставьте оценку
( 50 оценок, среднее 4.52 из 5 )
Вы можете поделиться с помощью этих кнопок:
100 ballov.kz образовательный портал для подготовки к ЕНТ и КТА
VMWare – это IT-решение для организации облачных вычислений и виртуализации. Компания VMware была основана в 1998 году, после чего, в 2004 году, она стала собственностью корпорации EMC. Спустя двенадцать лет EMC была поглощена более крупной компанией Dell Technologies. Основой технологии виртуализации VMware является фирменный гипервизор ESX/ESXi с архитектурой x86.
Для работы виртуализации на основную машину устанавливается так называемый гипервизор – ПО, позволяющее запускать несколько независимых виртуальных машин на одном компьютере и контролирующие аппаратные ресурсы. На каждой такой машине может быть установлена собственная операционная система, поверх которой устанавливаются пользовательские приложения.
Виртуализация серверов VMware включает: программное обеспечение для хранения информации, программы для дата-центров, средства обеспечения безопасности и управления сетями.
Сеть и безопасность
Для обеспечения высокого уровня безопасности информации и виртуальных сетей используется программный продукт VMware NSX, который сетевые администраторы используют для разработки и настройки коммутаторов и виртуальных сетей. Программное обеспечение развертывается поверх гипервизора, что дает возможность создать несколько виртуальных сетей на основе одной физической.
VMware vRealize Network Insight – инструмент администраторов для проверки работоспособности NSX и планирования микросегментации. Кроме того, данное программное обеспечение анализирует ошибки в пользовательском интерфейсе, что позволяет специалисту эффективно находить и устранять неполадки в среде NSX.
Персональный рабочий стол
Запуск нескольких виртуальных машин на одной рабочей машине с операционной системой Linux и Windows возможен при помощи продукта Workstation. Для операционной системы Mac используется программное обеспечение Fusion.
Управление облаком
Гибридные облака могут создаваться и управляться пользователями при помощи комплекса приложений vRealize Suite, который включает в себя инструменты для управления затратами, автоматизации дата-центра, централизованного ведения журналов, мониторинга.
Администраторы используют это ПО для развертывания виртуальных машин на нескольких физических или виртуальных серверах и для управления ими с единого интерфейса.
Выводы
В данном материале были рассмотрены далеко не все составляющие VMware. Для подробного рассмотрения принципа работы необходимо обратиться к технической документации на официальном сайте. В завершение, рассмотрим основные преимущества технологии:
- высокий уровень безопасности, благодаря модели нулевого доверия;
- простота в управлении дата-центром;
- повышение гибкости и эффективности систем центра обработки данных;
- оптимальное предоставление ресурсов и приложений.
VMware все чаще используется предпринимателями после перехода на облачную и гибридную IT-инфраструктуру.
Практические задачи на потенциальную энергию
В повседневном использовании слово потенциал часто используется для обозначения вещей или людей, которые кажутся многообещающими внутри них. «Потенциал» показывает возможность действия. Это дает представление о накопленной энергии, которая может быть преобразована. Это идея потенциальной энергии. Эта концепция является неотъемлемой частью механики и позволяет теоретически измерить энергию, запасенную внутри объекта. Потенциальная энергия может прийти через любую силу. Например – растянутая или сжатая пружина обладает потенциальной энергией. Объект, находящийся на некоторой высоте, обладает потенциальной энергией из-за высоты.
Потенциальная энергия
Потенциальная энергия — это энергия, которой обладает объект из-за его положения или конфигурации. Говорят, что эта энергия хранится внутри объекта. Обычно потенциальная энергия высвобождается объектом при движении. Например, растянутая пружина при отпускании начинает двигаться в свое естественное положение и начинает набирать скорость. Благодаря этой скорости он приобретает кинетическую энергию. Чтобы лучше понять это, давайте рассмотрим шар массой «m».
Этот мяч, который первоначально находился на земле, поднимается на высоту «h». На него действует внешняя сила в виде силы тяжести. Мы знаем, что работа, совершаемая силой F при перемещении «s» на объекте, определяется выражением
W = F.s
. В этом случае сила — это сила тяжести и перемещение от земли на высоту «h». .
F = mg, s = h
Тогда работа силы тяжести над объектом равна
W = -mgh
Потенциальная энергия определяется как отрицательное значение этой работы. Обозначая потенциальную энергию V(h).
V(h) = mgh
Если мяч падает, то в этом случае потенциальная энергия уменьшается, а скорость увеличивается. Это означает, что потенциальная энергия объекта преобразуется в кинетическую энергию. Допустим, скорость мяча непосредственно перед касанием земли равна «v».
Потенциальная энергия пружины
Когда пружина удерживается нормально, говорят, что она имеет 0 энергии и считается, что она находится в состоянии равновесия. Когда он растягивается или сжимается и происходит определенное смещение, скажем, x, в нем сохраняется определенная потенциальная энергия, которая определяется как 9.0003
P.E.= 1/2 (Kx 2 )
Где K = жесткость пружины
x = смещение из-за сжатия или расширения.
Давайте рассмотрим некоторые проблемы, основанные на этих концепциях.
Примеры задач
Вопрос 1: Груз массой 2 кг поднимают с земли на высоту 10 м. Найдите потенциальную энергию тела.
Ответ:
Потенциальная энергия массы «m» на высоте «h» определяется выражением,
P = mgh
Дано: m = 2 кг и g = 10 м/с 2 и h = 10 м.
Цель: Найти потенциальную энергию.
Подстановка значений в формулу.
P = mgh
⇒ P = (2)(10)(10)
⇒P = 200 Дж
Таким образом, потенциальная энергия объекта равна 200 Дж.
Вопрос 2: Груз массой 5 кг поднимают с земли на высоту 100 м. Найдите потенциальную энергию тела.
Ответ:
Потенциальная энергия массы m на высоте h определяется выражением
P = mgh
Дано: m = 5 кг и g = 10 м/с 2 и h = 100 м.
Цель: Найти потенциальную энергию.
Подстановка значений в формулу.
P = mgh
⇒ P = (5)(10)(100)
⇒P = 5000 Дж
Таким образом, потенциальная энергия объекта равна 5000 Дж.
Вопрос 3: Груз массой 5 кг поднимают с земли на 5 м вверх по клину. Клин образует с землей угол 30°. Найдите потенциальную энергию бруска.
Ответ:
Потенциальная энергия массы m на высоте h определяется выражением
P = mgh
Этот клин имеет форму прямоугольного треугольника.
Рисунок
Допустим, h
– вертикальная высота, на которую достигает ящик, пусть наклонная длина равна L L = 5 м
Дано: m = 10 м/г и s 2 и h = 2,5 м.
Цель: Найти потенциальную энергию.
Подстановка значений в формулу.
P = mgh
⇒ P = (5)(10)(2,5)
⇒P = 125 Дж
Таким образом, потенциальная энергия объекта равна 125 Дж.
Вопрос 4: Груз массой 10 кг поднимают с земли на 10 м в гору на клине. Клин образует угол 30° с поверхностью . Найдите потенциальную энергию бруска.
Ответ:
Потенциальная энергия массы «m» на высоте «h» определяется выражением,
P = mgh
Этот клин имеет форму прямоугольного треугольника.
Рисунок
Допустим, h – высота по вертикали, которой достигает ящик, пусть наклонная длина равна L
L = 10 м
Дано: m = 10 кг/с и 2 и h = 5 м.
Цель: Найти потенциальную энергию.
Подстановка значений в формулу.
P = мгх
⇒ P = (5)(10)(5)
⇒P = 250 Дж
Таким образом, потенциальная энергия объекта равна 250 Дж.
Вопрос 5. Найдите кинетическую энергию мяча непосредственно перед ударом о землю. Предположим, что изначально мяч находился на высоте 10 м, а его масса составляла 2 кг.
Ответ:
Первоначально на высоте 10 м мяч обладает потенциальной энергией. Когда его роняют, он начинает двигаться к земле, и его высота начинает уменьшаться. С уменьшением высоты скорость увеличивается, и он приобретает кинетическую энергию.
Потенциальная энергия при t = 0
Потенциальная энергия определяется выражением
P = mgh
m = 2 кг, h = 10 м и g = 10 м/с = (2)(10)(10)
⇒P = 200 Дж
Когда мяч вот-вот упадет на землю, его потенциальная энергия станет равной нулю, и вся энергия будет преобразована в кинетическую энергию.
Таким образом, K.E = 200 Дж
Вопрос 6: Найдите скорость мяча непосредственно перед ударом о землю. Предположим, что изначально мяч находился на высоте 100 м, а его масса составляла 4 кг.
Ответ:
Первоначально на высоте 10 м мяч обладает потенциальной энергией. Когда его роняют, он начинает двигаться к земле, и его высота начинает уменьшаться. С уменьшением высоты скорость увеличивается, и он приобретает кинетическую энергию.
Потенциальная энергия при t = 0
Потенциальная энергия определяется выражением = (4)(100)(10)
⇒P = 4000 Дж
Когда мяч вот-вот упадет на землю, его потенциальная энергия станет равной нулю, и вся энергия будет преобразована в кинетическую энергию.
Таким образом, K.E = 4000J
Формула для K.E:
K.E =
m = 4 кг и v = ?. Подключение значений в формуле
K.E =
⇒ 4000 =
⇒2000 = V 2
⇒ V = 10√20 м/с
⇒ V = 20√5 м/с
. Вопрос 7: Вся потенциальная энергия мяча превращается в его кинетическую энергию при падении на землю с определенной высоты. Высота, на которой мяч был первоначально помещен, составляла 10 м. Масса мяча 1 кг. Найдите выигрыш в кинетической энергии.
Решение:
Поскольку вся потенциальная энергия мяча переходит в его кинетическую энергию,
Потенциальная энергия мяча = Окончательный выигрыш в кинетической энергии = 1 кг, h= 10 м, g= 9,8 м/с 2
P= 1× 10× 9,8
P= 98 Дж
Следовательно, окончательный выигрыш в кинетической энергии равен 98 Дж.
K.E= 98 Дж.
Вопрос 8: Объясните существование потенциальной энергии,
а. Благодаря своей позиции
б. Из-за состояния, в котором находится объект.
Ответ:
Потенциальная энергия может фактически присутствовать в двух различных случаях,
а.
Из-за своего положения
Предположим, что объект устойчив на земле, теперь, прикладывая некоторую энергию, он поднимается на определенной высоте. Объект, находящийся на определенной высоте, будет иметь энергию, сохраненную в виде потенциальной энергии. Это дается как,
P.E= mgh
b. Из-за состояния, в котором находится объект.
Когда пружина находится в нормальном состоянии, говорят, что она имеет 0 энергии, но когда та же самая пружина либо сжимается, либо растягивается, она получает потенциальную энергию, которая определяется как
P.E. = 1/2 (Kx 2 )
Где x= смещение, K= жесткость пружины.
Вопрос 9: Пружина растянута до 9 см, жесткость пружины 2 Н/м. Найдите значение потенциальной энергии, запасенной в пружине?
Решение:
Потенциальная энергия, запасенная в пружине, определяется как
P.