Закон архимеда формула и определение – Закон Архимеда — Википедия

Давление. Архимедова сила. | Объединение учителей Санкт-Петербурга

Давление

Если на тело действует сила и под действием этой силы тело деформируется, то эту силу часто называют силой  давления. Роль силы давления может играть любая сила (вес тела, деформирующий опору; сила, прижимающая тело к какой-либо поверхности и т.д.). Скалярная физическая величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности, называется давлением: .

Единица давления в СИ называется паскаль (Па), в честь французского физика и философа Б.Паскаля.

 

 

 

Единица давления в СИ называется паскаль (Па), в честь французского физика и философа Б. Паскаля. Давление равно 1 Па, если на поверхность тела площадью 1м2 действует перпендикулярно ей сила 1 Н.

 

Архимедова (выталкивающая) сила.

1. Давление столба жидкости или газа.

, где S — площадь, h — высота столба жидкости или газа, ρ — плотность жидкости или газа.

Внимание! Давление столба жидкости или газа (гидростатическое давление) не зависит от  формы сосуда.

2. Причины возникновения выталкивающей силы.

p3=p4 , т.к. одинаковые глубины.

F2>F1, т.к. глубина h2>h1.

Fвыталкивающая=F— F1     —   причина возникновения выталкивающей силы в разности сил (давлений) на разных глубинах.

Внимание! Эта формула применима всегда!

Fвыталкивающая=p2S -p1S=Sgρ(h2 — h1)= gρV,

где ρ — плотность жидкости или газа,

V — объем погруженной части тела.

Т.к. m=ρV — масса жидкости, вытесненной телом, то Fвыт=FАрх.=mжg=Pж

На тело, погруженное в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (газа), вытесненной телом.

 

3. Вес тела, погруженного в жидкость или газ.

В состоянии покоя P0=mg. Если тело погружено в жидкость или газ, тоP=P0-FАрх0 — Pж

Тело, погруженное в жидкость или газ,  теряет в своем весе столько, сколько весит вытесненная им жидкость.

4. Условия плавания тел.

 Если:

  • FАрх >mg  — тело всплывает, до тех пор, пока силы не уравновесятся.
  • FАрх<mg   — тело тонет.
  • FАрх=mg   — тело плавает в любой точке жидкости (газа).

5. Подъемная сила.

Fп=FАрх-mg  — максимальный вес, который может поднять плавающее тело.

 

www.eduspb.com

Закон Архимеда, формула и определение — КиберПедия

ОПРЕДЕЛЕНИЕ

Закон (Сила) Архимеда: На тело, погруженное в жидкость, действует выталкивающая сила, равная весу вытесненной жидкости:

 

где — плотность жидкости— объем погруженной части тела.

Рис.1. Возникновение выталкивающей силы

На рис.1 изображен брусок, погруженный в жидкость. Силы давления со стороны жидкости, действующие на боковые стенки бруска, уравновешивают друг друга. Силы, действующие на нижнее и верхнее основания бруска, определяются глубиной, на которой находятся соответствующие основания. Очевидно, что силы, действующие на нижнее основание бруска, больше. Таким образом, возникновение выталкивающей силы (силы Архимеда) обусловлено различием гидростатических давлений на нижнее и верхнее основания бруска.

Если в состоянии покоя вес тела , то при погружении в жидкость, его вес изменится и станет равным:

 

Приведенная формулировка закона Архимеда справедлива, если вся поверхность тела соприкасается с жидкостью или если тело плавает в жидкости, или если тело частично погружено в жидкость через свободную (не соприкасающуюся со стенками) поверхность жидкости. Если же часть поверхности тела плотно прилегает к стенке или дну сосуда так, что между ними нет прослойки жидкости, то закон Архимеда неприменим.

Закон Архимеда несправедлив в состоянии невесомости, так как в этом состоянии исчезает различие гидростатических давлений на разных глубинах и, следовательно, выталкивающая сила становится равной нулю.

Таблица валентности химических элементов

Порядковый номер Русское / англ. название Химический символ Валентность
Водород / Hydrogen H I
Гелий / Helium He
Литий / Lithium Li I
Бериллий / Beryllium Be II
Бор / Boron B III
Углерод / Carbon C II, IV
Азот / Nitrogen N I, II, III, IV, V

Гемостаз

Гемостаз – это сложный процесс, обеспечивающий жизнеспособность организма. Благодаря гемостазу кровь не может покинуть циркуляторное русло.

Внутренняя среда организма

Внутренняя среда организма — это кровь, лимфа и жидкость, заполняющая промежутки между клетками и тканями. Кровеносные и лимфатические сосуды, пронизывающие все органы человека, имеют в своих стенках мельчайшие поры, через которые могут проникать даже некоторые клетки крови. Вода, составляющая основу всех жидкостей в организме, вместе с растворенными в ней органическими и неорганическими веществами легко проходит через стенки сосудов. Вследствие этого химический состав плазмы крови (то есть жидкой части крови, не содержащей клеток), лимфы и тканевой жидкости во многом одинаков. С возрастом существенных изменений химического состава этих жидкостей не происходит. В то же время различия в составе указанных жидкостей могут быть связаны с деятельностью тех органов, в которых эти жидкости находятся.


Кровь

Состав крови. Кровь — это красная непрозрачная жидкость, состоящая из двух фракций — жидкой, или плазмы, и твердой, или клеток — форменных элементов крови. Разделить кровь на эти две фракции довольно легко с помощью центрифуги: клетки тяжелее плазмы и в центрифужной пробирке они собираются на дне в виде красного сгустка, а над ним остается слой прозрачной и почти бесцветной жидкости. Это и есть плазма.

Плазма. В организме взрослого человека содержится около 3 л плазмы. У взрослого здорового человека плазма составляет свыше половины (55 %) объема крови, у детей — несколько меньше.

Более 90 % состава плазмы — вода, остальное — растворенные в ней неорганические соли, а также органические вещества: углеводы, карбоновые, жирные кислоты и аминокислоты, глицерин, растворимые белки и полипептиды, мочевина и т.п. Все вместе они определяют осмотическое давление крови, которое в организме поддерживается на постоянном уровне, чтобы не причинить вреда клеткам самой крови, а также всем остальным клеткам организма: увеличенное осмотическое давление приводит к съеживанию клеток, а при пониженном осмотическом давлении они разбухают. В обоих случаях клетки могут погибнуть. Поэтому для введения разнообразных лекарств в организм и для переливания замещающих кровь жидкостей в случае большой кровопотери, используют специальные растворы, имеющие точно такое же осмотическое давление, как и кровь (изотонические). Такие растворы называются физиологическими. Простейшим по составу физиологическим раствором является 0,1 % раствор поваренной соли NaCl (1 г соли на литр воды). Плазма участвует в осуществлении транспортной функции крови (переносит растворенные в ней вещества), а также защитной функции, поскольку некоторые белки, растворенные в плазме, обладают противомикробным действием.


Клетки крови. В крови встречаются клетки трех основных типов: красные кровяные клетки, или эритроциты, белые кровяные клетки, или лейкоциты; кровяные пластинки, или тромбоциты. Клетки каждого из этих типов выполняют определенные физиологические функции, а все вместе они определяют физиологические свойства крови. Все клетки крови — короткоживущие (средний срок жизни 2 — 3 нед.), поэтому в течение всей жизни специальные кроветворные органы занимаются производством все новых и новых клеток крови. Кроветворение происходит в печени, селезенке и костном мозге, а также в лимфатических железах.

Эритроциты (рис. 11) — это безъядерные дисковидные клетки, лишенные митохондрий и некоторых других органелл и приспособленные для одной главной функции — быть переносчиками кислорода. Красный цвет эритроцитов определяется тем, что они несут в себе белок гемоглобин (рис. 12), в котором функциональный центр, так называемый гем, содержит атом железа в форме двухвалентного иона. Гем способен химически соединяться с молекулой кислорода (образующееся вещество называется оксигемоглобином) в том случае, если парциальное давление кислорода велико. Эта связь непрочная и легко разрушается, если парциальное Давление кислорода падает. Именно на этом свойстве и основана способность эритроцитов переносить кислород. Попадая в легкие, кровь в легочных пузырьках оказывается в условиях повышенного напряжения кислорода, и гемоглобин активно захватывает атомы этого плохо растворимого в воде газа. Но как только кровь попадает в работающие ткани, которые активно используют кислород, оксигемоглобин легко отдает его, подчиняясь «кислородному запросу» тканей. Во время активного функционирования ткани вырабатывают углекислый газ и другие кислые продукты, которые выходят через клеточные стенки в кровь. Это в еще большей степени стимулирует оксигемоглобин отдавать кислород, поскольку химическая связь тема и кислорода очень чувствительна к кислотности среды. Взамен гем присоединяет к себе молекулу СО2, унося ее к легким, где эта химическая связь также разрушается, СО2 выносится с током выдыхаемого воздуха наружу, а гемоглобин освобождается и вновь готов присоединять к себе кислород.

Рис. 10. Эритроциты: a — нормальные эритроциты в форме двояковогнутого диска; б — сморщенные эритроциты в гипертоническом солевом растворе

Если во вдыхаемом воздухе оказывается угарный газ СО, то он вступает с гемоглобином крови в химическое взаимодействие, в результате которого образуется прочное вещество метоксигемоглобин, не распадающееся в легких. Тем самым гемоглобин крови выводится из процесса переноса кислорода, ткани не получают нужного количества кислорода, и человек ощущает удушье. В этом заключается механизм отравления человека на пожаре. Сходное действие оказывают некоторые другие мгновенные яды, которые также выводят из строя молекулы гемоглобина, например синильная кислота и ее соли (цианиды).

Рис. 11. Пространственная модель молекулы гемоглобина

В каждых 100 мл крови содержится около 12 г гемоглобина. Каждая молекула гемоглобина способна «тащить» на себе 4 атома кислорода. В крови взрослого человека содержится огромное количество эритроцитов — до 5 миллионов в одном миллилитре. У новорожденных детей их еще больше — до 7 миллионов, соответственно больше и гемоглобина. Если человек долгое время живет в условиях недостатка кислорода (например, высоко в горах), то количество эритроцитов в его крови еще более увеличивается. По мере взросления организма количество эритроцитов волнообразно изменяется, но в целом у детей их несколько больше, чем у взрослых. Снижение количества эритроцитов и гемоглобина в крови ниже нормы свидетельствует о тяжелом заболевании — анемии (малокровии). Одной из причин анемии может быть недостаток железа в пище. Железом богаты такие продукты, как говяжья печень, яблоки и некоторые другие. В случаях длительной анемии необходимо принимать лекарственные препараты, содержащие соли железа.

Наряду с определением уровня гемоглобина в крови к наиболее распространенным клиническим анализам крови относится измерение скорости оседания эритроцитов (СОЭ), или реакции оседания эритроцитов (РОЭ), — это два равноправных названия одного и того же теста. Если предотвратить свертывание крови и оставить ее в пробирке или капилляре на несколько часов, то без механического встряхивания тяжелые эритроциты начнут осаждаться. Скорость этого процесса у взрослых составляет от 1 до 15 мм/ч. Если этот показатель существенно выше нормы, это свидетельствует о наличии заболевания, чаще всего воспалительного. У новорожденных СОЭ составляет 1—2 мм/ч. К 3-летнему возрасту СОЭ начинает колебаться — от 2 до 17 мм/ч. В период от 7 до 12 лет СОЭ обычно не превышает 12 мм/ч.

Лейкоциты — белые кровяные клетки. Они не содержат гемоглобина, поэтому не имеют красной окраски. Главная функция лейкоцитов — защита организма от проникших внутрь него болезнетворных микроорганизмов и ядовитых веществ. Лейкоциты способны передвигаться с помощью псевдоподий, как амебы. Так они могут выходить из кровеносных капилляров и лимфатических сосудов, в которых их также очень много, и передвигаться в сторону скопления патогенных микробов. Там они пожирают микробы, осуществляя так называемый фагоцитоз.

Существует множество типов лейкоцитов, но наиболее типичными являются лимфоциты, моноциты и нейтрофилы. Более всего активны в процессах фагоцитоза нейтрофилы, которые образуются, как и эритроциты, в красном костном мозге. Каждый нейтрофил может поглотить 20—30 микробов. Если в организм вторгается крупное инородное тело (например, заноза), то множество нейтрофилов облепляют его, формируя своеобразный барьер. Моноциты — клетки, образующиеся в селезенке и печени, также участвуют в процессах фагоцитоза. Лимфоциты, которые образуются главным образом в лимфатических узлах, не способны к фагоцитозу, но активно участвуют в других иммунных реакциях.

В 1 мл крови содержится в норме от 4 до 9 миллионов лейкоцитов. Соотношение между числом лимфоцитов, моноцитов и нейтрофилов называется формулой крови. Если человек заболевает, то общее число лейкоцитов резко увеличивается, меняется также и формула крови. По ее изменению врачи могут определить, с каким видом микроба борется организм.

У новорожденного ребенка количество белых клеток крови значительно (в 2—5 раз) больше, чем у взрослого, но уже через несколько дней оно снижается до уровня 10—12 миллионов на 1 мл. Начиная со 2-го года жизни эта величина продолжает снижаться и достигает типичных для взрослого величин после полового созревания. У детей очень активно идут процессы образования новых клеток крови, поэтому среди лейкоцитов крови у детей значительно больше молодых клеток, чем у взрослых. Молодые клетки отличаются по своему строению и функциональной активности от зрелых. После 15—16 лет формула крови приобретает свойственные взрослым параметры.

Содержание и активность лейкоцитов определяют возможности клеточного иммунитета. Более подробно это описано на с. 100— 103.

Тромбоциты — самые мелкие форменные элементы крови, количество которых достигает 200—400 миллионов в 1 мл. Мышечная работа и другие виды стресса способны в несколько раз увеличить число тромбоцитов в крови (в этом, в частности, заключена опасность стрессов для пожилых людей: ведь именно от тромбоцитов зависит свертываемость крови, в том числе образование тромбов и закупорка мелких сосудов головного мозга и сердечной мышцы). Место образования тромбоцитов — красный костный мозг и селезенка. Основная их функция — обеспечение свертывания крови. Без этой функции организм становится уязвимым при малейшем ранении, причем опасность заключается не только в том, что теряется значительное количество крови, но и в том, что любая открытая рана — это ворота для инфекции.

Если человек поранился, даже неглубоко, то при этом повредились капилляры, и тромбоциты вместе с кровью оказались на поверхности. Здесь на них действуют два важнейших фактора — низкая температура (гораздо ниже, чем 37 °С внутри тела) и обилие кислорода. Оба эти фактора приводят к разрушению тромбоцитов, и из них выделяются в плазму вещества, которые необходимы для формирования кровяного сгустка — тромба. Для того чтобы образовался тромб, кровь надо остановить, пережав крупный сосуд, если из него сильно льется кровь, поскольку даже начавшийся процесс образования тромба не пройдет до конца, если в ранку будут все время поступать новые и новые порции крови с высокой температурой и еще не разрушившимися тромбоцитами.

Чтобы кровь не свертывалась внутри сосудов, в ней присутствуют специальные противосвертывающие вещества — гепарин и др. Пока сосуды не повреждены, между веществами, стимулирующими и тормозящими свертывание, наблюдается баланс. Повреждение сосудов ведет к нарушению этого баланса. В старости и с увеличением заболеваний этот баланс у человека также нарушается, что увеличивает риск свертывания крови в мелких сосудах и образования опасного для жизни тромба.

Возрастные изменения функции тромбоцитов и свертывания крови были детально изучены А. А. Маркосяном, одним из основоположников возрастной физиологии в России. Было установлено, что у детей свертывание протекает медленнее, чем у взрослых, а образующийся сгусток имеет более рыхлую структуру. Эти исследования привели к формированию концепции биологической надежности и ее повышения в онтогенезе.

БИЛЕТ 8

Виды механической энергии

Механическая энергия бывает двух видов: кинетическая и потенциальная.
Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела
Ек= мv2/2
Потенциальная энергия — скалярная физическая величина, характеризующая способность некоего тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил.
Еп=mgh

cyberpedia.su

Формула силы Архимеда в физике

Определение и формула силы Архимеда

Эмпирически еще в древней Греции было получено, что тело, погруженное в жидкость, весит меньше, чем находящееся в воздухе. На тело в жидкости со всех сторон она оказывает давление. Силы давления направлены перпендикулярно поверхности тела в каждой его точке. В том случае, если все силы, действующие на тело, были бы равны по модулю, то это тело испытывало только всестороннее сжатие. Мы знаем, что при увеличении глубины гидростатическое давление увеличивается, следовательно, силы давления, которые приложены к нижним частям тела больше, чем силы, которые действуют на тело вверху.

Если заменить все силы давления, которые приложены к телу, находящемуся в жидкости, одной результирующей силой, то эта сила будет направлена вверх. В этой связи ее назвали выталкивающей силой. По-другому ее называют силой Архимеда (${\overline{F}}_A$). Именно Архимед отметил факт ее существования и определил, как ее вычислить.

Сила Архимеда оказывает свое действие на тела не только в жидкостях, но и газах, там, где существует гиростатическое давление.

Величина силы Архимеда

Сила Архимеда, оказывающая действие на тело, погруженное в жидкость (или газ), равна весу жидкости (или газа), в объеме вытесненной (вытесненным) этим телом.

Рассмотрим тело в виде прямоугольного параллелепипеда полностью находящееся в жидкости рис.1. Предположим, что верхнее и нижнее основания располагаются параллельно горизонту.

Силы давления, действующие на боковые грани параллелепипеда, попарно уравновешены (например, ${\overline{F}}_{12}$=$-{\overline{F}}_{21}$). Они только сжимают параллелепипед. Силы, которые действуют на верхнюю и нижнюю грани параллелепипеда не равны между собой. Сила ($F_1$), действия столба жидкости на верхнюю грань, будет равна:

\[F_1=p_1S=(\rho gh_1+p_0)S\ \left(1\right),\]

где $\rho $ — плотность жидкости; $S$ — площадь основания; $h_1$ — высота столба жидкости над верхним основанием параллелепипеда.$\ p_0-$ давление атмосферы на поверхность жидкости.

Сила давления жидкости на нижнее основание параллелепипеда:

\[F_2=p_2S=(\rho gh_2+p_0)S\ \left(2\right),\]

где $h_2$ — высота столба жидкости над нижним основанием. Так как $h_2>h_1$, значит $F_2>F_1$. Модуль результирующей силы, действующей на тело со стороны жидкости:

\[F_A=F_2-F_1=\rho g{S(h}_2-h_1)\ (3).\ \]

Если обозначить высоту параллелепипеда как $h=h_2-h_1$, получим:

\[F_A=\rho gSh=\rho gV\ \left(4\right),\]

где $V$ — объем параллелепипеда. При нахождении тела в жидкости (газе) частично, то под V понимают объем погруженный в вещество (жидкость, газ). Правую час

www.webmath.ru

Формула закона Архимеда в физике

Определение и формула закона Архимеда

Силу, которая действует на тело, находящееся в жидкости или газе называют выталкивающей силой. Существование этой силы обосновал и рассчитал ее величину ученый из древней Греции Архимед. Направлена эта сила вертикально вверх.

Вычислим величину силы Архимеда, которая действует на полностью погруженное в жидкость тело. Пусть высота этого тела равна $H$, площадь поперечного сечения $S$ (рис.1). Плотность жидкости, в которую погрузили тело ${\rho }_g$.

Силы, действующие на тело со стороны боковых поверхностей, $({\rm например,\ }\ {\overline{F}}_{1b}$ и ${\overline{F}}_{2b})$ попарно уравновешивают друг друга на одном горизонтальном уровне жидкости.

Над верхней поверхностью тела находится столб воды высотой $h_1$, он оказывает давление равное:

\[p_1={\rho }_ggh_1\left(1\right),\]

где $g=9,8\ \frac{м}{с^2}$.

Силу давления воды на верхнюю поверхность цилиндра вычислим как:

\[F_1={\rho }_ggh_1S\ \left(2\right).\]

Над нижней поверхностью тела высота столба жидкости равна $h_2$, значит, сила давления воды на нее составляет величину:

\[F_2={\rho }_ggh_2S\ \left(3\right).\]

Очевидно, что $F_2>F_1$. Разница между силами $F_2и{\ F}_1$ составляет силу выталкивания:

\[F_A=F_2-F_1={\rho }_ggS\ \left(h_2-h_1\right)={\rho }_ggSH={\rho }_ggV\ .\]

Мы получили, что сила Архимеда равна:

\[F_A={\rho }_gVg\ \left(4\right).\]

Выражение (4) можно назвать формулой закона Архимеда. Если тело частично погружено в жидкость, то V — часть тела, находящаяся в жидкости. Сила Архимеда оказывает свое действие на тела не только в жидкостях, но и газах, там, где существует гиростатическое давление.

Если обозначить массу жидкости, которая занимает объем, равный объему тела как $m_g={\rho }_gV$, то выражение (4) преобразуем к виду:

\[F_A=m_gg=P_g\ \left(5\right),\]

где $P_g$ — вес жидкости, которая занимает объем, равный объему тела находящийся в ней.

Закон Архимеда в современной формулировке: На любое тело, которое погружено в жидкость (газ), находящуюся в состоянии равновесия, действует со стороны жидкости (газа) сила выталкивания, равная произведению плотности вещества в котором находится тело, на ускорение свободного падения и на объем погруженной части тела.

Если погрузить в жидкость тело, то величина силы Архимеда не зависит от положения тела в жидкости. Сила выталкивания не зависит от вещества, из которого сделано, погруженное в жидкость тело, ни от глубины погружения тела (при полном погружении тела).

Из-за выталкивающей силы вес каждого тела в жидкости меньше, чем в воздухе. Уменьшение веса тела произойдет, если перенести тело из в

www.webmath.ru

Закон Архимеда: формула и примеры решений

Закон Архимеда представляет собой физический принцип, который гласит, что на тело, которое погружено полностью или частично в жидкость, в покое действует вертикально направленная сила, которая по своей величине равна весу жидкости, вытесненной этим телом. Эта сила называется гидростатической или архимедовой. Как и любая сила в физике, она измеряется в ньютонах.

Греческий ученый Архимед

Архимед вырос в семье, которая была связана с наукой, поскольку его отец, Фидий, был великим астрономом своего времени. С раннего детства Архимед стал проявлять интерес к наукам. Учился он в Александрии, где завел дружбу с Эратосфеном из Кирены. Вместе с ним Архимед впервые измерил окружность земного шара. Благодаря влиянию Эратосфена, в юном Архимеде также появился интерес к астрономии.

После возвращения в свой родной город Сиракузы ученый посвящает большое количество времени изучению математики, физики, геометрии, механики, оптики и астрономии. Во всех этих областях науки Архимед совершил различные открытия, понимание которых оказывается трудным даже для современного образованного человека.

Открытие Архимедом своего закона

Согласно исторической справке свой закон Архимед открыл интересным образом. Витрувий в своих трудах описывает, что сиракузский тиран Гиерон Второй поручил одному из мастеров отлить ему золотую корону. После того как корона была готова, он решил проверить, не обманул ли его мастер, и не добавил ли в золото более дешевое серебро, которое имеет меньшую плотность, чем царь металлов. Эту задачу он задал решить Архимеду. Ученому нельзя было нарушать целостность короны.

Однажды принимая ванну, Архимед обратил внимание, что уровень воды в ней поднимается. Этот эффект он решил использовать для вычисления объема короны, знание которого, а также массы короны, позволяло ему вычислить плотность предмета. Это открытие сильно поразило Архимеда. Витрувий описал его состояние так: он бежал по улице абсолютно раздетым, и кричал «Эврика!», что с древнегреческого переводится «Я нашел!». В итоге плотность короны оказалась меньше, чем чистого золота, и мастер был казнен.

Архимед создал труд, который называется «О плавающих телах», где впервые подробно описывает открытый им закон. Отметим, что формулировка закона Архимеда, которую сделал сам ученый, практически не изменилась.

Объем жидкости, находящийся в равновесии с остальной жидкостью

В школе в 7 классе закон Архимеда начинают изучать. Чтобы понять смысл этого закона, следует сначала рассмотреть силы, которые действуют на определенный объем жидкости, находящейся в равновесии в толще остальной жидкости.

Сила, действующая на какую-либо поверхность рассматриваемого объема жидкости, равна p*dS, где p — давление, которое зависит только от глубины, dS — площадь этой поверхности.

Поскольку выделенный объем жидкости находится в равновесии, значит результирующая сила, действующая на поверхности этого объема, и связанная с давлением, должна уравновешиваться весом этого объема жидкости. Эта результирующая сила называется силой выталкивания. Точка приложения ее находится в центре тяжести этого объема жидкости.

Поскольку давление в жидкости вычисляется по формуле p =ro*g*h, где ro — плотность жидкости, g — ускорение свободного падения, h — глубина, то равновесие рассматриваемого объема жидкости определяется уравнением: вес тела = ro*g*V, где V — объем рассматриваемой части жидкости.

Замещение жидкости твердым телом

Рассматривая далее закон Архимеда в физике 7 класса, уберем рассматриваемый объем жидкости из ее толщи, а на свободное место поместим твердое тело того же объема и той же формы.

При этом результирующая сила выталкивания, которая зависит только от плотности жидкости и ее объема, останется прежней. Вес же тела, а также центр его тяжести в общем случае изменятся. В итоге на тело будут действовать изначально две силы:

  1. Сила выталкивания ro*g*V.
  2. Вес тела m*g.

В самом простом случае, если тело является однородным, тогда его центр тяжести совпадает с точкой приложения силы выталкивания.

Природа закона Архимеда и пример решения для полностью погруженного в жидкость тела

Предположим, что однородное тело массой m погрузили в жидкость с плотностью ro. При этом тело имеет форму параллелепипеда с площадью основания S и высотой h.

Согласно закону Архимеда на тело будут действовать следующие силы:

  1. Сила ro*g*x*S, которая обусловлена давлением, приложенным к верхней поверхности тела, где x — расстояние от верхней поверхности тела до поверхности жидкости. Эта сила направлена вертикально вниз.
  2. Сила ro*g*(h+x)*S, которая связана с давлением, действующим на нижнюю поверхность параллелепипеда. Она направлена вертикально вверх.
  3. Вес тела m*g, который действует вертикально вниз.

Давление, которое создает жидкость на боковые поверхности погруженного тела, равны друг другу по модулю и противоположны по направлению, поэтому в сумме дают нулевую силу.

В случае равновесия имеем: m*g + ro*g*x*S = ro*g*(h+x)*S, или m*g = ro*g*h*S.

Таким образом, природа выталкивающей силы или силы Архимеда заключается в разнице давлений, которые оказывает жидкость на верхнюю и нижнюю поверхности погруженного в нее тела.

Замечания к закону Архимеда

Природа выталкивающей силы позволяет сделать некоторые выводы из данного закона. Приведем важные выводы и замечания:

  • Если плотность твердого тела будет больше плотности жидкости, в которую оно погружается, то архимедовой силы будет недостаточно, чтобы вытолкнуть это тело из толщи жидкости, и тело будет тонуть. Наоборот, тело будет плавать на поверхности жидкости только в том случае, если его плотность меньше плотности этой жидкости.
  • В условиях невесомости для объемов жидкости, которые не могут создавать ощутимое гравитационное поле самостоятельно, не существует градиентов давления в толще этих объемов. В таком случае понятие о выталкивающей силе перестает существовать, и закон Архимеда оказывается неприменимым.
  • Сумму всех гидростатических сил, действующих на погруженное в жидкость тело произвольной формы, можно свести к одной силе, которая направлена вертикально вверх и приложена к центру тяжести тела. Таким образом, в действительности не существует единой силы, приложенной к центру тяжести, такое представления является лишь математическим упрощением.

fb.ru

Сила Архимеда

Компьютерная модель позволяет провести ряд экспериментов по теме «Закон Архимеда».

Модель может стать основой самых разнообразных исследовательских работ по данной учебной теме, т. к. допускает широкую вариативность исходных условий.

Существование гидростатического давления приводит к тому, что на любое тело, находящееся в жидкости или газе, действует выталкивающая сила. Впервые значение этой силы в жидкостях определил на опыте Архимед.




На тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу того количества жидкости или газа, которое вытеснено погруженной частью тела.

Теорема 1. Архимеда

Сила Архимеда, действующая на погруженное в жидкость тело, может быть рассчитана по формуле:

где ρж – плотность жидкости, Vпт – объем погруженной в жидкость части тела.

Модель позволяет провести ряд опытов, в ходе которых можно произвести следующие действия.

  • Определять объем тела, погруженного в жидкость.
  • Определять вес тела в воздухе и в жидкости.
  • Вычислять силу Архимеда, действующую на погруженное тело.
  • Вычислять вес вытесненной жидкости.
  • Вычислять плотность тела двумя способами (1-ый способ – по массе и объему, 2-ой – по силе Архимеда).
  • Проводить экспериментальную проверку закона Архимеда.

В модели предлагается выбор двух вариантов проведения эксперимента.

  • С телами одинаковой массы. При выборе тел одинаковой массы, масса каждого цилиндра равна 400 г.
  • С телами одинакового объема. При выборе тел одинакового объема, объем каждого тела равен 100 см3.

Предлагаются три цилиндрических тела (из стали, алюминия и меди), соответственно (для расчетов: плотность первого тела = 7800 кг/м3, второго – 2700 кг/м3, третьего – 8900 кг/м3).

В рамках эксперимента можно выбирать жидкость (вода, керосин, бензин).

Задав исходные условия эксперимента можно пронаблюдать результат, нажав кнопку . Экспериментатор может снимать показания с динамометра и измерять изменение высоты жидкости в сосуде.

files.school-collection.edu.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о