Закон ома для участка цепи и закон ома для полной цепи: Закон Ома для полной цепи

Содержание

Закон Ома для полной цепи

Закон Ома для полной цепи

Подробности
Просмотров: 443

«Физика – 10 класс»

Сформулируйте закон Ома для участка цепи.
Из каких элементов состоит электрическая цепь?
Для чего служит источник тока?

Рассмотрим простейшую полную (т. е. замкнутую) цепь, состоящую из источника тока (гальванического элемента, аккумулятора или генератора) и резистора сопротивлением R (рис. 15.10). Источник тока имеет ЭДС Ε и сопротивление r.

В генераторе r — это сопротивление обмоток, а в гальваническом элементе сопротивление раствора электролита и электродов.

Сопротивление источника называют внутренним сопротивлением в отличие от внешнего сопротивления R цепи.

Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление цепи R + r. Эта связь может быть установлена теоретически, если использовать закон сохранения энергии и закон Джоуля—Ленца (15.

14).

Пусть за время Δt через поперечное сечение проводника проходит электрический заряд Δq. Тогда работу сторонних сил при перемещении заряда Δq можно записать так: Аст = ΕΔq. Согласно определению силы тока (15.1) Δq = IΔt. Поэтому

Аст = ΕIΔt.         (15.17)

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых г и Я, выделяется некоторое количество теплоты. По закону Джоуля—Ленца оно равно:

Q = I2RΔt + I2rΔt.         (15.18)

По закону сохранения энергии Аст = Q, откуда получаем

Ε = IR + 1r.         (15.19)

Произведение силы тока и сопротивления участка цепи называют падением напряжения на этом участке.

Таким образом, ЭДС равна сумме падений напряжения на внутреннем и внешнем участках замкнутой цепи.

Закон Ома для замкнутой цепи:

Сила тока в замкнутой цепи равна отношению ЭДС источника тока к полному сопротивлению цепи.

Согласно этому закону сила тока в цепи зависит от трёх величин: ЭДС Ε сопротивлений R внешнего и г внутреннего участков цепи. Внутреннее сопротивление источника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи (R >> r). При этом напряжение на зажимах источника примерно равно ЭДС: U = IR = Ε – Ir ≈ Ε

При коротком замыкании, когда R ≈ 0, сила тока в цепи и определяется именно внутренним сопротивлением источника и при электродвижущей силе в несколько вольт может оказаться очень большой, если r мало (например, у аккумулятора r ≈ 0,1 — 0,001 Ом). Провода могут расплавиться, а сам источник выйти из строя.

Если цепь содержит несколько последовательно соединённых элементов с ЭДС Ε1

, Ε2, Ε3 и т. д., то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных элементов.

Для определения знака ЭДС любого источника нужно вначале условиться относительно выбора положительного направления обхода контура. На рисунке (15.11) положительным (произвольно) считают направление обхода против часовой стрелки.

Если при обходе цепи данный источник стремится вызвать ток в направлении обхода, то его ЭДС считается положительной: Ε > 0. Сторонние силы внутри источника совершают при этом положительную работу.


Если же при обходе цепи данный источник вызывает ток против направления обхода цепи, то его ЭДС будет отрицательной: Ε < 0. Сторонние силы внутри источника совершают отрицательную работу. Так, для цепи, изображённой на рисунке 15.11, при обходе контура против часовой стрелки получаем следующее уравнение:

Εп = Ε1 + Ε2 + Ε3 = lΕ1| – |Ε2| + |Ε3|

Если Εп > 0, то согласно формуле (15.20) сила тока I > 0, т. е. направление тока совпадает с выбранным направлением обхода контура. При Εп < 0, наоборот, направление тока противоположно выбранному направлению обхода контура.

Полное сопротивление цепи Rп равно сумме всех сопротивлений (см. рис. 15.11):

Rп = R + r1 + r2 + r3.

Для любого замкнутого участка цепи, содержащего несколько источников токов, справедливо следующее правило: алгебраическая сумма падений напряжения равна алгебраической сумме ЭДС на этом участке (второе правило Кирхгофа):

I1R1+ I2R2 + … + InRn = Ε1 + Ε2 + … + Εm

Источник: «Физика – 10 класс», 2014, учебник Мякишев, Буховцев, Сотский



Законы постоянного тока – Физика, учебник для 10 класса – Класс!ная физика

Электрический ток. Сила тока — Закон Ома для участка цепи. Сопротивление — Электрические цепи. Последовательное и параллельное соединения проводников — Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников» — Работа и мощность постоянного тока — Электродвижущая сила — Закон Ома для полной цепи — Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»

Закон ома – формулировка простыми словами, определение,

Сопротивление

Представьте, что есть труба, в которую затолкали камни. Вода, которая протекает по этой трубе, станет течь медленнее, потому что у нее появилось сопротивление. Точно также будет происходить с электрическим током.

  • Сопротивление — физическая величина, которая показывает способность проводника пропускать электрический ток. Чем выше сопротивление, тем ниже эта способность.

Теперь сделаем «каменный участок» длиннее, то есть добавим еще камней. Воде будет еще сложнее течь.

Сделаем трубу шире, оставив количество камней тем же — воде полегчает, поток увеличится.

2.

Знайте!

СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение составляет килограмм с приставкой «кило».

  • Удельное сопротивление проводника — это физическая величина, которая показывает способность материала пропускать электрический ток. Это табличная величина, она зависит только от материала.

Таблица удельных сопротивлений различных материалов

Удельное сопротивление

ρ, Ом*мм2/м

Удельное сопротивление

ρ, Ом*мм2/м

Алюминий

0,028

Бронза

0,095 – 0,1

Висмут

1,2

Вольфрам

0,05

Железо

0,1

Золото

0,023

Иридий

0,0474

Константан ( сплав Ni-Cu + Mn)

0,5

Латунь

0,025 – 0,108

Магний

0,045

Манганин (сплав меди марганца и никеля – приборный)

0,43 – 0,51

Медь

0,0175

Молибден

0,059

Нейзильбер (сплав меди цинка и никеля)

0,2

Натрий

0,047

Никелин ( сплав меди и никеля)

0,42

Никель

0,087

Нихром ( сплав никеля хрома железы и марганца)

1,05 – 1,4

Олово

0,12

Платина

0. 107

Ртуть

0,94

Свинец

0,22

Серебро

0,015

Сталь

0,103 – 0,137

Титан

0,6

Хромаль

1,3 – 1,5

Цинк

0,054

Чугун

0,5-1,0

Резистор

Все реальные проводники имеют сопротивление, но его стараются сделать незначительным. В задачах вообще используют словосочетание «идеальный проводник», а значит лишают его сопротивления.

Из-за того, что проводник у нас «кругом-бегом-такой-идеальный», чаще всего за сопротивление в цепи отвечает резистор. Это устройство, которое нагружает цепь сопротивлением.

Вот так резистор изображается на схемах:


В школьном курсе физики используют Европейское обозначение, поэтому запоминаем только его. Американское обозначение можно встретить, например, в программе Micro-Cap, в которой инженеры моделируют схемы.

Вот так резистор выглядит в естественной среде обитания:


Полосочки на нем показывают его сопротивление.

На сайте компании Ekits, которая занимается продажей электронных модулей, можно выбрать цвет резистора и узнать значение его сопротивления:


Источник: сайт компании Ekits

О том, зачем дополнительно нагружать сопротивлением цепь, мы поговорим в этой же статье чуть позже.

Реостат

Есть такие выключатели, которые крутишь, а они делают свет ярче-тусклее. В такой выключатель спрятан резистор с переменным сопротивлением — реостат. 2/м]

Закон Ома для участка цепи

С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.

Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».


У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.

Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.

Математически его можно описать вот так:

Закон Ома для участка цепи

I = U/R

I — сила тока [A]

U — напряжение [В]

R — сопротивление [Ом]

Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.

Сила тока измеряется в Амперах, а подробнее о ней вы можете прочитать в нашей статье 😇

Давайте решим несколько задач на Закон Ома для участка цепи.

Задача раз

Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом. 2/м

Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.

Таблица удельных сопротивлений различных материалов

Удельное сопротивление

ρ, Ом*мм2/м

Удельное сопротивление

ρ, Ом*мм2/м

Алюминий

0,028

Бронза

0,095 – 0,1

Висмут

1,2

Вольфрам

0,05

Железо

0,1

Золото

0,023

Иридий

0,0474

Константан ( сплав Ni-Cu + Mn)

0,5

Латунь

0,025 – 0,108

Магний

0,045

Манганин (сплав меди марганца и никеля – приборный)

0,43 – 0,51

Медь

0,0175

Молибден

0,059

Нейзильбер (сплав меди цинка и никеля)

0,2

Натрий

0,047

Никелин ( сплав меди и никеля)

0,42

Никель

0,087

Нихром ( сплав никеля хрома железы и марганца)

1,05 – 1,4

Олово

0,12

Платина

0. 107

Ртуть

0,94

Свинец

0,22

Серебро

0,015

Сталь

0,103 – 0,137

Титан

0,6

Хромаль

1,3 – 1,5

Цинк

0,054

Чугун

0,5-1,0

Ответ: нить накаливания сделана из константана.

Закон Ома для полной цепи

Мы разобрались с законом Ома для участка цепи. А теперь давайте узнаем, что происходит, если цепь полная: у нее есть источник, проводники, резисторы и другие элементы.

В таком случае вводится Закон Ома для полной цепи: сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Так, стоп. Слишком много незнакомых слов — разбираемся по-порядку.

Что такое ЭДС и откуда она берется

ЭДС расшифровывается, как электродвижущая сила. Обозначается греческой буквой ε и измеряется, как и напряжение, в Вольтах.

  • ЭДС — это сила, которая движет заряженные частицы в цепи. Она берется из источника тока. Например, из батарейки.

Химическая реакция внутри гальванического элемента (это синоним батарейки) происходит с выделением энергии в электрическую цепь. Именно эта энергия заставляет частицы двигаться по проводнику.

Зачастую напряжение и ЭДС приравнивают и говорят, что это одно и то же. Формально, это не так, но при решении задач чаще всего и правда нет разницы, так как эти величины обе измеряются в Вольтах и определяют очень похожие по сути своей процессы.

В виде формулы Закон Ома для полной цепи будет выглядеть следующим образом:

Закон Ома для полной цепи

I = ε/(R + r)

I — сила тока [A]

ε — ЭДС [В]

R — сопротивление [Ом]

r — внутреннее сопротивление источника [Ом]

Любой источник не идеален. В задачах это возможно («источник считать идеальным», вот эти вот фразочки), но в реальной жизни — точно нет. В связи с этим у источника есть внутреннее сопротивление, которое мешает протеканию тока.

Решим задачу на полную цепь.

Задачка

Найти силу тока в полной цепи, состоящей из одного резистора сопротивлением 3 Ом и источником с ЭДС равной 4 В и внутренним сопротивлением 1 Ом

Решение:

Возьмем закон Ома для полной цепи:

I = ε/(R + r)

Подставим значения:

I = 4/(3+1) = 1 A

Ответ: сила тока в цепи равна 1 А.

Когда «сопротивление бесполезно»

Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.

А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.


Ток идет по пути наименьшего сопротивления.

Теперь давайте посмотрим на закон Ома для участка цепи еще раз.

Закон Ома для участка цепи

I = U/R

I — сила тока [A]

U — напряжение [В]

R — сопротивление [Ом]

Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.

То есть:

I = U/0 = ∞

Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.

Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.

Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.

Параллельное и последовательное соединение

Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.


Последовательное соединение

Параллельное соединение

Схема

Резисторы следуют друг за другом

Между резисторами есть два узла

Узел — это соединение трех и более проводников

Сила тока

Сила тока одинакова на всех резисторах

I = I1 = I2

Сила тока, входящего в узел, равна сумме сил токов, выходящих из него

I = I1 + I2

Напряжение

Общее напряжение цепи складывается из напряжений на каждом резисторе

U = U1 + U2

Напряжение одинаково на всех резисторах

U = U1 = U2

Сопротивление

Общее сопротивление цепи складывается из сопротивлений каждого резистора

R = R1 + R2

Общее сопротивление для бесконечного количества параллельно соединенных резисторов

1/R = 1/R1 + 1/R2 + … + 1/Rn

Общее сопротивление для двух параллельно соединенных резисторов

R = (R1 * R2)/R1 + R2

Общее сопротивление бесконечного количества параллельно соединенных одинаковых резисторов

R = R1/n

Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?

Начнем с того, что все электронные компоненты изготавливаются по ГОСТу. То есть есть определенные значения резисторов, от которых нельзя отойти при производстве. Это значит, что не всегда есть резистор нужного номинала и его нужно соорудить из других резисторов.

Параллельное соединение также используют, как «запасной аэродром»: когда на конечный результат общее сопротивление сильно не повлияет, но в случае отказа одного из резисторов, будет работать другой.

Признаемся честно: схемы, которые обычно дают в задачах (миллион параллельно соединенных резисторов, к ним еще последовательный, а к этому последовательному еще миллион параллельных) — в жизни не встречаются. Но навык расчета таких схем впоследствии упрощает подсчет схем реальных, потому что так вы невооруженным глазом отличаете последовательное соединение от параллельного.

Решим несколько задач на последовательное и параллельное соединение.

Задачка раз

Найти общее сопротивление цепи.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом, R4 = 4 Ом.


Решение:

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + R2 + R3 + R4 = 1 + 2 + 3 + 4 = 10 Ом

Ответ: общее сопротивление цепи равно 10 Ом

Задачка два

Найти общее сопротивление цепи.

R1 = 4 Ом, R2 = 2 Ом


Решение:

Общее сопротивление при параллельном соединении рассчитывается по формуле:

R = (R1 * R2)/R1 + R2 = 4*2/4+2 = 4/3 = 1 ⅓ Ом

Ответ: общее сопротивление цепи равно 1 ⅓ Ом

Задачка три

Найти общее сопротивление цепи, состоящей из резистора и двух ламп.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом


Решение:

Сначала обозначим, что лампы с точки зрения элемента электрической цепи не отличаются от резисторов. То есть у них тоже есть сопротивление, и они также влияют на цепь.

В данном случае соединение является смешанным. Лампы соеденены параллельно, а последовательно к ним подключен резистор.

Сначала посчитаем общее сопротивление для ламп. Общее сопротивление при параллельном соединении рассчитывается по формуле:

Rламп = (R2 * R3)/R2 + R3 = 2*3/2+3 = 6/5 = 1,2 Ом

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + Rламп = 1 + 1,2 = 2,2 Ом

Ответ: общее сопротивление цепи равно 2,2 Ом.

Наконец-то, последняя и самая сложная задача! В ней собрали все самое серьезное из этой статьи 💪.

Задачка четыре со звездочкой

К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2. 2)/2R = R/2 = 10/2 = 5 Ом

И общее сопротивление цепи равно:

R = Rлампы + Rрезисторов = 5 + 5 = 10 Ом

Выразим внутреннее сопротивление источника из закона Ома для полной цепи.

I = ε/(R + r)

R + r = ε/I

r = ε/I — R

Подставим значения:

r = 12/0,5 — 10 = 14 Ом

Ответ: внутреннее сопротивление источника равно 14 Ом.

Закон Ома для полной цепи

Зако́н Ома — это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома. Суть закона проста: сила тока в проводнике прямо пропорциональна напряжению между концами проводника, если при прохождении тока свойства проводника не изменяются. Следует также иметь в виду, что закон Ома является фундаментальным и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д., также, как и Правила Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.

Закон Ома формулируется так: Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна характеристике участка, которую называют электрическим сопротивлением этого участка.

Ток, АНапряжение, ВСопротивление, ОмМощность, Вт
IURP

История закона Ома

Георг Ом, проводя эксперименты с проводником, установил, что сила тока I в проводнике пропорциональна напряжению U, приложенному к его концам:

,

или

.

Коэффициент пропорциональности назвали электропроводностью, а величину принято именовать электрическим сопротивлением проводника.

Закон Ома был открыт в 1827 году.

Закон Ома в интегральной форме

Схема, иллюстрирующая три составляющие закона Ома

Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для ее вычисления

Закон Ома для участка электрической цепи имеет вид:

U = RI

где:

  • U — напряжение или разность потенциалов,
  • I — сила тока,
  • R — сопротивление.

Закон Ома также применяется ко всей цепи, но в несколько изменённой форме:

,

где:

Закон Ома в дифференциальной форме

Сопротивление R зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника. Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:

где:

Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1).

Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред.

Закон Ома для переменного тока

Если цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), а ток является синусоидальным с циклической частотой ω, то закон Ома обобщается; величины, входящие в него, становятся комплексными:

где:

  • U = U0eiωt — напряжение или разность потенциалов,
  • I — сила тока,
  • Z = Reiδ — комплексное сопротивление (импеданс),
  • R = (Ra2+Rr2)1/2 — полное сопротивление,
  • Rr = ωL — 1/ωC — реактивное сопротивление (разность индуктивного и емкостного),
  • Rа — активное (омическое) сопротивление, не зависящее от частоты,
  • δ = —arctg Rr/Ra — сдвиг фаз между напряжением и силой тока.

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведен взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, U = U0sin(ωt + φ) подбором такой , что . Тогда все значения токов и напряжений в схеме надо считать как

Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо.

Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждать вольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения электрического поля настолько велика, что нельзя пренебрегать инерционностью носителей заряда.

Объяснение закона Ома

Закон Ома можно просто объяснить при помощи теории Друде

См. также

Wikimedia Foundation. 2010.

Как пишется закон ома для участка цепи. Закон ома для полной цепи

Закон Ома для полной цепи – эмпирический (полученный из эксперимента) закон, который устанавливает связь между силой тока, электродвижущей силой (ЭДС) и внешним и внутренним сопротивлением в цепи.

При проведении реальных исследований электрических характеристик цепей с постоянным током необходимо учитывать сопротивление самого источника тока. Таким образом в физике осуществляется переход от идеального источника тока к реальному источнику тока, у которого есть свое сопротивление (см. рис. 1).

Рис. 1. Изображение идеального и реального источников тока

Рассмотрение источника тока с собственным сопротивлением обязывает использовать закон Ома для полной цепи.

Сформулируем закона Ома для полной цепи так (см. рис. 2): сила тока в полной цепи прямо пропорциональна ЭДС и обратно пропорциональна полному сопротивлению цепи, где под полным сопротивлением понимается сумма внешних и внутренних сопротивлений.

Рис. 2. Схема закона Ома для полной цепи.


  • R – внешнее сопротивление [Ом];
  • r – сопротивление источника ЭДС (внутреннее) [Ом];
  • I – сила тока [А];
  • ε– ЭДС источника тока [В].

Рассмотрим некоторые задачи на данную тему. Задачи на закон Ома для полной цепи, как правило, дают ученикам 10 класса, чтобы они могли лучше усвоить указанную тему.

I. Определите силу тока в цепи с лампочкой, сопротивлением 2,4 Ом и источником тока, ЭДС которого равно 10 В, а внутреннее сопротивление 0,1 Ом.

По определению закона Ома для полной цепи, сила тока равна:

II. Определить внутреннее сопротивление источника тока с ЭДС 52 В. Если известно, что при подключении этого источника тока к цепи с сопротивлением 10 Ом амперметр показывает значение 5 А.

Запишем закон Ома для полной цепи и выразим из него внутреннее сопротивление:

III. Однажды школьник спросил у учителя по физике: «Почему батарейка садится?» Как грамотно ответить на данный вопрос?

Мы уже знаем, что реальный источник обладает собственным сопротивлением, которое обусловлено либо сопротивлением растворов электролитов для гальванических элементов и аккумуляторов, либо сопротивлением проводников для генераторов. Согласно закону Ома для полной цепи:

следовательно, ток в цепи может уменьшаться либо из-за уменьшения ЭДС, либо из-за повышения внутреннего сопротивления. Значение ЭДС у аккумулятора почти постоянный. Следовательно, ток в цепи понижается за счет повышения внутреннего сопротивления. Итак, «батарейка» садится, так как её внутреннее сопротивление увеличивается.

Закон Ома для участка цепи: сила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

Формула закона: I =. Отсюда запишем формулыU = IR и R = .

Рис.1. Участок цепи Рис.2. Полная цепь

Закон Ома для полной цепи: сила тока I полной электрической цепи равнаЭДС (электродвижущей силе) источника тока Е , деленной на полное сопротивление цепи (R + r). Полное сопротивление цепи равно сумме сопротивлений внешней цепи R и внутреннего r источника тока.Формула закона I =
. На рис. 1 и 2 приведены схемы электрических цепей.

3. Последовательное и параллельное соединение проводников

Проводники в электрических цепях могут соединяться последовательно и параллельно . Смешанное соединение сочетает оба эти соединения.

Сопротивление,при включении которого вместо всех других проводников, находящихся между двумя точками цепи, ток и напряжение остаются неизменными, называют эквивалентным сопротивлением этих проводников.

Последовательное соединение

Последовательным называется соединение, при котором каждый проводник соединяется только с одним предыдущим и одним последующим проводниками.

Как следует из первого правила Кирхгофа , при последовательном соединении проводников сила электрического тока, протекающего по всем проводникам, одинакова (на основании закона сохранения заряда).

1. При последовательном соединении проводников (рис. 1) сила тока во всех проводниках одинакова: I 1 = I 2 = I 3 = I

Рис. 1.Последовательное соединение двух проводников.

2. Согласно закону Ома, напряженияU 1 иU 2 на проводниках равны U 1 = IR 1 , U 2 = IR 2 , U 3 = IR 3 .

Напряжение при последовательном соединении проводников равно сумме напряжений на отдельных участках (проводниках) электрической цепи.

U = U 1 + U 2 + U 3

Позакону Ома, напряжения U 1, U 2 на проводниках равныU 1 = IR 1 , U 2 = IR 2 , В соответствии вторым правилом Кирхгофа напряжение на всем участке:

U = U 1 + U 2 = IR 1 + IR 2 = I(R 1 + R 2 )= I·R. Получаем: R = R 1 + R 2

Общее напряжение U на проводниках равно сумме напряжений U 1 , U 2 , U 3 равно: U = U 1 + U 2 + U 3 = I · (R 1 + R 2 + R 3 ) = IR

где R ЭКВ эквивалентное сопротивление всей цепи. Отсюда: R ЭКВ = R 1 + R 2 + R 3

При последовательном соединении эквивалентное сопротивление цепи равно сумме сопротивлений отдельных участков цепи: R ЭКВ = R 1 + R 2 + R 3 +…

Этот результат справедлив для любого числа последовательно соединенных проводников.

Из закона Омаследует: при равенстве сил тока при последовательном соединении:

I = , I = . Отсюда = или =, т. е. напряжения на отдельных участках цепи прямо пропорциональны сопротивлениям участков.

При последовательном соединении n одинаковых проводников общее напряжение равно произведению напряжению одного U 1 на их количество n :

U ПОСЛЕД = n · U 1 . Аналогично для сопротивлений: R ПОСЛЕД = n · R 1

При размыкании цепи одного из последовательно соединенных потребителей ток исчезает во всей цепи, поэтому последовательное соединение на практике не всегда удобно.

Электрический ток и опасное напряжение невозможно услышать (за исключением гудящих высоковольтных линий и электроустановок). Токоведущие части, находящиеся под напряжением, ничем не отличаются по внешнему виду.

Невозможно узнать их и по запаху, и повышенной температурой в штатных режимах работы они не отличаются. Но включаем в безмолвную и тихую розетку пылесос, щелкаем выключателем – и энергия словно берется из ниоткуда, сама по себе, материализуясь в виде шума и компрессии внутри бытового прибора.

Опять же, если мы воткнем в разъемы розетки два гвоздя и возьмемся за них, то буквально всем своим телом ощутим реальность и объективность существования электрического тока. Делать это, конечно, настоятельно не рекомендуется. Но примеры с пылесосом и гвоздями наглядно демонстрируют нам, что изучение и понимание основных законов электротехники способствует безопасности при обращении с бытовым электричеством, а также устранению суеверных предубеждений, связанных с электрическим током и напряжением.

Итак, рассмотрим один, самый ценный закон электротехники, который полезно знать. И попытаемся сделать это в как можно более популярной форме.

Закон Ома

1. Дифференциальная форма записи закона Ома

Самый главный закон электротехники – это, конечно, закон Ома . О его существовании знают даже люди, не имеющие отношения к электротехнике. Но между тем вопрос «А знаешь ли ты закон Ома?» в технических ВУЗах является ловушкой для зарвавшихся и самонадеянных школяров. Товарищ, разумеется, отвечает, что закон Ома знает отлично, и тогда к нему обращаются с просьбой привести этот закон в дифференциальной форме. Тут-то и выясняется, что школяру или первокурснику еще учиться и учиться.

Однако дифференциальная форма записи закона Ома на практике почти неприменима. Она отражает зависимость между плотностью тока и напряженностью поля:

где G – это проводимость цепи; Е – напряженность электрического тока.

Все это – попытки выразить электрический ток, принимая во внимание только физические свойства материала проводника, без учета его геометрических параметров (длина, диаметр и тому подобное). Дифференциальная форма записи закона Ома – это чистая теория, знание ее в быту совершенно не требуется.

2. Интегральная форма записи закона Ома для участка цепи

Иное дело – интегральная форма записи. Она тоже имеет несколько разновидностей. Самой популярной из них является закон Ома для участка цепи: I=U/R

Говоря по-другому, ток в участке цепи всегда тем выше, чем больше приложенное к этому участку напряжение и чем меньше сопротивление этого участка.

Вот этот «вид» закона Ома просто обязателен к запоминанию для всех, кому хоть иногда приходится иметь дело с электричеством. Благо, и зависимость-то совсем простая. Ведь напряжение в сети можно считать неизменным. Для розетки оно равно 220 вольт. Поэтому получается, что ток в цепи зависит только от сопротивления цепи, подключаемой к розетке. Отсюда простая мораль: за этим сопротивлением надо следить.

Короткие замыкания, которые у всех на слуху, случаются именно по причине низкого сопротивления внешней цепи. Предположим, что из-за неправильного соединения проводов в ответвительной коробке фазный и нулевой провода оказались напрямую соединены между собой. Тогда сопротивление участка цепи резко снизится практически до нуля, а ток так же резко возрастет до очень большой величины. Если электропроводка выполнена правильно, то сработает автоматический выключатель, а если его нет, или он неисправен или подобран неправильно, то провод не справится с возросшим током, нагреется, расплавится и, возможно, вызовет пожар.

Но бывает, что приборы, включенные в розетку и отработавшие уже далеко не один час, становятся причиной короткого замыкания. Типичный случай – вентилятор, обмотки двигателя которого подверглись перегреву из-за заклинивания лопастей. Изоляция обмоток двигателя не рассчитана на серьезный нагрев, она быстро приходит в негодность. В результате появляются межвитковые короткие замыкания, которые снижают сопротивление и, в соответствии с законом Ома, также ведут к увеличению тока.

Повышенный ток, в свою очередь, приводит изоляцию обмоток в полную негодность, и наступает уже не межвитковое, а самое настоящее, полноценное короткое замыкание. Ток идет помимо обмоток, сразу из фазного в нулевой провод. Правда, все сказанное может случиться только с совсем простым и дешевым вентилятором, не оборудованным тепловой защитой.

Закон Ома для переменного тока

Надо отметить, что приведенная запись закона Ома описывает участок цепи с постоянным напряжением. В сетях переменного напряжения существует дополнительное реактивное сопротивление, а полное сопротивление приобретает значение квадратного корня из суммы квадратов активного и реактивного сопротивления.

Закон Ома для участка цепи переменного тока принимает вид: I=U/Z ,

где Z – полное сопротивление цепи.

Но большое реактивное сопротивление свойственно, прежде всего, мощным электрическим машинам и силовой преобразовательной технике. Внутреннее электрическое сопротивление бытовых приборов и светильников практически полностью является активным. Поэтому в быту для расчетов можно пользоваться самой простой формой записи закона Ома: I=U/R.

3. Интегральная форма записи для полной цепи

Раз есть форма записи закона для участка цепи, то существует и закон Ома для полной цепи: I=E/(r+R) .

Здесь r – внутреннее сопротивление источника ЭДС сети, а R – полное сопротивление самой цепи.

За физической моделью для иллюстрации этого подвида закона Ома далеко ходить не надо – это бортовая электрическая сеть автомобиля, аккумулятор в которой является источником ЭДС. Нельзя считать, что сопротивление аккумулятора равно абсолютному нулю, поэтому даже при прямом замыкании между его клеммами (отсутствии сопротивления R) ток вырастет не до бесконечности, а просто до высокого значения. Однако этого высокого значения, конечно, хватит для того, чтобы вызвать расплавление проводов и возгорание обшивки авто. Поэтому электрические цепи автомобилей защищают от короткого замыкания при помощи предохранителей.

Такой защиты может оказаться недостаточно, если замыкание произойдет до блока предохранителей относительно аккумулятора, или если вовсе один из предохранителей заменен на кусок медной проволоки. Тогда спасение только в одном – необходимо как можно быстрее разорвать цепь полностью, откинув «массу», то есть минусовую клемму.

4. Интегральная форма записи закона Ома для участка цепи, содержащего источник ЭДС

Следует упомянуть и о том, что есть и еще одна разновидность закона Ома – для участка цепи, содержащего источник ЭДС:

Здесь U – это разность потенциалов в начале и в окончании рассматриваемого участка цепи. Знак перед величиной ЭДС зависит от направленности ее относительно напряжения. Воспользоваться законом Ома для участка цепи нередко приходится при определении параметров цепи, когда часть схемы недоступна для детального изучения и не интересует нас. Допустим, она скрыта неразъемными деталями корпуса. В оставшейся схеме имеется источник ЭДС и элементы с известным сопротивлением. Тогда, замерив напряжение на входе неизвестной части схемы, можно вычислить ток, а после этого – и сопротивление неизвестного элемента.

Выводы

Таким образом, мы можем увидеть, что «простой» закон Ома далеко не так прост, как кому-то, возможно, казалось. Зная все формы интегральной записи законов Ома, можно понять и легко запомнить многие требования электробезопасности, а также приобрести уверенность в обращении с электричеством.

Физический закон , определяющий связь (или электрического напряжения) с силой тока , протекающего в проводнике , и сопротивлением проводника. Установлен Георгом Омом в 1826 году и назван в его честь.

Закон Ома для переменного тока

Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновремённости достижения напряжением и током своих максимальных значений, то есть учёта фазового сдвига .

Если ток является синусоидальным с циклической частотой ω {\displaystyle \omega } , а цепь содержит не только активные, но и реактивные компоненты (ёмкости , индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:

U = I ⋅ Z {\displaystyle \mathbb {U} =\mathbb {I} \cdot Z}
  • U = U 0 e i ωt – напряжение или разность потенциалов,
  • I – сила тока,
  • Z = Re i δ – комплексное сопротивление (электрический импеданс),
  • R = √ R a 2 + R r 2 – полное сопротивление,
  • R r = ωL − 1/(ωC ) – реактивное сопротивление (разность индуктивного и емкостного),
  • R а – активное (омическое) сопротивление, не зависящее от частоты,
  • δ = − arctg (R r /R a ) – сдвиг фаз между напряжением и силой тока. {i(\omega t+\varphi)},} что Im ⁡ U = U . {\displaystyle \operatorname {Im} \mathbb {U} =U.} Тогда все значения токов и напряжений в схеме надо считать как F = Im ⁡ F {\displaystyle F=\operatorname {Im} \mathbb {F} }

    Здравствуйте, уважаемые читатели сайта «Заметки электрика»..

    Сегодня открываю новый раздел на сайте под названием .

    В этом разделе я постараюсь в наглядной и простой форме объяснить Вам вопросы электротехники. Скажу сразу, что далеко углубляться в теоретические знания мы не будем, но вот с основами познакомимся в достаточном порядке.

    Первое, с чем я хочу Вас познакомить, это с законом Ома для участка цепи. Это самый основной закон, который должен знать каждый .

    Знание этого закона позволит нам беспрепятственно и безошибочно определять значения силы тока, напряжения (разности потенциалов) и сопротивления на участке цепи.

    Кто такой Ом? Немного истории

    Закон Ома открыл всем известный немецкий физик Георг Симон Ом в 1826 году. Вот так он выглядел.

    Всю биографию Георга Ома я рассказывать Вам не буду. Про это Вы можете узнать на других ресурсах более подробно.

    Скажу только самое главное.

    Его именем назван самый основной закон электротехники, который мы активно применяем в сложных расчетах при проектировании, на производстве и в быту.

    Закон Ома для однородного участка цепи выглядит следующим образом:

    I – значение тока, идущего через участок цепи (измеряется в амперах)

    U – значение напряжения на участке цепи (измеряется в вольтах)

    R – значение сопротивления участка цепи (измеряется в Омах)

    Если формулу объяснить словами, то получится, что сила тока пропорциональная напряжению и обратно пропорциональна сопротивлению участка цепи.

    Проведем эксперимент

    Чтобы понять формулу не на словах, а на деле, необходимо собрать следующую схему:

    Цель этой статьи — это показать наглядно, как использовать закон Ома для участка цепи. Поэтому я на своем рабочем стенде собрал эту схему. Смотрите ниже как она выглядит.

    С помощью ключа управления (избирания) можно выбрать, либо постоянное напряжение, либо переменное напряжение на выходе. В нашем случае используется постоянное напряжения. Уровень напряжения я меняю с помощью лабораторного автотрансформатора (ЛАТР).

    В нашем эксперименте я буду использовать напряжение на участке цепи, равное 220 (В). Контроль напряжения на выходе смотрим по вольтметру.

    Теперь мы полностью готовы провести самостоятельно эксперимент и проверить закон Ома в действительности.

    Ниже я приведу 3 примера. В каждом примере мы будем определять искомую величину 2 методами: с помощью формулы и практическим путем.

    Пример № 1

    В первом примере нам нужно найти ток (I) в цепи, зная величину источника постоянного напряжения и величину сопротивления светодиодной лампочки.

    Напряжение источника постоянного напряжения составляет U = 220 (В) . Сопротивление светодиодной лампочки равно R = 40740 (Ом) .

    С помощью формулы найдем ток в цепи:

    I = U/R = 220 / 40740 = 0,0054 (А)

    Подключаем последовательно светодиодной лампочке , включенный в режиме амперметр, и замеряем ток в цепи.

    На дисплее мультиметра показан ток цепи. Его значение равно 5,4 (мА) или 0,0054 (А), что соответствует току, найденному по формуле.

    Пример № 2

    Во втором примере нам нужно найти напряжение (U) участка цепи, зная величину тока в цепи и величину сопротивления светодиодной лампочки.

    I = 0,0054 (А)

    R = 40740 (Ом)

    С помощью формулы найдем напряжение участка цепи:

    U = I*R = 0,0054 *40740 = 219,9 (В) = 220 (В)

    А теперь проверим полученный результат практическим путем.

    Подключаем параллельно светодиодной лампочке мультиметр, включенный в режиме вольтметр, и замеряем напряжение.

    На дисплее мультиметра показана величина измеренного напряжения. Его значение равно 220 (В), что соответствует напряжению, найденному по формуле закона Ома для участка цепи.

    Пример № 3

    В третьем примере нам нужно найти сопротивление (R) участка цепи, зная величину тока в цепи и величину напряжения участка цепи.

    I = 0,0054 (А)

    U = 220 (В)

    Опять таки, воспользуемся формулой и найдем сопротивление участка цепи:

    R = U/ I = 220/0,0054 = 40740,7 (Ом)

    А теперь проверим полученный результат практическим путем.

    Сопротивление светодиодной лампочки мы измеряем с помощью или мультиметра.

    Полученное значение составило R = 40740 (Ом) , что соответствует сопротивлению, найденному по формуле.

    Как легко запомнить Закон Ома для участка цепи!!!

    Чтобы не путаться и легко запомнить формулу, можно воспользоваться небольшой подсказкой, которую Вы можете сделать самостоятельно.

    Нарисуйте треугольник и впишите в него параметры электрической цепи, согласно рисунка ниже. У Вас должно получится вот так.

    Как этим пользоваться?

    Пользоваться треугольником-подсказкой очень легко и просто. Закрываете своим пальцем, тот параметр цепи, который необходимо найти.

    Если оставшиеся на треугольнике параметры расположены на одном уровне, то значит их необходимо перемножить.

    Если же оставшиеся на треугольнике параметры расположены на разном уровне, то тогда необходимо разделить верхний параметр на нижний.

    С помощью треугольника-подсказки Вы не будете путаться в формуле. Но лучше все таки ее выучить, как таблицу умножения.

    Выводы

    В завершении статьи сделаю вывод.

    Электрический ток — это направленный поток электронов от точки В с потенциалом минус к точке А с потенциалом плюс. И чем выше разность потенциалов между этими точками, тем больше электронов переместится из точки В в точку А, т. е. ток в цепи увеличится, при условии, что сопротивление цепи останется неизменным.

    Но сопротивление лампочки противодействует протеканию электрического тока. И чем больше сопротивление в цепи (последовательное соединение нескольких лампочек), тем меньше будет ток в цепи, при неизменном напряжении сети.

    P.S. Тут в интернете нашел смешную, но поясняющую карикатуру на тему закона Ома для участка цепи.

    Закон Ома для электрической цепи

    Электрический ток, как и любой процесс, подчиняется законам физики. Знаменитый немецкий физик Георг Симон Ом, именем которого названа единица измерения сопротивления, в 1826 году эмпирически вывел формулы, связывающие между собой ток, напряжение и сопротивление. Поначалу закон вызвал недоверие и критику в научных кругах. Затем правильность его рассуждений была подтверждена французом Клодом Пулье и труды Ома получили заслуженное признание.

    Закон Ома для электрической цепи (полной)

    Частный случай – закон Ома для участка цепи:

    Обозначение

    Единица измерения

    Физический смысл

    IАмперСила тока в цепи
    ԑВольтЭлектродвижущая сила (э. д.с.) источника питания
    rОмВнутреннее сопротивление источника питания
    RОмСопротивление нагрузки, подключенной и источнику
    UВольтПадение напряжения на сопротивлении нагрузки
    Поясняющая схема к закону Ома

    Добавим к этим формулам еще и электрическую мощность, выделяемую при прохождении тока:

    В результате получается ряд формул, которые выводятся математически. Они связывают между собой все перечисленные физические величины.

    Электродвижущая сила и внутреннее сопротивление

    Электродвижущая сила источника напряжения характеризует его способность обеспечивать постоянную разность потенциалов на выводах. Эта сила имеет неэлектрическую природу: химическую у батареек, механическую – у генераторов.

    Какова роль внутреннего сопротивления источника питания и что это такое? Допустим, вы замкнули накоротко выводы автомобильного аккумулятора медным проводником небольшого сечения. В физическом смысле вы подключили к источнику постоянного тока сопротивление, близкое к нулю. Если воспользоваться формулой для участка цепи, то через аккумулятор и проволоку должен пойти ток бесконечно большой величины. На деле этого не происходит, но проволока сгорит.

    Теперь замкнем этой же проволокой батарейку. Ток через нее пойдет меньший. Это объясняется большим, чем у аккумулятора, значением внутреннего сопротивления. При малом сопротивлении нагрузки формула закона для полной цепи превращается в

    В итоге ток через замкнутую накоротко батарейку будет иметь конечное значение, а мощность приведет к нагреву батарейки. Если бы мы замкнули аккумулятор более толстым проводом, выдержавшим ток короткого замыкания, то он ощутимо нагрел бы источник изнутри.

    Э. Д.С. источника можно с некоторой точностью измерить вольтметром с высоким входным сопротивлением. Внутреннее же сопротивление источника нельзя измерить напрямую, а только рассчитать.

    Закон Ома для переменного тока

    На переменном токе в формуле закона Ома используется не активное, а полное сопротивление (Z).

    Эта величина учитывает и активное, и реактивное сопротивление нагрузки, которое в свою очередь имеет индуктивную

    и емкостную

    составляющие.

    Общее реактивное сопротивление цепи:

    Знак (-) означает, что индуктивный и емкостной токи находятся в противофазе и друг друга компенсируют.

    Оцените качество статьи:

    Закон ома для полной цепи

      1. Закон Ома для полной цепи

    2.3.1. Электрическая цепь состоит из источника тока и двух сопротивлений, одно из которых может через ключ соединяться параллельно со вторым сопротивлением. Сопротивление п R1 вдвое больше сопротивления R2. Внутреннее сопротивление источника тока r = 0,1 R1. Определить, во сколько раз изменятся показания амперметра и напряжение на клеммах источника при замыкании ключа К?

    Решение

    1. При разомкнутом ключе К закон Ома для полной цепи записывается следующим образом

    . (1)

    2. При замыкании ключа сопротивление нагрузки изменится

    . (2)

    3. Закон Ома в этом случае примет вид

    . (3)

    4. Отношение токов определится как

    . (4)

    5. Падение напряжения на клеммах источника при разомкнутом ключе

    . (5)

    6. Падение напряжения после замыкания ключа

    . (6)

    7. Отношение напряжений на клеммах источника

    . (7)

    2.3.2. Батарея замкнутая на сопротивлениеR1 = 10 Ом, даёт ток силой I1 = 3 А; замкнутая на сопротивлениеR2 = 20 Ом, она даёт ток силой I2 = 1,6 А. Определите ЭДС источника и её внутреннее сопротивление r.

    Решение

    1. Запишем дважды уравнение закона Ома для полной цепи

    (1)

    2. Выразим из первого уравнения системы (1) величину  и подставим во второе уравнение

    , (2)

    3. Разрешим полученное уравнение относительно внутреннего сопротивления источника r

    . (3)

    4. Значение величины  можно получить из любого уравнения системы (1) при подстановки в него r из уравнения (3)

    .

    2.3.3. Батареи с ЭДС 1 = 20 В, 2 = 30 В и внутренними сопротивлениями соответственно r1 = 4 Ом, r2 = 6 Ом соединены параллельно и согласно. Каковы должны быть параметры и r эквивалентного источника, которым можно заменить соединение?

    Решение

    1. Определим силу тока, протекающего через источники при их совместном включении

    . (1)

    2. Сила тока, который может быть получен от двух источников при их совместной работе I0 = I1 + I2 = 5 A

    3. Общее внутреннее сопротивление

    . (2)

    4. Определим далее эквивалентную ЭДС

    . (3)

    Таким образом, эквивалентный источник должен иметь ЭДС  = 12 В и внутреннее сопротивление r = 2,4 Ом.

    2.3.4. Две батареи с одинаковым внутренним сопротивлением соединены так, что ЭДС образовавшегося источника напряжения равна . ЭДС одной из батарей 3/2. Нарисуйте все возможные схемы соединений. Для каждого варианта соединений определите ЭДС второй батареи.

    Решение

    1. Один из вариантов включение источников последовательно и встречно, когда ЭДС второго источника равна 2 = 0,5, а 1 = . В этом случае общая ЭДС  определится как . Внутренне сопротивление такого включения источников будет равно 2r.

    2. Возможно и параллельное согласное включение источников, общее сопротивление которых будет равно r/2. Падение напряжения на источниках будет одинаковым и равным . Сила тока через общую шину определится как

    . (1)

    Сила тока через первый источник

    . (2)

    Сила тока через второй источник

    . (3)

    Электродвижущая сила второго источника

    . (4)

    3. Следующий способ отличается от предыдущего тем, что источники включены встречно. Чтобы получить в результате батарею с ЭДС, равной , необходимо, чтобы у второго элемента ЭДС была равна /2. Как и в предыдущем случае сила тока будет определяться уравнением (1), потому что внутренние сопротивления включены параллельно. Сила тока через первый источник будет определяться как

    . (5)

    Ток через второй источник

    . (6)

    Электродвижущая сила второго элемента должна составлять

    . (7)

    2.3.5. Три одинаковые батареи соединены параллельно и подключены к внешнему сопротивлению. Как изменится сила тока через это сопротивление, если полярность одной из батарей поменять на обратную?

    Решение

    1. Отметим сразу что, в связи с идентичностью элементов в обоих случаях их параллельного включения суммарное внутреннее сопротивление будет в три раза меньше, чем у одного источника, при этом при согласном включении сила тока через внешнее сопротивление R определится уравнением

    . (1)

    2. Проанализируем ситуацию при встречном включении одного из источников тока. Результирующий ток определится как

    . (2)

    3. Отношение сил токов

    . (3)

    2.3.6. Что покажет вольтметр, если в цепи, изображённой на рисунке, если источники одинаковы, ЭДС каждого из них =1,5 В, внутреннее сопротивление r = 2 Ом? Чему будет равна сила тока в цепи?

    Решение

    1. Будем считать, что вольтметр обладает бесконечно большим сопротивлением, в этом случае сила тока в цепи определится соотношением

    . (1)

    2. Поскольку все три элемента в данной схеме включения работают в режиме короткого замыкания, и ток I0, по сути является током короткого замыкания, то в указанных на схеме точках разность потенциалов будет равна нулю, т.е. UV =0.

    2.3.7. Определите заряд конденсатора С ёмкостью С = 4 мкФ в стационарном режиме, если R1 = R2 = R3 = R= 100 Ом. Источник тока обладает ЭДС = 300 В и нулевым внутренним сопротивлением.

    Решение

    1. Сопротивления R2 и R3 включены параллельно, поэтому их можно представить эквивалентным одним сопротивлением величиной

    . (1)

    2. Определим силу тока в цепи

    . (2)

    3. Падение напряжения на сопротивлении R1 будет равно разности потенциалов на обкладках конденсатора, который для постоянного тока обладает бесконечным сопротивлением

    . (3)

    4. Заряд конденсатора определим из уравнения энергии

    . (4)

    2.3.8. Два вертикально расположенных стержня, имеющие длину L = 1 м и диаметр d = 1 см сопротивление на единицу длины = 110 5 Омм, подсоединены через идеальный амперметр к источнику ЭДС = 1,5 В и внутренним сопротивлением r0 = 0,05 Ом. Полосок касается сопротивление R = 0,1 Ом, которое в поле тяжести g начинает соскальзывать вдоль них из верхней точки вниз без нарушения контакта, как показано на рисунке. В пренебрежении эффектами, связанными с магнитным полем, определить какое значение тока I покажет амперметр через время = 0,5 с после начала движения? Силу трения не учитывать

    Решение

    1. Запишем кинематические уравнения движения сопротивления, считая, что на него действует только сила тяжести и движение происходит по вертикальной оси с нулевой начальной скоростью

    , (1)

    и определим расстояние которое пройдёт сопротивление за время 

    . (2)

    2. Определим электрическое сопротивление одного отрезка стержня длиной

    . (3)

    3. Электрическая схема установки, таким образом представит собой три последовательно включенных внешних сопротивления: R0 = R + 2r

    и внутреннее сопротивление источника r0. Закон Ома для полной цепи в этом случае запишется так

    . (4)

    2.3.9. Два гальванических элемента с 1 =1,5 В и 2 = 4,5 В соединены одноимёнными полюсами. Внутреннее сопротивление первого источника r1 в два раза меньше внутреннего сопротивления второго элемента r2, т.е. r2 = 2 r1. Каковы при этом включении элементов будут показания вольтметра?

    Решение

    1. Если считать, что вольтметр обладает бесконечным сопротивлением, то разность электродвижущих сил источников тока будет равна сумме падений напряжения на их внутренних сопротивлениях

    . (1)

    2. С другой стороны второй элемент является внешней нагрузкой для первого элемента

    , (2)

    где U  показания вольтметра.

    3. Выразим из последнего уравнения силу тока в цепи

    . (3)

    4. Подставим значение силы тока в уравнение (1)

    , (4)

    откуда

    . (5)

    2.3.10. Источник тока обладает внутренним сопротивлением r = 1 Ом, ёмкость конденсатора С = 10 мкФ, R1 = 5 Ом, R2 = 10 Ом. До замыкания ключа вольтметр показывает напряжение U1 = 10 В, а после замыкания U2 = 8 В. Определить заряд конденсатора и величину сопротивления R3.

    Решение

    1. При разомкнутом ключе ток в цепи отсутствует, поэтому вольтметр будет демонстрировать величину ЭДС, U1 =  = 10 В.

    2. Запишем далее уравнение общего сопротивления цепи, считая что конденсатор для постоянного тока в стационарном режиме представляет бесконечное сопротивление

    , (1)

    с другой стороны

    . (2)

    3. Определим величину сопротивления R3

    . (3)

    4. Определим падение напряжения на сопротивлении R3, которое включено параллельно конденсатору

    . (4)

    5. Заряд, прошедший через конденсатор

    . (5)

    2.3.11. Идеальный источник тока с = 100 В включен в цепь, состоящую из конденсаторов С3 = С4 = 1 мкФ, С1 = 2 мкФ, С2 =4 мкФ и сопротивления R. Определить падение напряжения на конденсаторах С1 и С2.

    Решение

    1. При подключении схемы к источнику в цепи потечёт ток до момента полной зарядки всех конденсаторов. После того как конденсаторы зарядятся ток прекращается, т.к. электрические ёмкости представляют для постоянного тока разрыв цепи.

    2. Все обкладки конденсаторов, соединённые с сопротивлением будут иметь одинаковый потенциал, при этом пары конденсаторов С1 + С3 и С2 + С4 включены с источником тока последовательно.

    3. Падение напряжения на конденсаторах определится уравнением

    . (1)

    4. Заряд конденсаторов определится как

    . (2)

    5. Выразим из последнего уравнения величину U2, подставим её в уравнение (1) и разрешим его относительно U1

    , (3)

    , (4)

    . (5)

    6. Определим далее величину U2 из уравнения (1)

    . (6)

    2.3.12. Электрическая схема состоит из двух конденсаторов С1 = 2 мкФ и С2 = 4 мкФ и трёх сопротивлений R1 = 200 Ом, R2 = R3 = 100 Ом. В цепь включён идеальный источник тока с = 100 В. Определить падение напряжения на конденсаторах U1, U2 и их заряд Q1, Q2.

    Решение

    1. Падение напряжения U1 на конденсаторе С1 равно разности потенциалов между точками цепи 1 и 3, а напряжение на С2 определяется разностью потенциалов между точками 2 и 4

    , . (1)

    2. После зарядки конденсаторов цепь будет представлять собой три последовательно соединённых сопротивления

    =400 Ом. (2)

    3. Определим силу тока в цепи

    . (3)

    4. Определим величину напряжений U1, U2 которые, как следует из уравнений (1) будут равны сумме падений напряжения на сопротивлениях U1 = UR1 + UR2, U2 = UR3 + UR4

    , (4)

    , (5)

    5. Заряд конденсаторов определим, используя взаимосвязь падения напряжения заряда и ёмкости

    (6)

    2.3.13. Два последовательно соединённых конденсатора С1 = 2 мкФ и С2 = 4 мкФ замкнуты на источник тока с = 20 В, параллельно которому включено сопротивление R = 20 Ом. Ток короткого замыкания источника IКЗ в три раза превышает рабочий стационарный ток в цепи I. Определить падение напряжения на каждом из конденсаторов.

    Решение

    1. При последовательном соединении конденсаторов через них протекает одинаковый зарядный ток, поэтому заряд на их обкладках будет одинаковым, т.е. Q1 = Q2

    . (1)

    2. Падение напряжения на конденсаторах можно представить в виде суммы

    . (2)

    3. Выразим далее величину U2 из уравнения (1) подставим её в уравнение (2) и определим падение напряжения на С1 и С2

    , (3)

    5. Определим далее внутреннее сопротивление источника тока и величину U0

    . (4)

    6. Подставим далее величину U0 в уравнения (3)

    . (5)

      1. Правила Кирхгофа

    2.4.1. Определить силу токов во всех участках цепи, если источники тока обладают ЭДС: 1 = 10 B, 2 = 20 В, их внутренние сопротивления соответственно равны: r1 = 2 Ом, r2 = 3 Ом. Источники нагружены на внешнее сопротивление R = 100 Ом.

    Решение

    1. Задачу целесообразно решать, используя правила Кирхгофа, которые удобны при расчетах параметров разветвлённых цепей. В общем виде математические выражения правил имеют вид:

    . (1)

    2. В соответствие с первым правилом алгебраическая сумма сил токов в любом из узлов должна быть равна нулю

    . (2)

    3. Выделим два замкнутых контура, содержащих источники тока (направление обхода контуров показано пунктиром) и запишем для них второе правило Кирхгофа

    . (3)

    4. Таким образом, приходим к системе трёх алгебраических уравнений с тремя неизвестными величинами

    (4)

    5. Выразим из второго и третьего уравнений системы (4) силы тока I1 и I2

    , (5)

    и подставим эти значения в первое уравнение системы с целью его решения относительно силы тока I

    , (6)

    , (7)

    , (8)

    . (9)

    6. Определим далее значение сил токов I1 и I2

    (10)

    7. Знак минус для тока I1 показывает, что направление тока выбрано неправильно, ток будет течь в обратном направлении.

    8. Проверим правильность решения путём анализа баланса токов по уравнению (1)

    . (11)

    2.4.2. Электрическая цепь состоит из резисторов R1 = R2 = 10 Ом и трёх идеальных источников тока, причём 1 = 10 В, 2 = 14 В. При каком значении ЭДС третьего источника 3 ток через сопротивление R3 не потечёт?

    Решение

    1. Выберем направление токов, выделим два контура и запишем уравнения правил Кирхгофа в соответствии с уравнениями (1) предыдущей задачи

    (1)

    2. Так как по условию задачи I3 = 0, то I1 =  I2, уравнения (1) при этом примут вид

    (2)

    3. Поделим почленно последние уравнения друг на друга и полученное соотношение разрешим относительно 3

    ,

    ,

    . (3)

    2.4.3. Схема состоит из трёх идеальных источников ЭДС, два из которых заданы: 1 = 10 В, 2 = 8 В, и трёх сопротивлений два из которых тоже известны: R1 = 100 Ом, R2 = 80 Ом. Определить при каком значении 3 ток через сопротивление R3 ток течь не будет.

    Решение

    1.Выберем узел схемы для которого запишем уравнение первого правила Кирхгофа

    . (1)

    2. Выделим два замкнутых контура и совершим их обход в указанных пунктирной линией направлениях по второму правилу Кирхгофа

    . (2)

    3. По условию задачи I3 =0, поэтому уравнения (1) и (2) можно переписать следующим образом

    . (3)

    4. Поделим почленно последние два уравнения системы (3) друг на друга

    ,

    . (4)

    5. Определим из уравнения (4) значение 3

    ,

    . (5)

    2.4.4. Две аккумуляторные батареи (1 = 8 В, r1 = 2 Ом; 2 = 6 В, r2 = 1,5 Ом) включены параллельно и согласно. Параллельно источникам тока подсоединено сопротивление R = 10 Ом. Определить силу тока текущего через сопротивление.

    Решение

    1. Выберем узел, для которого запишем уравнение первого правила Кирхгофа

    . (1)

    2. Выделим два контура, показанные на схеме пунктирными линиями и составим для них уравнения второго правила Кирхгофа

    . (2)

    3. Из уравнений (2) выразим токи I1 и I2 и подставим полученные значения в уравнение (1)

    , (3)

    , (4)

    . (5)

    4. Определим из уравнения (5) силу тока, протекающего через сопротивление R

    , (6)

    . (7)

    5. Определим далее токи через источники тока

    . (8)

    Знак «минус» показывает, что направление тока I1 выбрано неверно.

    2.4.5. Определить силу тока I3 в резисторе R3 и падение напряжения U3, если: 1 = 4 В, 2 = 3 В, R1 = 2 Ом, R2 = 6 Ом, R3 = 1 Ом. Источники считать идеальными, их внутренним сопротивлением пренебречь.

    Решение

    1. Запишем три уравнения в соответствии с правилами Кирхгофа

    . (1)

    2. Выразим из первого уравнения системы (1) силу тока I1

    , (2)

    и подставим полученное значение во второе уравнение

    , (3)

    . (4)

    3. Разрешим третье уравнение системы (1) относительно силы тока I2

    . (5)

    4. Подставим значение I2 из уравнения (5) в уравнение (4)

    . (6)

    5. Уравнение (6) содержит одну неизвестную искомую величину I3

    . (7)

    . (8)

    Таким образом, ток через сопротивление R3 равен нулю, это значит, что падение напряжения на этом резисторе тоже равно нулю.

    2.4.6. Три источника с ЭДС 1 = 12 В, 2 = 5 В и 3 = 10 В с одинаковым внутренним сопротивлением r = 1 Ом соединены между собой одноимёнными полюсами. Пренебрегая сопротивлением соединительных проводов, определить силы токов, протекающих через источники.

    Решение

    1. Выберем один из узлов и выделим два замкнутых контура, для которых запишем три уравнения первого и второго правила Кирхгофа

    . (1)

    2. Подставим в последние два уравнения системы (1) заданные числовые значения и сведём её к виду

    . (2)

    3. Выразим значения сил токов I1 и I3

    , (3)

    и подставим эти значения в первое уравнение системы (2)

    , (4)

    следовательно

    . (5)

    2.4.7. Для заданной цепи определить величины сил токов через резисторы, если известно, что: 1 = 2 = 4 В; 3 = 2 В; R1 = 1 Ом; R2 = 4 Ом; R3 = 2 Ом. Внутренним сопротивлением источников тока и сопротивлением соединительных проводов пренебречь.

    Решение

    1. Запишем для данной цепи уравнения Кирхгофа, рассматривая баланс токов в узле А и баланс напряжений для выбранных контуров

    (1)

    2. Подставим численные значения заданных по условию задачи величин

    (2)

    3. Выразим из первого уравнения системы (2) силу тока I3 и подставим это значение в третье уравнение

    , (3)

    , (4)

    . (5)

    4. Образуем новую систему алгебраических уравнений из второго уравнения системы (2) и уравнения (5)

    . (6)

    5. Выразим далее из второго уравнения системы (6) силу ток I1 и подставим в первое уравнение

    . (7)

    6. Определим остальные две силы тока, воспользовавшись ранее записанными соотношениями между ними

    . (8)

    . (9)

    2.4.8.Определить силы токов, текущих в каждой ветви цепи, если: 1 = 6,5 В, 2 = 3,9 В; R1 = R2 = R3 = R4 = R5 = 10 Ом.

    Решение

    1. Для определения искомых величин токов необходимо составить шесть уравнений: три уравнения баланса токов и три уравнения баланса напряжений. Выберем для баланса токов три узла, а для баланса напряжений выделим три замкнутых контура.

    2. Составим уравнения баланса токов для узлов a, b и с

    . (1)

    3. Для обозначенных на схеме цепи пунктирными линиями замкнутых контуров 1, 2 и 3 составим уравнения баланса напряжений, направление обхода показаны стрелками

    . (2)

    4. С учётом одинаковой величины всех сопротивлений R = 10 Ом последнюю систему уравнений можно переписать следующим образом

    (3)

    5. Совместное решение системы алгебраических уравнений (4)

    (4)

    методом подстановки позволяет прийти к следующим значениям сил токов

    (5)

    Отрицательные значения сил токов, полученные в результате решения, показывают, что их направление было изначально выбрано неверно и следует поменять на обратное.

    2.5. Нелинейные элементы в цепях постоянного тока

    2.5.1. Определить величину силы тока через идеальный источник (r = 0, = 10 В) при включении его в схему двумя способами, если R1 = R2 = R3 = R4 = 10 Ом, а диод идеальный, т.е. обладает в прямом направлении нулевым сопротивлением, а в обратном направлении бесконечно большим сопротивлением.

    Решение

    1. В первом случае (левая схема) диод будет представлять собой бесконечно большое сопротивление, т.е., по сути, разрыв цепи. Во втором случае (правая схема) сопротивление диода будет мало. Таким образом эквивалентные схемы цепей можно преобразовать следующим образом.

    2. В случае большого сопротивления цепи резисторы R3 и R4 оказываются включенными последовательно, их общее сопротивление  R3,4 = 20 Ом, которое, в свою очередь включено параллельно резистору R2

    . (1)

    3. Определим эквивалентное сопротивление правой цепи

    . (2)

    4. Сила тока в первом случае включения источника тока

    . (3)

    5. При открытом диоде, когда он обладает весьма малым сопротивлением схему тоже можно последовательно преобразовать, при этом

    , (4)

    , (5)

    . (6)

    6. Сила тока при открытом диоде составит

    . (7)

    2.5.2. Определить силу тока, протекающего через идеальный диод, если он включен в диагональ симметричного моста, составленного из сопротивлений R1 = 10 кОм, R2 = 15 кОм, R3 = 30 кОм R4 = 25 кОм. Мостик подключен к идеальному источнику тока с = 200 B.

    Решение

    1. Предположим, что диод заперт, т.е. между точками а и b бесконечно большое сопротивление. В этом случае общее сопротивление схемы определится уравнением

    . (1)

    2. Сила тока через источник определится как

    . (2)

    3. Эквивалентная схема цепи в этом случае может быть представлена в виде последовательного соединения сопротивлений R1,4 и R2,3, которые, в свою очередь, включены параллельно источнику тока

    , (1)

    . (2)

    4. Падение напряжения на элементах эквивалентной схемы

    , (3)

    , (4)

    , (5)

    . (6)

    5. Разность потенциалов между точками включения диода составляет U = 12 В, при такой полярности в узловых точках диод должен быть открыт и должен представлять собой весьма малое сопротивление. Другими словами эквивалентная схема цепи будет представлять собой параллельное включение сопротивлений R1, R2 и R3,R4, которые образуют последовательную цепь. Общее сопротивление цепи в этом случае определится как

    . (7)

    6. Сила тока через источник

    . (8)

    7. Составим систему уравнений Кирхгофа для баланса токов в узлах a и b, дополнив их двумя уравнениями закона Ома для участка цепи

    (9)

    8. Подставив в уравнения (5) и (6) заданные значения сопротивлений, преобразуем их к виду

    . (10)

    9. Подставим значение силы тока I1 из уравнения (10) в уравнение (1) системы (9)

    . (11)

    10. Сила тока I1 из уравнений (10) определится как

    . (12)

    11. Далее подставим значение силы тока I2 из уравнения (10) в уравнение (4) системы (9)

    . (13)

    12. Определим далее силу тока I2, воспользовавшись для этого уравнениями (10)

    . (14)

    13. Из уравнения (4) системы (9) найдём искомую величину силы тока через диод

    . (15)

    2.5.3. Фотоэлемент включён в диагональ моста, составленного из четырёх резисторов R1 = 100 кОм, R2 = 400 кОм, R3 = 200 кОм, R4 = 300 кОм. Идеальный источник тока с ЭДС = 1 кВ включен в другую диагональ моста. Определить напряжение на фотоэлементе, если через него течёт ток силой ID = 10 мА.

    Решение

    1.Поскольку через фотоэлемент от анода к катоду течёт, заданный по условию задачи ток силой ID = 10 мА, то он открыт и представляет собой малое сопротивление. Эквивалентная схема цепи в этом случае может быть представлена в виде параллельного включения сопротивлений R1, R2, и R3, R4, которые в свою очередь соединены последовательно.

    2. Определим эквивалентное сопротивление всей цепи

    . (1)

    3. Найдём величину силы тока через источник I0

    . (2)

    4. Составим систему из пяти (по количеству неизвестных величин) алгебраических уравнений на основе первого правила Кирхгофа и условий равенства потенциалов узлов a и b

    (3)

    5. Запишем уравнения (4), (5) с учётом заданных величин резисторов

    . (4)

    6. Перепишем уравнение (2) системы (3) с учётом уравнений (4)

    . (5)

    7. Определим из уравнения (2) системы (3) значение силы тока I1

    . (6)

    8. Найдём падение напряжений на резисторах R1 и R2

    . (7)

    . (8)

    9. Напряжение на фотоэлементе: .

    Закон Ома для полной цепи | Полезные статьи

    Вывод закона Ома для полного участка цепи.

    Возьмем источник постоянного тока, состоящий из сосуда с серной кислотой и помещёнными в него цинковым и угольным электродами. Цинк отдаёт в кислоту двухвалентные ионы, становясь согласно закону сохранения заряда отрицательно заряженным. Для рассмотрения закона Ома для полной цепи на участке между электродами помещается резистор, замыкающий цепь, что приводит к появлению постоянного электрического тока –  избыток электронов цинка начнёт движение в угольный электрод. В ходе химической реакции совершается работа А по переносу заряда q. Её целесообразно выразить через ЭДС:

    ε = A/q

    Кроме того, по закону сохранения энергии работа расходуется на выделение тепла Q в нагрузке и в самом источнике:

    A = Q

    Количество теплоты согласно закону Джоуля-Ленца для источника и нагрузки:

    Q = I²• r • t, где r – сопротивление источника
    и 
    Q = I²• R • t, где R – сопротивление нагрузки.

    Выразим количество электричества (заряд) через силу тока:

    q = I • t

    Для вывода закона Ома продолжаем преобразования и получаем ЭДС для полной цепи:

    ε • I • t = I²• r • t + I²• R • t

    ε = I•r + I•R – из этого выражения выводится формула закона Ома для полной цепи:

    I = ε/(r+R)

    Классическая формулировка закона Ома для полной цепи: сила тока полной цепи прямопропорциональна ЭДС источника и обратноспропорциональна полному сопротивлению цепи.

    Обычно сопротивление источника значительно ниже сопротивления нагрузки: R ≫ r.  В таких случаях ε ≈ U, а формула принимает вид уравнения закона Ома для участка цепи: 

    I = U/R.

    Примечательно, что изначально принятые Георгом Омом символы отличаются от используемых сегодня.

    Закон Ома для переменного тока.

    Рис. 2. Модель идеализированной цепи переменного тока

    В случае токов, подчиняющихся гармоническому закону, нагрузка проявляет ряд особенностей. В реальной цепи наравне с активной (резистивной) нагрузкой в той или иной степени обязательно присутствуют ёмкость и индуктивность, создавая колебательный контур. Эти элементы представляют собой реактивную составляющую нагрузки, расчёт которой несколько сложнее. 

    Возьмем последовательную цепь из резистора, конденсатора и катушки в установившемся режиме, питающуюся от источника ЭДС с пренебрежимым сопротивлением (при этом e ≈ U), соединённую идеальными проводниками:
     

    За основу векторной диаграммы возьмем ток, так как он одинаковый на всех элементах схемы. Напряжение на резисторе совпадает по направлению с током. В катушке появляется ЭДС индукции, противодействующая изменению напряжения, а в конденсаторе напряжение препятствует току, соответственно, фазы колебаний в них отличаются: в катушке напряжение опережает ток, в конденсаторе зависимость обратная: 

    где ω – радиальная частота, равняющаяся 2πf, т. е. 100π при 50 Гц.

    Результирующее напряжение согласно параллелограмму сил:

    Емкостное сопротивление обозначается XС, а индуктивное XL. Полное сопротивление обозначается Z и называется импедансом. Для простоты его называют сопротивлением, учитывающим частоту.

    Выразим отсюда полное сопротивление, т. е. сопротивление, определяющее активно-реактивный характер нагрузки:

    Имея все параметры рассматриваемой модели в установившемся режиме можно записать закон Ома для полной цепи переменного тока в установившемся режиме:

    Сопротивление

    – Элементы схемы – Содержание MCAT

    В соответствии с законом Ома, падение напряжения , В на резисторе, когда через него протекает ток, рассчитывается по формуле V = IR, где I – ток в амперах (А), а R – сопротивление в Ом (Ом).

    Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В. . Немецкий физик Георг Симон Ом (1787–1854) был первым, кто экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению.Многие вещества, для которых действует закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы имеют сопротивление R, которое не зависит от напряжения V и тока I. Объект с простым сопротивлением называется резистором, даже если его сопротивление невелико.

    Резисторы последовательно

    Резисторы

    включены последовательно всякий раз, когда поток заряда или ток должен проходить через компоненты последовательно.

    Общее сопротивление в цепи равно сумме отдельных сопротивлений.

    Параллельные резисторы

    Резисторы

    включены параллельно, когда каждый резистор подключен непосредственно к источнику напряжения путем соединения проводов с незначительным сопротивлением. Таким образом, к каждому резистору приложено полное напряжение источника.

    На каждый резистор в цепи подается полное напряжение. По закону Ома токи, протекающие через отдельные резисторы, равны I1 = VR1

    .

    Общее сопротивление в параллельной цепи равно сумме обратных величин каждого отдельного сопротивления.

    Удельное сопротивление – это свойство материала, которое количественно определяет, насколько сильно он сопротивляется или проводит электрический ток. Низкое удельное сопротивление указывает на материал, который легко пропускает электрический ток, и наоборот. Рассчитывается как:

    ρ = R • A / L

    R – электрическое сопротивление однородного образца материала

    л – длина экземпляра

    А – площадь поперечного сечения образца


    Практические вопросы

    Академия Хана

    Анализ сигналов напряжения электрокардиограммы


    Официальная подготовка MCAT (AAMC)

    Физика – карточки онлайн Вопрос 1

    Physics Question Pack Отрывок 9, вопрос 54

    Physics Question Pack Отрывок 9, вопрос 56

    Пакет вопросов по физике, вопрос 117

    Секция банка C / P Вопрос 15 секции

    Секция банка C / P Вопрос 17 секции

    Образец теста C / P Раздел Отрывок 7 Вопрос 35

    Практический экзамен 1 Секция C / P Отрывок 10 Вопрос 52

    Практический экзамен 2 Раздел C / P, вопрос 59

    Практический экзамен 3 Раздел C / P Отрывок 7 Вопрос 39


    Ключевые точки

    • Падение напряжения V на резисторе при протекании через него тока рассчитывается по формуле V = IR

    • Общее сопротивление в цепи равно сумме отдельных сопротивлений.

    • Общее сопротивление в параллельной цепи равно сумме обратных величин каждого отдельного сопротивления.

    • Удельное сопротивление измеряет, насколько сильно материал сопротивляется или проводит электрический ток.


    Ключевые термины

    ток : количество заряда, проходящего через поперечное сечение за период времени.

    напряжение : Разность электрических потенциалов, выраженная в вольтах

    сопротивление : сопротивление – это мера сопротивления току, протекающему в электрической цепи.

    удельное сопротивление: свойство материала, которое количественно определяет, насколько сильно он сопротивляется или проводит электрический ток

    Объясните применение закона Ома к полному кругу физики класса 10 CBSE

    Подсказка: Ом дали соотношение между тремя величинами: током, напряжением и сопротивлением цепи. Закон Ома гласит, что напряжение или разность потенциалов между двумя точками прямо пропорциональна току в цепи.Нарисуйте линейную цепь, содержащую батарею и сопротивление, и определите ток в цепи.

    Полный шаг за шагом ответ:
    У нас есть закон Ома, который гласит, что напряжение или разность потенциалов между двумя точками прямо пропорциональны току в цепи. Следовательно, мы можем выразить закон Ома как:
    \ [V \ propto I \]
    \ [\ Rightarrow V = IR \]
    Где V – напряжение, I – ток, проходящий через цепь. Константа пропорциональности – это сопротивление цепи R.

    Немецкий ученый Джордж Саймон Ом обнаружил взаимосвязь между током, напряжением и сопротивлением в цепи. Используя закон Ома, мы можем определить ток, протекающий по цепи, если сопротивление в цепи и ЭДС источника питания известны. нас. Например, давайте рассмотрим схему ниже.


    В приведенной выше схеме сопротивление R подключено последовательно с батареей постоянного тока с ЭДС 12 В. Используя закон Ома, мы можем рассчитать ток в указанной выше цепи как:
    \ [V = IR \]
    \ [\ Стрелка вправо 12 = \ влево (I \ вправо) \ влево ({200} \ вправо) \]
    \ [\, следовательно, I = 0.06 \, {\ text {A}} \]
    Таким образом, неизвестный ток равен 0,06 ампера.

    Дополнительная информация:
    Мы знаем, что согласно закону Ома напряжение / ток = $ a $ константа, и эта константа – это сопротивление. Но сопротивление не остается постоянным. При изменении температуры материала изменяется и сопротивление. Закон не распространяется на односторонние сети. Односторонние сети позволяют току течь в одном направлении. Закон Ома также не применим к нелинейным элементам. Соотношение между V и I зависит от знака V, где V – напряжение, а I – ток в цепи.

    Примечание. Закон Ома не применим к односторонним сетям, в которых используются диод, передатчик и т. Д. Если в цепи имеется несколько резисторов, закон Ома все еще применим. Чтобы определить ток, первое, что нам нужно сделать, это определить полное сопротивление в цепи. Если в цепи две ЭДС, мы не можем следовать закону Ома.

    Закон Ома – Университетская физика, том 2

    Цели обучения

    К концу этого раздела вы сможете:

    • Опишите закон Ома
    • Признать, когда закон Ома применим, а когда нет

    До сих пор в этой главе мы обсуждали три электрических свойства: ток, напряжение и сопротивление.Оказывается, что многие материалы демонстрируют простую взаимосвязь между значениями этих свойств, известную как закон Ома. Многие другие материалы не демонстрируют эту взаимосвязь, поэтому, несмотря на то, что они называются законом Ома, они не считаются законом природы, как законы Ньютона или законы термодинамики. Но это очень полезно для расчетов с материалами, которые подчиняются закону Ома.

    Описание закона Ома

    Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В. .Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению. :

    Это важное соотношение лежит в основе закона Ома. Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток – следствием. Это эмпирический закон, который означает, что это экспериментально наблюдаемое явление, подобное трению. Такая линейная зависимость возникает не всегда.Любой материал, компонент или устройство, подчиняющееся закону Ома, где ток, протекающий через устройство, пропорционален приложенному напряжению, известен как омический материал или омический компонент. Любой материал или компонент, который не подчиняется закону Ома, известен как неомический материал или неомный компонент.

    Эксперимент Ома

    В статье, опубликованной в 1827 году, Георг Ом описал эксперимент, в котором он измерял напряжение и ток в различных простых электрических цепях, содержащих провода различной длины.Аналогичный эксперимент показан на (Рисунок). Этот эксперимент используется для наблюдения за током через резистор, возникающим в результате приложенного напряжения. В этой простой схеме резистор включен последовательно с батареей. Напряжение измеряется вольтметром, который необходимо разместить на резисторе (параллельно резистору). Ток измеряется амперметром, который должен быть на одной линии с резистором (последовательно с резистором).

    Экспериментальная установка, используемая для определения того, является ли резистор омическим или неомическим устройством.(a) Когда батарея подключена, ток течет по часовой стрелке, а вольтметр и амперметр показывают положительные значения. (b) Когда выводы батареи переключаются, ток течет против часовой стрелки, а вольтметр и амперметр показывают отрицательные показания.

    В этой обновленной версии оригинального эксперимента Ома было выполнено несколько измерений тока для нескольких различных напряжений. Когда батарея была подключена, как показано на (Рисунок) (а), ток протекал по часовой стрелке, и показания вольтметра и амперметра были положительными.Изменится ли поведение тока, если ток течет в обратном направлении? Чтобы заставить ток течь в обратном направлении, выводы батареи можно переключить. При переключении выводов батареи показания вольтметра и амперметра были отрицательными, поскольку ток протекал в обратном направлении, в данном случае против часовой стрелки. Результаты аналогичного эксперимента показаны на (Рисунок).

    Резистор вставлен в цепь с батареей.Приложенное напряжение изменяется от -10,00 В до +10,00 В с шагом 1,00 В. На графике показаны значения напряжения в зависимости от тока, типичные для случайного экспериментатора.

    В этом эксперименте напряжение, приложенное к резистору, изменяется от -10,00 до +10,00 В с шагом 1,00 В. Измеряются ток через резистор и напряжение на резисторе. Построен график зависимости напряжения от тока, и результат будет приблизительно линейным.Наклон линии – это сопротивление или напряжение, деленное на ток. Этот результат известен как закон Ома:

    , где В, – напряжение, измеренное в вольтах на рассматриваемом объекте, I – ток, измеренный через объект в амперах, а R – сопротивление в единицах Ом. Как указывалось ранее, любое устройство, которое показывает линейную зависимость между напряжением и током, известно как омическое устройство. Следовательно, резистор – это омическое устройство.

    Проверьте свое понимание Напряжение, подаваемое в ваш дом, изменяется как. Если к этому напряжению подключить резистор, будет ли действовать закон Ома?

    Да, закон Ома все еще в силе. В каждый момент времени ток равен, поэтому ток также является функцией времени.

    Неомические устройства не показывают линейной зависимости между напряжением и током. Одним из таких устройств является элемент полупроводниковой схемы, известный как диод.Диод – это схемное устройство, которое позволяет току течь только в одном направлении. Схема простой схемы, состоящей из батареи, диода и резистора, показана на (рисунок). Хотя мы не рассматриваем теорию диода в этом разделе, диод можно протестировать, чтобы определить, является ли он омическим или неомическим устройством.

    Диод – это полупроводниковое устройство, которое пропускает ток, только если диод смещен в прямом направлении, что означает, что анод положительный, а катод отрицательный.

    График зависимости тока от напряжения показан на (Рисунок).Обратите внимание, что поведение диода показано как зависимость тока от напряжения, тогда как работа резистора показана как зависимость напряжения от тока. Диод состоит из анода и катода. Когда анод находится под отрицательным потенциалом, а катод – под положительным потенциалом, как показано в части (а), говорят, что диод имеет обратное смещение. При обратном смещении диод имеет очень большое сопротивление, и через диод и резистор протекает очень небольшой ток – практически нулевой ток. По мере увеличения напряжения, приложенного к цепи, ток остается практически нулевым, пока напряжение не достигнет напряжения пробоя и диод не будет проводить ток, как показано на (Рисунок).Когда батарея и потенциал на диоде меняются местами, что делает анод положительным, а катод отрицательным, диод проводит, и ток течет через диод, если напряжение больше 0,7 В. Сопротивление диода близко к нулю. (Это причина наличия резистора в цепи; если бы его не было, ток стал бы очень большим.) Из графика на (Рисунок) видно, что напряжение и ток не имеют линейной зависимости. Таким образом, диод является примером безомного устройства.

    Когда напряжение на диоде отрицательное и небольшое, через диод протекает очень небольшой ток. Когда напряжение достигает напряжения пробоя, диод проводит. Когда напряжение на диоде положительное и превышает 0,7 В (фактическое значение напряжения зависит от диода), диод проводит. По мере увеличения приложенного напряжения ток через диод увеличивается, но напряжение на диоде остается примерно 0,7 В.

    Закон Ома обычно формулируется как, но первоначально он был сформулирован как микроскопическое изображение с точки зрения плотности тока, проводимости и электрического поля.Этот микроскопический взгляд предполагает, что пропорциональность обусловлена ​​дрейфовой скоростью свободных электронов в металле, возникающей в результате приложенного электрического поля. Как было сказано ранее, плотность тока пропорциональна приложенному электрическому полю. Переформулировка закона Ома приписывается Густаву Кирхгофу, имя которого мы еще раз увидим в следующей главе.

    20.2: Закон Ома – сопротивление и простые схемы

    Что управляет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока.Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он создает разность потенциалов \ (V \), которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток.

    Закон Ома

    Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению \ (В \). Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению. :

    \ [I \ propto V.\ label {20.3.1} \]

    Это важное соотношение известно как закон Ома . Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток – следствием. Это эмпирический закон, подобный закону трения – явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.

    Сопротивление и простые схемы

    Если напряжение управляет током, что ему мешает? Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением \ (R \).Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Сопротивление обратно пропорционально току, или

    .

    \ [I \ propto \ frac {1} {R}. \ label {20.3.2} \]

    Таким образом, например, ток уменьшается вдвое, если сопротивление увеличивается вдвое. Комбинируя отношения тока к напряжению и тока к сопротивлению, получаем

    \ [I = \ frac {V} {R}. \ label {20.3.3} \]

    Это соотношение также называется законом Ома.Закон Ома в такой форме действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими . К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы имеют сопротивление \ (R \), которое не зависит от напряжения \ (V \) и тока \ (I \). Объект, который имеет простое сопротивление, называется резистором , даже если его сопротивление невелико.Единица измерения сопротивления – Ом и обозначается символом \ (\ Omega \) (греческая омега в верхнем регистре). Перестановка \ (I = V / R \) дает \ (R = V / I \), и поэтому единицы сопротивления равны 1 Ом = 1 вольт на ампер:

    \ [1 \ Omega = 1 \ frac {V} {A}. \ label {20.3.4} \]

    На рисунке \ (\ PageIndex {1} \) показана схема простой схемы. Простая схема имеет один источник напряжения и один резистор. Можно предположить, что провода, соединяющие источник напряжения с резистором, имеют незначительное сопротивление, или их сопротивление можно включить в \ (R \).

    Рисунок \ (\ PageIndex {1} \): Простая электрическая цепь, в которой замкнутый путь для прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленной красными параллельными линиями. Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

    Пример \ (\ PageIndex {1} \): Расчет сопротивления: Автомобильная фара:

    Какое сопротивление проходит у автомобильной фары? 2.50 А при подаче на него 12,0 В?

    Стратегия

    Мы можем изменить закон Ома, как указано в \ (I = V / R \), и использовать его для определения сопротивления.

    Решение:

    Преобразование уравнения \ ref {20.3.3} и замена известных значений дает

    \ [\ begin {align *} R & = \ frac {V} {I} \\ [5pt] & = \ frac {12,0 V} {2,50 A} \\ [5pt] & = 4,80 \ Omega. \ end {align *} \]

    Обсуждение:

    Это относительно небольшое сопротивление, но оно больше, чем хладостойкость фары.{-5} \ Omega \), а сверхпроводники вообще не имеют сопротивления (они неомичны). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в разделах «Сопротивление и удельное сопротивление».

    Дополнительное понимание можно получить, решив \ (I = V / R \) для \ (V \), что дает

    \ [V = ИК. \ label {20.3.5} \]

    Выражение для \ (V \) можно интерпретировать как падение напряжения на резисторе, вызванное минимальным током \ (I \). Для обозначения этого напряжения часто используется фраза \ (IR \) drop .Например, у фары в примере падение \ (IR \) составляет 12,0 В. Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывающему ток – поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления. Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию).В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, поскольку \ (PE = q \ Delta V \), и то же самое \ (q \) проходит через каждую . Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразованная резистором, равны (Рисунок \ (\ PageIndex {2} \)).

    Рисунок \ (\ PageIndex {2} \): Падение напряжения на резисторе в простой схеме равно выходному напряжению батареи.

    ПОДКЛЮЧЕНИЕ: СОХРАНЕНИЕ ЭНЕРГИИ

    В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму.Здесь о сохранении энергии свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму только с помощью резистора. Мы обнаружим, что сохранение энергии имеет и другие важные применения в схемах и является мощным инструментом анализа схем.

    В чем разница между последовательными и параллельными схемами | ОРЕЛ

    О нет! Почему не горят рождественские огни? О, вы думали, что было бы забавно вытащить одну из лампочек, а теперь все пошло прахом! Если вы один из тех неудачников, которым удалось затемнить всю свою световую установку, не расстраивайтесь, вы не одиноки.Каждый год миллионы огней по всему миру гаснут, чтобы получить один важный урок – научить вас различать между последовательными и параллельными цепями!

    Во-первых, основы

    Прежде чем мы углубимся в разницу между последовательными и параллельными цепями, давайте рассмотрим некоторые основные термины, которые мы будем обсуждать.

    • Текущий. У электричества есть над чем поработать, и когда электроны движутся по цепи, действует ток.
    • Схема. Если это замкнутый непрерывный путь, то по нему будет течь электричество. На этом пути электричество может творить массу удивительных вещей, например, приводить в действие ваш смартфон или отправлять людей в космос!
    • Сопротивление. Это то, с чем сталкивается электричество, когда оно течет по физическому материалу, будь то медный провод или простой старый резистор. Сопротивление ограничивает прохождение электрического тока.

    Ниже вы найдете изображение простой схемы, которая включает батарею, выключатель и лампочку.

    Самая простая из схем питания лампочки от аккумулятора.

    Сезон серии

    Давайте вернемся к нашим рождественским огням, чтобы понять, как именно работает схема, соединенная последовательно. Скажем, у вас есть цепочка огней, соединенных одна за другой. Если посмотреть на схему, это будет выглядеть примерно так:

    Ваши рождественские гирлянды последовательно, обратите внимание, что все гирлянды подключены друг за другом. (Источник изображения)

    Что будет делать ток, когда мы подключим наш светильник к розетке? Давайте проследим за потоком:

    • Включение. Когда мы подключаем наши рождественские гирлянды к розетке, в розетке начинает течь ток.
    • Течет. Затем он движется по жиле медной проволоки и сквозь наш рождественский свет, заставляя их ярко сиять.
    • Возвращаюсь домой. Когда ток достигает конца нашей светящейся нити, он направляется к земле, чтобы немного отдохнуть, и цикл продолжается.

    Неважно, какие компоненты вы размещаете в последовательной цепи, вы можете смешивать и сочетать конденсаторы, резисторы, светодиоды и несколько рождественских гирлянд вместе, и ток по-прежнему будет течь одинаково от одной части к другой. .

    Вот здесь, как правило, гаснут рождественские огни. Что произойдет, если вы выдернете одну из этих лампочек в своей цепочке огней? Если ваш свет хоть немного похож на наш, значит, он все выключен! Почему это? Подумайте об этом: если ток течет от света к свету, и вы нарушаете эту связь, то вы перекрываете путь, по которому пытается течь электричество. Это называется обрывом цепи .

    Ток и сопротивление в серии

    Существует фундаментальный закон Вселенной, который следует помнить о том, как ток и сопротивление работают в последовательной цепи:

    Чем больше работы (сопротивления) выполняет последовательная цепь, тем больше уменьшается ее ток.

    Имеет смысл, правда? По мере того, как вы добавляете в цепь большее сопротивление, например, рождественские гирлянды или даже резистор, тем больше работы должна выполнять ваша цепь. Допустим, вы взяли схему, которую мы представили в начале этого блога, с одной лампочкой. Итак, что произойдет, если вы добавите еще один источник света в эту схему? Обе лампочки будут сиять так же ярко? Неа. Когда вы подключаете вторую лампочку, обе лампы станут одинаково тусклыми, потому что вы добавили большее сопротивление вашей цепи, что уменьшает ток.

    Последовательное добавление еще одной лампочки снижает ток , потому что у нашей батареи теперь больше работы!

    Но как узнать, какое сопротивление у вас в последовательной цепи? Вы просто складываете все различные значения сопротивления вместе. Например, в схеме ниже у нас есть два резистора, каждый по 10 кОм. Чтобы получить общее сопротивление в этой цепи, просто сложите все числа вместе. Это 10 кОм + 10 кОм, что составляет 20 кОм общего сопротивления.

    Сложить наши резисторы в последовательную цепь легко, просто сложите каждый из них.

    А какой у вас будет ток в этой цепи, исходя из такого сопротивления? Вот как это понять.

    • Используя наш проверенный треугольник закона Ома, мы получаем уравнение, которое нам нужно использовать: I = V / R или ток = напряжение, деленное на сопротивление.
    • Подставляя известные нам числа, получаем I = 10V / 20k. Через нашу цепь протекает 0,5 миллиампер (мА)!
    • Что, если бы мы вынули один из резисторов? Теперь наше уравнение I = 10 В / 10 кОм, и мы увеличили наш ток до 1 миллиампер (мА) за счет уменьшения сопротивления.

    Параллельная работа

    Итак, разве не было бы замечательно, если бы вы вытащили одну из лампочек в своей нити рождественских гирлянд, а остальные остались включенными? Если бы все ваши рождественские огни были соединены параллельно, то они вели бы себя именно так!

    В параллельной цепи представьте, что все ваши световые нити соединены вместе. Но вместо того, чтобы каждую лампочку подключать одну за другой, все они подключаются отдельно в своих цепях, как на изображении ниже.Как видите, каждая лампочка имеет свою собственную мини-цепь, отдельную от другой, но все они работают вместе как часть более крупной цепи.

    Ваши рождественские огни теперь параллельны, обратите внимание, как каждый свет имеет свою собственную цепь. (Источник изображения)

    Но как протекает ток в такой цепи? Он не следует просто по одному пути; он следует за всеми одновременно! Вот почему это круто: представьте, что вы выдергиваете одну из лампочек в такой схеме.Вместо того, чтобы останавливать всю вашу работу с рождественским светом, остальная часть цепи будет продолжать течь, потому что каждый свет не зависит от источника света до или после него в качестве источника электричества.

    Параллельный ток и сопротивление

    Когда цепь подключена параллельно, ток и сопротивление начинают делать некоторые странные вещи, которых вы, возможно, не ожидали, вот что вам нужно запомнить:

    В параллельных цепях, когда вы увеличиваете сопротивление, вы также увеличиваете ток, но в результате ваше сопротивление уменьшается вдвое.

    Подождите, что? Звучит безумно! Но подумайте об этом в отношении рождественских огней. По мере того, как вы добавляете больше разноцветных огней в свою схему, вам нужно потреблять больше тока для питания всех этих огней, верно? И поэтому начинает происходить волшебство: чем больше источников света вы добавляете, тем выше поднимается ваш ток, но этот увеличенный ток оказывает противоположное влияние на ваше сопротивление.

    Это может быть немного сложно для понимания, поэтому давайте рассмотрим простой пример.Проверьте схему ниже:

    Здесь у нас есть параллельная схема с двумя резисторами 10 кОм и батареей 10 В.

    Здесь у нас есть батарейный источник 10 В и два резистора 10 кОм, которые подключены параллельно. Теперь, поскольку каждый резистор имеет свою собственную схему, нам нужно выяснить, какой ток каждый будет использовать:

    • Возвращаясь к нашему треугольнику закона Ома, мы знаем, что уравнение, которое нам нужно использовать, это I = V / R, или ток равен напряжению, деленному на сопротивление.
    • И вставляя наши числа, мы получаем I = 10 В / 10 кОм, что составляет 1 мА.Но это только одна из двух схем резистора; Теперь нам нужно удвоить ток, чтобы получить общее значение для всей цепи, которое составляет 2 мА.
    • Теперь, что происходит с нашим сопротивлением в два ампера? Мы можем использовать закон Ома, чтобы выяснить это с R = V / I, что составляет R = 10 В / 2 мА = 5 кОм. Поскольку мы удвоили наш ток, наши оригинальные резисторы 10 кОм теперь дают только половину сопротивления!

    Да, все это довольно безумно, не так ли? Это просто один из тех законов Вселенной.

    Как на самом деле работают рождественские огни

    Так как же твои рождественские гирлянды на самом деле работают? Подсказка – они не на 100% последовательны и не на 100% параллельны, они оба! Эти умные инженерные эльфы решили, что самый эффективный способ заставить ваши рождественские огни работать – это соединить несколько серий огней параллельно. Посмотрите на изображение ниже, чтобы понять, что мы имеем в виду:

    Многие из сегодняшних рождественских гирлянд соединены последовательно / параллельно.(Источник изображения)

    Вот почему этот последовательный / параллельный гибрид хорош – если вы выдернете один свет, выключится только одна часть ваших фонарей, а не все из них. Это потому, что вы затронули только одну из последовательных цепей в вашей более крупной параллельной цепи. Но почему инженерные эльфы просто не сделали все огни параллельно? Для этого потребуется тонна проводов, и Санта должен следить за своими производственными затратами, как и мы!

    Но подождите, вы можете вспомнить тот год, когда у вас перегорел свет, но остальные фонари продолжали работать, что там произошло? Вы можете поблагодарить этот небольшой фокус на так называемом шунте .Это маленькое устройство позволяет току продолжать движение по цепи даже после того, как лампа перегорела. Как так? Давайте подробнее рассмотрим одну из ваших рождественских гирлянд ниже:

    Шунтирующий провод поддерживает движение электричества даже после того, как лампа перегорела. (Источник изображения)

    Видите этот провод, который обвивает нижнюю часть фонаря? Это шунт, и на нем есть покрытие, которое предотвращает прохождение электричества через него, пока свет работает правильно.Но когда верхний провод перегорает, повышение температуры приводит к плавлению покрытия шунтирующего провода, позволяя электричеству продолжать проходить от одного вывода к другому, и ваши рождественские огни продолжают работать!

    Дар дарения

    Вот тебе подарок на год! Теперь у вас есть новые знания о разнице между цепями, соединенными последовательно и параллельно, и о том, как они работают вместе, чтобы ваши рождественские огни сияли ярко.

    Цепи, соединенные последовательно, проще всего понять, поскольку ток течет в одном непрерывном и плавном направлении.И чем больше работы у вас будет выполнять последовательная цепь, тем больше будет уменьшаться ваш ток. Параллельные схемы немного сложнее, позволяя подключать несколько схем, работая индивидуально как часть более крупной схемы. Из-за этого интересного соединения, когда вы увеличиваете сопротивление в параллельной цепи, вы также увеличиваете ток!

    Если вы все еще не можете осмыслить все это, то вот отличное видео от Bozeman Science, которое упрощает понимание:

    И если вы все еще заблудились, то, возможно, вы исчерпали свой лимит на гоголь-моголь.Готовы разработать свои собственные схемы сегодня? Попробуйте Autodesk EAGLE бесплатно!

    Закон Ома I – Действие

    (0 Рейтинги)

    Быстрый просмотр

    Уровень оценки: 10 (9–12)

    Необходимое время: 3 часа

    Расходные материалы на группу: 3 доллара США.00

    $ 3 – для лампочек; остальные материалы доступны в большинстве школьных классов

    Размер группы: 3

    Зависимость действий: Нет

    Тематические области: Физика, наука и технологии

    Поделиться:

    Резюме

    Студенты экспериментируют, чтобы увеличить силу света лампочки, проверяя батареи в последовательной и параллельной цепях.Они узнают о законе Ома, мощности, параллельных и последовательных цепях и способах измерения напряжения и тока.

    Инженерное соединение

    Закон Ома – основа всех электрических систем. Инженеры-электрики используют это уравнение при проектировании электрических систем. Студенты нуждаются в прочном фундаменте закона Ома при самостоятельном проектировании схем.

    Цели обучения

    Заявление о следующем:

    • Закон Ома
    • последовательные / параллельные цепи (способы их соединения и влияние на V и I)
    • компоненты схемы
    • мощность
    • устройства, которые можно использовать для измерения напряжения и тока

    Образовательные стандарты

    Каждый урок или задание TeachEngineering соотносится с одним или несколькими научными дисциплинами K-12, образовательные стандарты в области технологий, инженерии или математики (STEM).

    Все 100000+ стандартов K-12 STEM, охватываемых TeachEngineering , собираются, обслуживаются и упаковываются сетью стандартов Achievement Standards Network (ASN) , проект D2L (www.achievementstandards.org).

    В ASN стандарты иерархически структурированы: сначала по источникам; например , по штатам; внутри источника по типу; например , естественные науки или математика; внутри типа по подтипу, затем по классу, и т. д. .

    Международная ассоциация преподавателей технологий и инженерии – Технология
    ГОСТ
    Гавайи – наука
    Массачусетс – наука
    • Определите и объясните компоненты цепи, включая источники, проводники, автоматические выключатели, предохранители, контроллеры и нагрузки.Примерами некоторых контроллеров являются переключатели, реле, диоды и переменные резисторы. (Оценки 9 – 12) Подробнее

      Посмотреть согласованную учебную программу

      Вы согласны с таким раскладом? Спасибо за ваш отзыв!

    • Объясните, как измерять и рассчитывать напряжение, ток, сопротивление и потребляемую мощность в последовательной и параллельной цепях.Определите инструменты, используемые для измерения напряжения, тока, потребляемой мощности и сопротивления. (Оценки 9 – 12) Подробнее

      Посмотреть согласованную учебную программу

      Вы согласны с таким раскладом? Спасибо за ваш отзыв!

    • Объясните взаимосвязь между напряжением, током и сопротивлением в простой цепи, используя закон Ома.(Оценки 9 – 12) Подробнее

      Посмотреть согласованную учебную программу

      Вы согласны с таким раскладом? Спасибо за ваш отзыв!

    Предложите выравнивание, не указанное выше

    Какое альтернативное выравнивание вы предлагаете для этого контента?

    Список материалов

    Каждой группе нужно:

    • 1 6.Лампочка 3В
    • 1 цоколь
    • 3 держателя батареек AA (включая провода)
    • 5 зажимов типа «крокодил»
    • две батареи на 1,5 В и / или блок питания
    • мультиметр
    • Спецификация закона Ома

    Рабочие листы и приложения

    Посетите [www.teachengineering.org/activities/view/ohm1_act_joy], чтобы распечатать или загрузить.

    Больше подобной программы

    Предварительные знания

    • Перед тем, как начать это упражнение, познакомьте студентов с электричеством, током, напряжением, сопротивлением и законом Ома.
    • Функции и структуры компонентов схемы, таких как проводники, нагрузки и контроллеры, должны быть обсуждены, а существующие в цепи должны быть идентифицированы во время работы.
    • Также может быть включено краткое описание конструкции лампочек, а также батарей.
    • (необязательно) Убедитесь, что учащиеся знакомы с предоставленными материалами (проводами, батареями, лампочками, мультиметром [см. Как использовать мультиметр] и т. Д.), А также с мерами безопасности при работе с различными видами электричества.

    Введение / Мотивация

    Где бы мы были сегодня без электричества? Хотя мы можем не часто задумываться об этом, наша жизнь вращается вокруг электричества – мы зависим от него в вопросах освещения, тепла, связи, развлечений и даже здравоохранения. Эту энергию можно получать не только так, как мы обычно думаем – через линии электропередач, ведущие к нашим домам, школам и местам работы, – но также и через автономные источники энергии, такие как батареи.Поскольку батареи могут обеспечивать только заданное значение напряжения (например, батарея AA – 1,5 вольта), как заставить устройства с более высокими требованиями к напряжению работать без увеличения напряжения батареи?

    Процедура

    Справочная информация – основные факты

    Закон Ома – это соотношение между напряжением, током и сопротивлением: уравнение закона Ома 1.

    Учитывая, что сопротивление (R) устройства – в данном случае лампочки – постоянно, если бы мы изменили ток или напряжение, подаваемое на устройство, мы бы повлияли на мощность.

    Сила света пропорциональна мощности (P) , подаваемой на него

    Мощность определяется как ток (I) , умноженный на напряжение (В) : уравнение закона Ома 2.

    Увеличивая напряжение или ток, подаваемый в цепь, мы можем увеличить мощность и, следовательно, увеличить интенсивность света.

    Как мы можем изменить ток или напряжение (I или V)?

    Мы можем протестировать параллельные и последовательные цепи, чтобы увидеть, как они влияют на силу света лампы, или мы можем проверить количество батарей, подключенных к цепи, и влияние этого на I, V или мощность.

    Батареи, включенные в параллельную цепь, увеличивают доступный ток (I) , но не изменяют напряжение (В) .

    Батареи, подключенные последовательно, вызывают повышение напряжения (В) , что приводит к соответствующему увеличению тока (I) .

    Со студентами

    1. Представьте тему. Просмотрите определения ключевых слов, а также темы, упомянутые в разделе «Предпосылки».Раздайте лист данных закона Ома и другие материалы.
    2. Группа учащихся . В зависимости от уровня учащихся попросите их поработать самостоятельно, чтобы разработать экспериментальные процедуры, проверяющие влияние выравнивания батарей на напряжение и ток (и, следовательно, на интенсивность света). Другие студенты могут следовать образцу экспериментальной процедуры. Напомните учащимся, что они должны ответить на вопросы из таблицы данных, когда эксперимент завершится с собранной информацией.

    В группах:

    1. Подключите одну 1,5-вольтовую батарею к лампочке, как показано на рисунке 1. Измерьте напряжение и ток лампы (запишите данные в таблицу) – обязательно обратите внимание на силу света. Также нарисуйте свою собственную схему и пометьте каждый компонент. Рисунок 1
    2. Затем подключите две батареи на 1,5 В последовательно к лампочке (см. Рисунок 2). Опять же, измерьте напряжение и ток и не забудьте записать свои данные в таблицу.Обратите внимание на разницу в интенсивности света. Рисунок 2
    3. Подключите три батареи на 1,5 В последовательно (см. Рисунок 3). Еще раз измерьте напряжение и ток и запишите свои данные. Рисунок 3
    4. Теперь подключите две батареи на 1,5 В параллельно к лампочке (см. Рисунок 4) и измерьте напряжение и ток (снова запишите данные в свою таблицу). Есть ли увеличение или уменьшение интенсивности света? Рисунок 4
    5. Подключите три батареи на 1,5 В параллельно (см. Рисунок 5).Снова измерьте и запишите напряжение и ток. Рисунок 5
    6. Прокомментируйте влияние количества батарей и их расположения в цепи на вырабатываемую мощность и, следовательно, на интенсивность света.

    Словарь / Определения

    переменный ток: ток, который меняет направление с постоянной скоростью.

    амперметр: устройство, которое измеряет ток, протекающий по цепи.

    ток: поток электронов. Ток считывается путем размыкания цепи и последовательного подключения счетчика.

    постоянный ток: электрический ток, который течет только в одном направлении. Положительный и отрицательный полюсы аккумулятора всегда соответственно положительный и отрицательный. Ток между этими двумя клеммами всегда течет в одном и том же направлении.

    Интенсивность света: количество света, испускаемого таким источником, как электрическая лампочка.

    нагрузка: устройство, потребляющее энергию или мощность.

    мультиметр: устройство, измеряющее ток, напряжение и сопротивление.

    параллельная цепь: цепь, которая имеет две или более ветвей для отдельных токов от одного источника напряжения.

    потенциал: электрическое давление, также называемое напряжением.

    мощность: скорость, с которой энергия передается чему-либо.(количество / время): измеряется в ваттах.

    Сопротивление: сопротивление тела или вещества проходящему через него току, приводящее к преобразованию электрической энергии в тепло, свет или другую форму энергии. Сопротивление измеряется в Ом. Сопротивление устройства всегда одинаковое (постоянное).

    серия: Цепь, которая имеет только один путь для прохождения электронов.

    напряжение: сила, которая перемещает электроны.Напряжение считывается с помощью счетчика, подключенного параллельно.

    вольтметр: устройство, измеряющее силу, с которой движутся электроны.

    ватт: мощность, расходуемая, когда один ампер постоянного тока протекает через сопротивление 1 Ом.

    Оценка

    Лист данных и вопросы: После того, как учащиеся соберут данные в своих листах данных, назначьте вопросы в качестве домашнего задания или викторины / теста.Просмотрите их ответы, чтобы оценить глубину их понимания.

    Вопросы для расследования

    • Как на яркость лампочки влияет количество последовательно подключенных батарей? Объяснять.
    • Как на яркость лампы влияет количество параллельно подключенных батарей? Объяснять.
    • Как на ток влияет количество последовательно соединенных батарей? Объяснять.
    • Как на ток влияет количество параллельно подключенных батарей? Объяснять.
    • Каковы преимущества параллельного подключения аккумуляторов?
    • Каковы преимущества последовательного подключения батарей?
    • Как можно подключить батареи в цепь, чтобы использовать преимущества как последовательной, так и параллельной характеристики?

    Вопросы безопасности

    • Предупредите студентов, что лампочки нагреваются.
    • Осторожно используйте зажимы типа «крокодил» и мультиметры.

    Советы по поиску и устранению неисправностей

    Быстро проводите измерения мультиметром, чтобы избежать повреждений.

    Расширения деятельности

    Проведите демонстрацию, которая покажет учащимся, сколько времени нужно, чтобы израсходовать «сок» в батарее, и лучше ли использовать батареи последовательно или параллельно.См. Действие Закона Ома 2. Это может быть начато до того, как студенты начнут работать над действием Закона Ома 1.

    использованная литература

    Брейн, Маршалл, Чарльз Брайант и Клинт Памфри. Как работают аккумуляторы . По состоянию на 6 ноября 2011 г. http://electronics.howstuffworks.com/everyday-tech/battery.htm

    Холлидей Д., Резник Р. и Уокер Дж. Основы физики .США: John Wiley & Sons, Inc., 2005.

    .

    Hambley, A. Принципы и применение электротехники . США: Prentice Hall, 2002.

    .

    авторское право

    © 2013 Регенты Университета Колорадо; оригинал © 2005 Вустерский политехнический институт

    Авторы

    Озан Баскан

    Программа поддержки

    Информационное бюро K-12, Вустерский политехнический институт

    Благодарности

    Создание этого мероприятия было профинансировано Pratt & Whitney.

    Последнее изменение: 17 ноября 2021 г.

    резисторов серии

    Электрические цепи используются в авиакосмической технике, от систем управления полетом до приборов в кабине и двигателей системы управления, чтобы аэродинамическая труба приборостроение и эксплуатация. Самая простая схема включает один резистор . и источник электрического потенциала или напряжения .Электроны проходят через схема, производящая ток электричества. Сопротивление, напряжение и ток связаны друг с другом соотношением Закон Ома. Обычно в практической схеме используется более одного резистора. При анализе сложной схемы мы часто можем группировать компоненты вместе и разработать эквивалентную схему . При анализе схем с несколько резисторов, мы должны определить, подвержены ли резисторы какое-то напряжение или такой же ток.Несколько резисторов в параллельная цепь подвергаются одинаковому напряжению. Несколько резисторов в Цепь серии подвергаются одинаковому току. На этой странице мы обсуждаем эквивалентную схему для резисторов последовательно.

    На рисунке изображена схема, состоящая из источника питания и трех резисторов. соединены последовательно. Если обозначить сопротивление R , ток i , а напряжение В , то закон Ома гласит, что для каждого резистора в цепи:

    V = i R

    я = V / R

    Если рассматривать каждый резистор по отдельности, каждый резистор имеет свой ток. ( i1 , i2 и i3 ), сопротивление ( R1 , R2 и R3 ), и напряжение ( V1 , V2 и V3 ).Резисторы соединены между собой в узлах . Узлы обозначены маленькие кружочки на фигуре. Для этой схемы есть четыре узла, соединяющие три резистора и источник питания. В каждом узле ток, поступающий в узел должен равняться току, выходящему из узла, согласно закону Фарадея . При таком расположении резисторов есть только один провод, входящий и выходящий каждый узел. Следовательно, ток через каждый резистор должен быть одинаковым.

    я = я1 = я2 = я3

    Падение напряжения на каждом резисторе определяется законом Ома:

    V1 = i R1

    V2 = я R2

    V3 = i R3

    Сумма падений напряжения на каждом резисторе должна равняться подаваемому напряжению. по источнику питания:

    V = V1 + V2 + V3

    Теперь мы знаем напряжение, сопротивление и ток в каждой части цепи.

Оставить комментарий