Закон ома напряжение: Электрическое сопротивление. Закон Ома для участка электрической цепи — урок. Физика, 8 класс.

Закон Ома и его применение

Закон Ома выражает зависимость между напряжением U, током I и сопротивлением R для участка цепи, не содержащего ЭДС:

U = I ∙ R 

где     U – напряжение, в вольтах;

I – сила тока, в амперах;

R – сопротивление, в омах.

  

Три составляющие закона Ома

 

Для участка цепи, содержащего ЭДС, закон Ома выражает зависимость между ЭДС источника тока E, сопротивлением нагрузки Rн, током I и внутренним сопротивлением r0 источника тока:

I = E / (Rн + r0)

 

Напряжение на зажимах источника тока U определяется по формуле:

U = EIr0 = IRн

 

Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления:

 

В зависимости от сопротивления нагрузки Rн существуют три режима работы:

 

режим короткого замыкания при Rн = 0

Iк.з. = Imax = E / r0

 

режим холостого хода при Rн = ∞

Uх.х. = Umax = E

 

режим согласованной нагрузки при Rн = r0

I = Iк.з. / 2

U = Uх.х. / 2

Р = Uх.х. ∙ Iк.з. / 4

 

         В последнем случае источник тока отдает в нагрузку максимально возможную мощность. Если сопротивление нагрузки состоит из нескольких резисторов, то справедливы следующие соотношении:

 

при последовательном соединении резисторов R1 и R2:

U1 / U2 = R1 / R2

U / U2 = R1 + R2 / R2

U2 = U ∙ R2 / (R1 + R2)

U1 = UR1 / (R1 + R2) 

где     U – подведенное напряжение;

U1 и U2 – падение напряжения на резисторах R1 и R2;

 

при параллельном соединении резисторов R1 и R2:

I1 / I2 = R2 / R1

 

         Подключение резисторов параллельно или последовательно измерительному прибору позволяет расширить пределы измерений. Можно показать, что расширение пределов измерения вольтметра достигается включением последовательно с ним добавочного резистора Rдоб. Если верхний предел измерения вольтметра Uв, а необходимый предел измерения Uн > Uв, то включение Rдоб = Rп ∙ (Uн / Uв – 1) позволяет отсчитывать максимально напряжение Uн. В приведенном выражении Rп – сопротивление прибора, равное Rп = Uв / Iв, где Iв – ток прибора при подведении к нему напряжения Uв.

         Расширение предела измерения амперметра достигается параллельным подключением к нему дополнительного резистора (шунта). Если верхний предел измерения тока амперметра Iв, а необходимый предел измерения Iн > Iв, то сопротивление шунта:

Rш = Rп / (Iн / Iв) – 1

 

         Сопротивление вольтметра можно определить следующим способом. Измерить вольтметром напряжение на зажимах источника напряжения E и, отметив показания вольтметра, включить последовательно с ним такой добавочный резистор, при котором показание вольтметра уменьшится вдвое, т.е. при равенстве сопротивлений вольтметра и добавочного резистора.

         На этом же принципе основана и обратная задача определения величины неизвестного сопротивления с помощью вольтметра.

Элементарный учебник физики Т2

Элементарный учебник физики Т2
  

Ландсберг Г.С. Элементарный учебник физики. Т.2. Электричество и магнетизм. – М.: Наука, 1985. – 479 c.

Один из лучших курсов элементарной физики, завоевавший огромную популярность. Достоинством курса является глубина изложения физической стороны рассматриваемых процессов и явлений в природе и технике. В новом издании структура курса осталась прежней, однако в изложении проведена система единиц СИ, терминология и обозначения единиц физических величин приведены в соответствие с действующим ГОСТ.

Для слушателей и преподавателей подготовительных отделений и курсов вузов, старшеклассников общеобразовательных и профессиональных школ, а также лиц, занимающихся самообразованием и готовящихся к поступлению в вуз.



Оглавление

ИЗ ПРЕДИСЛОВИЯ К ПЕРВОМУ ИЗДАНИЮ
Глава I. Электрические заряды
§ 1. Электрическое взаимодействие.
§ 2. Проводники и диэлектрики.
§ 3. Разделение тел на проводники и диэлектрики
§ 4. Положительные и отрицательные заряды
§ 5. Что происходит при электризации?
§ 6. Электронная теория.
§ 7. Электризация трением.
§ 8. Электризация через влияние.
§ 9. Электризация под действием света.
§ 10. Закон Кулона.
§ 11. Единица заряда.
Глава II. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ
§ 12.
Действие электрического заряда на окружающие тела.
§ 13. Понятие об электрическом поле.
§ 14. Напряженность электрического поля.
§ 15. Сложение полей.
§ 16. Электрическое поле в диэлектриках и в проводниках.
§ 17. Графическое изображение полей.
§ 18. Основные особенности электрических карт.
§ 19. Применение метода линий поля к задачам электростатики.
§ 20. Работа при перемещении заряда в электрическом поле.
§ 21. Разность потенциалов (электрическое напряжение).
§ 22. Эквипотенциальные поверхности.
§ 23. В чем смысл введения разности потенциалов?
§ 24. Условия равновесия зарядов в проводниках.
§ 25. Электрометр.
§ 26. В чем различие между электрометром и электроскопом?
§ 27. Соединение с Землей.
§ 28. Измерение разности потенциалов в воздухе. Электрический зонд.
§ 29. Электрическое поле Земли.
§ 30. Простейшие электрические поля.
§ 31. Распределение зарядов в проводнике. Клетка Фарадея.
§ 32. Поверхностная плотность заряда.
§ 33. Конденсаторы.
§ 34. Различные типы конденсаторов.
§ 35. Параллельное и последовательное соединение конденсаторов.
§ 36. Диэлектрическая проницаемость.
§ 37. Почему электрическое поле ослабляется внутри диэлектрика?
§ 38. Энергия заряженных тел. Энергия электрического поля.
Глава III. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК
§ 39. Электрический ток и электродвижущая сила.
§ 40. Признаки электрического тока.
§ 41. Направление тока.
§ 42. Сила тока.
§ 43. «Скорость электрического тока» и скорость движения носителей заряда.
§ 44. Гальванометр.
§ 45. Распределение напряжения в проводнике с током.
§ 46. Закон Ома.
§ 47. Сопротивление проводов.
§ 48. Зависимость сопротивления от температуры.
§ 49. Сверхпроводимость.
§ 50. Последовательное и параллельное соединение проводников.
§ 51. Реостаты.
§ 52. Распределение напряжения в цепи.
§ 53. Вольтметр.
§ 54. Каким должно быть сопротивление вольтметра и амперметра?
§ 55. Шунтирование измерительных приборов.
Глава IV. ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА
§ 56. Нагревание током. Закон Джоуля-Ленца.
§ 57. Работа, совершаемая электрическим током.
§ 58. Мощность электрического тока.
§ 59. Контактная сварка.
§ 60. Электрические нагревательные приборы. Электрические печи.
§ 61. Понятие о расчете нагревательных приборов.
§ 62. Лампы накаливания.
§ 63. Короткое замыкание.
§ 64. Электрическая проводка.
Глава V. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ЭЛЕКТРОЛИТЫ
§ 65. Первый закон Фарадея.
§ 66. Второй закон Фарадея.
§ 67. Ионная проводимость электролитов.
§ 68. Движение ионов в электролитах.
§ 69. Элементарный электрический заряд.
§ 70. Первичные и вторичные процессы при электролизе.
§ 71. Электролитическая диссоциация.
§ 72. Градуировка амперметров при помощи электролиза.
§ 73. Технические применения электролиза.
Глава VI. ХИМИЧЕСКИЕ И ТЕПЛОВЫЕ ГЕНЕРАТОРЫ ТОКА
§ 74. Введение. Открытие Вольты.
§ 75. Правило Вольты. Гальванический элемент.
§ 76. Как возникают э. д. с. и ток в гальваническом элементе?
§ 77. Поляризация электродов.
§ 78. Деполяризация в гальванических элементах.
§ 79. Аккумуляторы.
§ 80. Закон Ома для замкнутой цепи.
§ 81. Напряжение на зажимах источника тока и э. д. с.
§ 82. Соединение источников тока.
§ 83. Термоэлементы.
§ 84. Термоэлементы в качестве генераторов.
§ 85. Измерение температуры с помощью термоэлементов.
Глава VII. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ МЕТАЛЛЫ
§ 86. Электронная проводимость металлов.
§ 87. Строение металлов.
§ 88. Причина электрического сопротивления.
§ 89. Работа выхода.
§ 90. Испускание электронов накаленными телами.
Глава VIII. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ГАЗЫ
§ 91. Самостоятельная и несамостоятельная проводимость газов.
§ 92. Несамостоятельная проводимость газа.
§ 93. Искровой разряд.
§ 94. Молния.
§ 95. Коронный разряд.
§ 96. Применения коронного разряда.
§ 97. Громоотвод.
§ 98. Электрическая дуга.
§ 99. Применения дугового разряда.
§ 100. Тлеющий разряд.
§ 101. Что происходит при тлеющем разряде?
§ 102. Катодные лучи.
§ 103. Природа катодных лучей.
§ 104. Каналовые лучи.
§ 105. Электронная проводимость в высоком вакууме.
§ 106. Электронные лампы.
§ 107. Электроннолучевая трубка.
Глава IX. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ПОЛУПРОВОДНИКИ
§ 108. Природа электрического тока в полупроводниках.
§ 109. Движение электронов в полупроводниках.
§ 110. Полупроводниковые выпрямители.
§ 111. Полупроводниковые фотоэлементы.
Глава X. ОСНОВНЫЕ МАГНИТНЫЕ ЯВЛЕНИЯ
§ 112. Естественные и искусственные магниты.
§ 113. Полюсы магнита и его нейтральная зона.
§ 114. Магнитное действие электрического тока.
§ 115. Магнитные действия токов и постоянных магнитов.
§ 116. Происхождение магнитного поля постоянных магнитов.
§ 117. Гипотеза Ампера об элементарных электрических токах.

Глава XI. МАГНИТНОЕ ПОЛЕ
§ 118. Магнитное поле и его проявления. Магнитная индукция.
§ 119. Магнитный момент. Единица магнитной индукции.
§ 120. Измерение магнитной индукции поля с помощью магнитной стрелки.
§ 121. Сложение магнитных полей.
§ 122. Линии магнитного поля.
§ 123. Приборы для измерения магнитной индукции.
Глава XII. МАГНИТНЫЕ ПОЛЯ ЭЛЕКТРИЧЕСКИХ ТОКОВ
§ 124. Магнитное поле прямолинейного проводника и кругового витка с током.
§ 125. Магнитное поле соленоида. Эквивалентность соленоида и полосового магнита.
§ 126. Магнитное поле внутри соленоида. Напряженность магнитного поля.
§ 127. Магнитное поле движущихся зарядов.
Глава XIII. МАГНИТНОЕ ПОЛЕ ЗЕМЛИ
§ 128. Магнитное поле Земли.
§ 129. Элементы земного магнетизма.
§ 130. Магнитные аномалии и магнитная разведка полезных ископаемых.
§ 131. Изменение элементов земного магнетизма с течением времени. Магнитные бури.
Глава XIV. СИЛЫ, ДЕЙСТВУЮЩИЕ В МАГНИТНОМ ПОЛЕ НА ПРОВОДНИКИ С ТОКОМ
§ 132. Введение.
§ 133. Действие магнитного поля на прямолинейный проводник с током. Правило левой руки.
§ 134. Действие магнитного поля на виток или соленоид с током.
§ 135. Гальванометр, основанный на взаимодействии магнитного поля и тока.
§ 136. Сила Лоренца.
§ 137. Сила Лоренца и полярные сияния.
Глава XV. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ
§ 138. Условия возникновения индукционного тока.
§ 139. Направление индукционного тока. Правило Ленца.
§ 140. Основной закон электромагнитной индукции.
§ 141. Электродвижущая сила индукции.
§ 142. Электромагнитная индукция и сила Лоренца.
§ 143. Индукционные токи в массивных проводниках. Токи Фуко.
Глава XVI. МАГНИТНЫЕ СВОЙСТВА ТЕЛ
§ 144. Магнитная проницаемость железа.
§ 145. Магнитная проницаемость различных веществ. Вещества парамагнитные и диамагнитные.
§ 146. Движение парамагнитных и диамагнитных тел в магнитном поле. Опыты Фарадея.
§ 147. Молекулярная теория магнетизма.
§ 148. Магнитная защита.

§ 149. Особенности ферромагнитных тел.
§ 150. Основы теории ферромагнетизма.
Глава XVII. ПЕРЕМЕННЫЙ ТОК
§ 151. Постоянная и переменная электродвижущая сила.
§ 152. Опытное исследование формы переменного тока. Осциллограф.
§ 153. Амплитуда, частота и фаза синусоидального переменного тока и напряжения.
§ 154. Сила переменного тока.
§ 155. Амперметры и вольтметры переменного тока.
§ 156. Самоиндукция.
§ 157. Индуктивность катушки.
§ 158. Прохождение переменного тока через конденсатор и катушку с большой индуктивностью.
§ 159. Закон Ома для переменного тока. Емкостное и индуктивное сопротивления.
§ 160. Сложение токов при параллельном включении сопротивлений в цепь переменного тока.
§ 161. Сложение напряжений при последовательном соединении сопротивлений в цепи переменного тока.
§ 162. Сдвиг фаз между током и напряжением.
§ 163. Мощность переменного тока.
§ 164. Трансформаторы.
§ 165. Централизованное производство и распределение электрической энергии.
§ 166. Выпрямление переменного тока.
Глава XVIII. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ: ГЕНЕРАТОРЫ, ДВИГАТЕЛИ, ЭЛЕКТРОМАГНИТЫ
§ 167. Генераторы переменного тока.
§ 168. Генераторы постоянного тока.
§ 169. Генераторы с независимым возбуждением и с самовозбуждением.
§ 170. Трехфазный ток.
§ 171. Трехфазный электродвигатель.
§ 172. Электродвигатели постоянного тока.
§ 173. Основные рабочие характеристики и особенности двигателей постоянного тока с параллельным и последовательным возбуждением.
§ 174. Коэффициент полезного действия генератора и двигателя.
§ 175. Обратимость электрических генераторов постоянного тока.
§ 176. Электромагниты.
§ 177. Применение электромагнитов.
§ 178. Реле и их применения в технике и автоматике.
Ответы и решения к упражнениям
Приложения
Предметный указатель
Таблицы

Закон Ома Пояснения к экзамену на получение лицензии техника

Вопрос по закону Ома Пояснения к экзамену на получение лицензии техника Создано с помощью Лунаси

Радиолюбительская подготовка

В этом руководстве:

Самая фундаментальная формула в электронике — закон Ома. Закон Ома объясняет взаимосвязь между напряжением, током и сопротивлением. Закон Ома гласит, что Напряжение (E) равно силе тока (I), умноженной на сопротивление (R) . В наше время напряжение часто обозначается буквой V, но в тесте Voltage обозначается буквой E.

Используя закон Ома, мы можем рассчитать напряжение, ток или сопротивление, если у нас есть два из трех значений.

Вот треугольное представление, полезное для расчета закона Ома. Напряжение вверху, а ток и сопротивление внизу треугольника.

Расчет напряжения

В качестве примера предположим, что мы хотим рассчитать напряжение (E).

  1. Сначала обведите Напряжение (E)
  2. Обратите внимание, что Ток (I) находится рядом с Сопротивлением (R), поэтому добавьте знак умножения.
  3. Теперь у вас есть ответ: напряжение (E) равно току (I), умноженному на сопротивление (R)

Давайте решим закон Ома для напряжения с некоторыми реальными значениями.

Найдем напряжение в цепи с резистором 2 Ом, через который протекает ток 0,5 ампер.

  1. Сначала подставьте наши значения: Напряжение = 0,5 ампера x 2 Ом.
  2. Напряжение равно 1 вольт .

Для цепи с резистором 10 Ом с протекающим через него током 1 ампер:

  1. Напряжение = 1 ампер x 10 Ом
  2. Напряжение = 10 вольт .

Напряжение на резисторе 10 Ом, если через него протекает ток 2 ампера, составляет 20 вольт.

Расчет силы тока

Допустим, мы хотим рассчитать ток (I).

  1. Сначала обведите ток (I)
  2. Обратите внимание, что напряжение (E) выше сопротивления (R), поэтому добавьте знак деления
  3. Теперь у вас есть ответ: ток (I) равен напряжению (E), деленному на сопротивление (R) .

Для цепи с приложенным напряжением 120 вольт при сопротивлении 80 Ом:

  1. Ток (I) = 120 вольт разделить на 80 Ом
  2. Ток = 1,5 ампера .

Для цепи с резистором 100 Ом, подключенным через 200 вольт: 2 ампера.

  1. Ток (I) = 200 вольт разделить на 100 Ом
  2. Ток (I) = 2 ампера.

Для цепи с резистором 24 Ом, подключенным к 240 В:

  1. Ток (I) = 240 В, деленное на 24 Ом
  2. Ток (I) = 10 ампер .

Ток через резистор 24 Ом, подключенный к сети 240 вольт, составляет 10 ампер .

Расчет сопротивления

Теперь давайте воспользуемся треугольником для расчета сопротивления.

  1. Сначала обведите сопротивление (R)
  2. Обратите внимание, что напряжение (E) находится над сопротивлением (I), поэтому добавьте знак деления
  3. Теперь у вас есть ответ: сопротивление (R) равно напряжению (E), деленному на ток (I)

Допустим, у нас есть цепь, в которой ток 3 ампера протекает через резистор, подключенный к 90 вольтам. , и мы хотим рассчитать сопротивление.

  1. Из нашего треугольника мы знаем, что сопротивление (R) = напряжение (E), деленное на ток (I).
  2. Подставляем наши значения сопротивления = 90 делим на 3.
  3. Наш окончательный ответ: сопротивление = 30 Ом .

Возьмем другую цепь, для которой приложенное напряжение составляет 12 вольт, а сила тока составляет 1,5 ампера. Нам нужно найти сопротивление.

  1. Из нашего треугольника мы знаем, что сопротивление (R) = напряжение (E), деленное на ток (I).
  2. Подставляем наши значения сопротивления = 12 разделить на 1,5.
  3. Наш окончательный ответ: Сопротивление = 8 Ом .

У нас есть еще одна схема, потребляющая 4 ампера от 12-вольтового источника.

  1. Из нашего треугольника мы знаем, что сопротивление (R) = напряжение (E), деленное на ток (I).
  2. Подставляем наши значения сопротивления = 12 делим на 4.
  3. Наш окончательный ответ: сопротивление = 3 Ом .

Связанные руководства:

Наша миссия № 1 здесь, в Ham Radio Prep, – продвигать искусство любительского радио, а также поддерживать его историю живой и процветающей. Мы хотим проложить путь к еще более светлому будущему для всех, кто интересуется радиолюбителями, на долгие годы вперед!