Закон в физике это определение – Физический закон — Википедия

Содержание

Ответы Mail.ru: Что такое “физические законы”?

Про физические законы

Зако́н в физике – модель, необходимая, существенная, устойчивая повторяющаяся связь между явлениями, процессами и состояниями тел. Познание физических законов составляет основную задачу физической науки.

Физический закон

Физический закон – необходимая, существенная, устойчивая повторяющаяся связь между явлениями, процессами и состояниями тел. Познание физических законов составляет основную задачу физической науки.

Еще о законах физики:

ОСНОВНЫЕ ЗАКОНЫ ФИЗИКИ (школьный курс) .
[ Механика | Термодинамика | Электричество | Оптика | Атомная физика ]

ЭНЕРГИИ СОХРАНЕНИЯ И ПРЕВРАЩЕНИЯ ЗАКОН – общий закон природы: энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной (сохраняется) . Энергия может только превращаться из одной формы в другую и перераспределяться между частями системы. Для незамкнутой системы увеличение (уменьшение) ее энергии равно убыли (возрастанию) энергии взаимодействующих с ней тел и физических полей.

1. МЕХАНИКА

АРХИМЕДА ЗАКОН – закон гидро- и аэростатики: на тело, погруженное в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх, числено равная весу жидкости или газа, вытесненного телом, и приложенная в центре тяжести погруженной части тела. FA= gV, где r – плотность жидкости или газа, V – объем погруженной части тела. Иначе можно сформулировать так: тело, погруженное в жидкость или газ, теряет в своем весе столько, сколько весит вытесненная им жидкость (или газ) . Тогда P= mg – FA Открыт др. гр. ученым Архимедом в 212г. до н. э. Является основой теории плавания тел.

ВСЕМИРНОГО ТЯГОТЕНИЯ ЗАКОН – закон тяготения Ньютона: все тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними: , где M и m – массы взаимодействующих тел, R – расстояние между этими телами, G – гравитационная постоянная (в СИ G=6,67.10-11 Н. м2/кг2.

ГАЛИЛЕЯ ПРИНЦИП ОТНОСИТЕЛЬНОСТИ, механический принцип относительности – принцип классической механики: в любых инерциальных системах отсчета все механические явления протекают одинаково при одних и тех же условиях. Ср. относительности принцип.

ГУКА ЗАКОН – закон, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям.

ИМПУЛЬСА СОХРАНЕНИЯ ЗАКОН – закон механики: импульс любой замкнутой системы при всех процессах, происходящих в системе, остается постоянным (сохраняется) и может только перераспределяться между частями системы в результате их взаимодействия.

НЬЮТОНА ЗАКОНЫ – три закона, лежащие в основе ньютоновской классической механики. 1-й закон (закон инерции) : материальная точка находится в состоянии прямолинейного и равномерного движения или покоя, если на нее не действуют другие тела или действие этих тел скомпенсировано. 2-й закон (основной закон динамики) : ускорение, полученное телом, прямо пропорционально равнодействующей всех сил, действующих на тело, и обратно пропорционально массе тела (). 3-й закон: две материальные точки взаимодействуют друг с другом силами одной природы равными по величине и противоположными по направлению вдоль прямой, соединяющей эти точки ().

ОТНОСИТЕЛЬНОСТИ ПРИНЦИП – один из постулатов относительности теории, утверждающий, что в любых инерциальных системах отсчета все физические (механические, электромагнитные и др. ) явления при одних и тех же условиях протекают одинаково. Является обобщением Галилея принципа относительности на все физические явления (кроме тяготения) .

otvet.mail.ru

Закон (физика) Википедия

Физи́ческий зако́н — эмпирически установленная и выраженная в строгой словесной и/или математической формулировке устойчивая, повторяющаяся во множестве опытов, связь между физическими величинами в повторяющихся явлениях, процессах и состояниях тел и других материальных объектов в окружающем мире[1].

Выявление физических закономерностей составляет основную задачу физической науки.

Описание

Для того, чтобы некая связь могла быть названа физическим законом, она должна удовлетворять следующим требованиям:

  • Эмпирическая подтверждённость. Физический закон считается верным, если подтверждён многократными экспериментами.
  • Универсальность. Закон должен быть справедлив для большого числа объектов. В идеале — для всех объектов во Вселенной.
  • Устойчивость. Физические законы не меняются со временем, хотя и могут признаваться приближениями к более точным законам.

Физические законы, как правило, выражаются в виде короткого словесного утверждения или компактной математической формулы. По выражению нобелевского лауреата Поля Дирака, «физический закон должен обладать математической красотой». Тем не менее, было отмечено, что из 35 законов элементарной физики лишь 17 формулируются при помощи математических уравнений и из более чем 300 понятий лишь около 50 вводятся при помощи формул, остальные формулируются и вводятся лишь словесно

[2].

Примеры

Одними из самых известных физических законов являются[3]:

Законы-принципы

Некоторые физические законы не могут быть доказаны и являются основными, то есть носят универсальный характер в рамках области применения и по своей сути являются определениями. Такие законы часто называют принципами.

[4] Они являются обобщением экспериментальных фактов. К ним относятся, например, второй закон Ньютона (определение силы), закон сохранения энергии[5] (определение энергии), принцип наименьшего действия (определение действия) и др.

Также существует ряд физических принципов, являющихся самыми широкими, всеохватывающим обобщениями частных законов физики.[4] В их число входят: принцип неопределённости, принцип причинности, принцип дополнительности, принцип эквивалентности, принцип релятивистской инвариантности и т. д.[6]. Они формулируются как идеи, обобщающие экспериментальные данные и позволяющие единообразно объяснить всю совокупность рассматриваемых данной теорией явлений.

[4]

Некоторые физические теории: классическая механика, термодинамика, теория относительности, строятся на основе небольшого числа исходных физических принципов, из которых в качестве следствия выводятся все частные законы[7]. Такой подход к изучению явлений природы получил название метода принципов. Его основоположником являются Ньютон и Эйнштейн.[4]

Законы-следствия симметрий

Часть физических законов являются простыми следствиями некоторых симметрий, существующих в системе. Так, законы сохранения согласно теореме Нётер являются следствиями симметрии пространства и времени. А принцип Паули, например, является следствием идентичности электронов (антисимметричность их волновой функции относительно перестановки частиц).

Приблизительность законов

Все физические законы являются следствием эмпирических наблюдений и верны с той точностью, с которой верны экспериментальные наблюдения. Это ограничение не позволяет утверждать, что какой-либо из законов носит абсолютный характер. Известно, что часть законов заведомо не являются абсолютно точными, а представляют собой приближения к более точным. Так, законы Ньютона справедливы только для достаточно массивных тел, двигающихся со скоростями, значительно меньшими скорости света. Более точными являются законы квантовой механики и специальной теории относительности. Однако, и они в свою очередь являются приближениями более точных уравнений квантовой теории поля.

См. также

Примечания

  1. Селезнев Ю. А. Основы элементарной физики. – М., Наука, 1966. – Тираж 100 000 экз. – с. 11
  2. Селезнев Ю. А. Основы элементарной физики. – М., Наука, 1966. – Тираж 100 000 экз. – с. 401
  3. ↑ 100 великих научных открытий / Д. К. Самин. — М.: Вече, 2002. — 480 с. — 25 000 экз. — ISBN 5-7838-1085-1.
  4. 1 2 3 4 Сивухин Д. В. Общий курс физики. Механика. – М., Наука, 1979. – Тираж 50 000 экз. – с. 11
  5. Сивухин Д. В.
    Общий курс физики. Механика. – М., Наука, 1979. – Тираж 50 000 экз. – с. 149
  6. Селезнев Ю. А. Основы элементарной физики. — М., Наука, 1966. — Тираж 100 000 экз. — с. 11
  7. Мощанский В. Н. Формирование мировоззрения учащихся при изучении физики. — М., Просвещение, 1976. — Тираж 80 000 экз. — с. 114

Литература

  • Pичард Фейнман. Характер физических законов. — Издание второе, исправленное. (1-е изд.— М., «Мир» 1968 г.). — М.: Наука, 1987. — 160 с. — 163 000 экз.
  • Claus Kiefer. On the Concept of Law in Physics (англ.) // Proceedings of the conference «The concept of law in science», Heidelberg, 4-5 June 2012. — arXiv:1301.5110.

wikiredia.ru

Физический закон

Физический закон – это найденная на опыте и установленная путем обобщения опытных данных количественная или качественная объективная зависимость одних физических величин от других.

Модель сплошной среды

Модель, согласно которой в физике рассматривается вещество как непрерывно распределенная по пространству среда, не имеющая ни пустот, ни разрывов и обладающая физическими свойствами реального вещества (твердого тела, капельной жидкости, газа, плазмы).

Применение модели сплошной среды позволяет использовать математический аппарат дифференциального и интегрального исчисления.

Температура

Температура – скалярная физическая величина, характеризующая тепловое состояние системы. Согласно молекулярно – кинетической теории температура связана с интенсивностью движения микроструктурных частиц материи. Численное значение температуры представляет собой величину отклонения теплового состояния тела от теплового равновесия с другим телом, состояние которого принято за начало отсчета.

Шкала для измерения температуры определяется выбранным началом ее отсчета. В настоящее время система единиц СИ предусматривает применение двух температурных шкал: т е р м о д и н а м и ч е с к у ю (абсолютную шкалу) и м е ж д у н а р о д н у ю п р а к т и ч е с к у ю (МПШТ). По первой шкале за начало отсчета условно принимается абсолютный ноль температуры. Единица измерения термодинамической температуры – кельвин, обозначение: Т.

По второй шкале за начало отсчета выбрано состояние, соответствующее таянию льда в воде, это 273,15 К. Температуру по этой шкале выражают в градусах Цельсия (0

С) и обозначают t. Градус (температурный) – общее название различных единиц температуры, соответствующих различным температурным шкалам, 1К = 1 0С.

Связь между температурами по установленным шкалам имеет вид:

Т = t + 273,15.

В ряде стран еще используется внесистемная шкала, выраженная в градусах Фаренгейта (0F). Пересчет температуры со шкалы Фаренгейта на шкалу Цельсия проводится по выражению

t = (tF – 32).

Давление

Давление – физическая величина, характеризующая напряженное состояние сплошных сред, численно – это интенсивность нормальных сил, с которыми одно тело действует на поверхность другого.

Давление обозначается p, за его единицу в СИ принят паскаль (Па).

Один паскаль в неподвижной среде равен давлению, вызываемому нормальной силой 1Н, действующей на поверхность, равную 1 м2 (1Па=1Н/м2). Допускается применение следующих единиц: бар (1бар = 15 Па), техническая атмосфера (1ат = 1 кгс/см2 = 0,981105 Па), физическая атмосфера (1атм = 1,01105 Па), миллиметр ртутного столба (1 мм рт.ст. = 133,3 Па), миллиметр водяного столба (1 мм вод. ст. = 9,81 Па).

Давление в системе, отсчитываемое от нулевого значения, называется а б с о л ю т н ы м и обозначается pабс. Абсолютное атмосферное давление, именуют б а р о м е т р и ч е с к и м (pбар.). Давление в системе, превышающее атмосферное (барометрическое), называют и з б ы т о ч н ы м (ризб), а недостающее до атмосферного – р а з р я ж е н и е м (рраз), или вакуумметрическим давлением (рвак).

studfiles.net

Физический закон — WiKi

Описание

Для того, чтобы некая связь могла быть названа физическим законом, она должна удовлетворять следующим требованиям:

  • Эмпирическая подтверждённость. Физический закон считается верным, если подтверждён многократными экспериментами.
  • Универсальность. Закон должен быть справедлив для большого числа объектов. В идеале — для всех объектов во Вселенной.
  • Устойчивость. Физические законы не меняются со временем, хотя и могут признаваться приближениями к более точным законам.

Физические законы, как правило, выражаются в виде короткого словесного утверждения или компактной математической формулы. По выражению нобелевского лауреата Поля Дирака, «физический закон должен обладать математической красотой». Тем не менее, было отмечено, что из 35 законов элементарной физики лишь 17 формулируются при помощи математических уравнений и из более чем 300 понятий лишь около 50 вводятся при помощи формул, остальные формулируются и вводятся лишь словесно[2].

Примеры

Основная статья: Список физических законов

Одними из самых известных физических законов являются[3]:

Законы-принципы

Некоторые физические законы не могут быть доказаны и являются основными, то есть носят универсальный характер в рамках области применения и по своей сути являются определениями. Такие законы часто называют принципами.[4] Они являются обобщением экспериментальных фактов. К ним относятся, например, второй закон Ньютона (определение силы), закон сохранения энергии[5] (определение энергии), принцип наименьшего действия (определение действия) и др.

Также существует ряд физических принципов, являющихся самыми широкими, всеохватывающим обобщениями частных законов физики.[4] В их число входят: принцип неопределённости, принцип причинности, принцип дополнительности, принцип эквивалентности, принцип релятивистской инвариантности и т. д.[6]. Они формулируются как идеи, обобщающие экспериментальные данные и позволяющие единообразно объяснить всю совокупность рассматриваемых данной теорией явлений.[4]

Некоторые физические теории: классическая механика, термодинамика, теория относительности, строятся на основе небольшого числа исходных физических принципов, из которых в качестве следствия выводятся все частные законы[7]. Такой подход к изучению явлений природы получил название метода принципов. Его основоположником являются Ньютон и Эйнштейн.[4]

Законы-следствия симметрий

Приблизительность законов

Все физические законы являются следствием эмпирических наблюдений и верны с той точностью, с которой верны экспериментальные наблюдения. Это ограничение не позволяет утверждать, что какой-либо из законов носит абсолютный характер. Известно, что часть законов заведомо не являются абсолютно точными, а представляют собой приближения к более точным. Так, законы Ньютона справедливы только для достаточно массивных тел, двигающихся со скоростями, значительно меньшими скорости света. Более точными являются законы квантовой механики и специальной теории относительности. Однако, и они в свою очередь являются приближениями более точных уравнений квантовой теории поля.

См. также

Примечания

  1. Селезнев Ю. А. Основы элементарной физики. – М., Наука, 1966. – Тираж 100 000 экз. – с. 11
  2. Селезнев Ю. А. Основы элементарной физики. – М., Наука, 1966. – Тираж 100 000 экз. – с. 401
  3. ↑ 100 великих научных открытий / Д. К. Самин. — М.: Вече, 2002. — 480 с. — 25 000 экз. — ISBN 5-7838-1085-1.
  4. 1 2 3 4 Сивухин Д. В. Общий курс физики. Механика. – М., Наука, 1979. – Тираж 50 000 экз. – с. 11
  5. Сивухин Д. В. Общий курс физики. Механика. – М., Наука, 1979. – Тираж 50 000 экз. – с. 149
  6. Селезнев Ю. А. Основы элементарной физики. — М., Наука, 1966. — Тираж 100 000 экз. — с. 11
  7. Мощанский В. Н. Формирование мировоззрения учащихся при изучении физики. — М., Просвещение, 1976. — Тираж 80 000 экз. — с. 114

Литература

  • Pичард Фейнман. Характер физических законов. — Издание второе, исправленное. (1-е изд.— М., «Мир» 1968 г.). — М.: Наука, 1987. — 160 с. — 163 000 экз.
  • Claus Kiefer. On the Concept of Law in Physics (англ.) // Proceedings of the conference «The concept of law in science», Heidelberg, 4-5 June 2012. — arXiv:1301.5110.

ru-wiki.org

Закон (физика)

закон кз, закон каменных джунглей
Физи́ческий зако́н — эмпирически установленная и выраженная в строгой словесной и/или математической формулировке устойчивая связь между повторяющимися явлениями, процессами и состояниями тел и других материальных объектов в окружающем мире.

Выявление физических закономерностей составляет основную задачу физической науки.

Содержание

  • 1 Описание
  • 2 Примеры
  • 3 Законы-принципы
  • 4 Законы-следствия симметрий
  • 5 Приблизительность законов
  • 6 См. также
  • 7 Примечания
  • 8 Литература

Описание

Для того, чтобы некая связь могла быть названа физическим законом, она должна удовлетворять следующим требованиям:

  • Эмпирическая подтверждённость. Физический закон считается верным, если подтверждён многократными экспериментами.
  • Универсальность. Закон должен быть справедлив для большого числа объектов. В идеале — для всех объектов во Вселенной.
  • Устойчивость. Физические законы не меняются со временем, хотя и могут признаваться приближениями к более точным законам.

Физические законы, как правило, выражаются в виде короткого словесного утверждения или компактной математической формулы:

Физический закон должен обладать математической красотой П. А. М. Дирак

Примеры

Основная статья: Список физических законов

Одними из самых известных физических законов являются:

  • Закон Архимеда
  • Закон Бойля — Мариотта
  • Закон всемирного тяготения
  • Законы Ньютона
  • Закон Кулона
  • Уравнения Максвелла
  • Законы термодинамики
  • Закон Фарадея
  • Закон сохранения энергии
  • Принцип наименьшего действия
  • H-теорема
  • Принцип неопределённости
  • Принцип дополнительности

Законы-принципы

Некоторые физические законы носят универсальный характер и по своей сути являются определениями. Такие законы часто называют принципами. К ним относятся, например, второй закон Ньютона (определение силы), закон сохранения энергии (определение энергии), принцип наименьшего действия (определение действия) и др.

Законы-следствия симметрий

Часть физических законов являются простыми следствиями некоторых симметрий, существующих в системе. Так, законы сохранения согласно теореме Нётер являются следствиями симметрии пространства и времени. А принцип Паули, например, является следствием идентичности электронов (антисимметричность их волновой функции относительно перестановки частиц).

Приблизительность законов

Все физические законы являются следствием эмпирических наблюдений и верны с той точностью, с которой верны экспериментальные наблюдения. Это ограничение не позволяет утверждать, что какой-либо из законов носит абсолютный характер. Известно, что часть законов заведомо не являются абсолютно точными, а представляют собой приближения к более точным. Так, законы Ньютона справедливы только для достаточно массивных тел, двигающихся со скоростями, значительно меньшими скорости света. Более точными являются законы квантовой механики и специальной теории относительности. Однако, и они в свою очередь являются приближениями более точных уравнений квантовой теории поля.

См. также

  • Закон (наука)
  • Фальсифицируемость
► Физические законы

Примечания

  1. 100 великих научных открытий / Д. К. Самин. — М.: Вече, 2002. — 480 с. — 25 000 экз. — ISBN 5-7838-1085-1.

Литература

  • Pичард Фейнман. Характер физических законов. — Издание второе, исправленное. (1-е изд.— М., «Мир» 1968 г.). — М.: Наука, 1987. — 160 с. — 163 000 экз.
  • Claus Kiefer On the Concept of Law in Physics (англ.) // Proceedings of the conference «The concept of law in science», Heidelberg, 4-5 June 2012. — arΧiv: 1301.5110.

закон за работни односи, закон каменных джунглей, закон кз, закон ома


Закон (физика) Информацию О




Закон (физика) Комментарии

Закон (физика)
Закон (физика)
Закон (физика) Вы просматриваете субъект

Закон (физика) что, Закон (физика) кто, Закон (физика) описание

There are excerpts from wikipedia on this article and video

www.turkaramamotoru.com

Физический закон — Википедия. Что такое Физический закон

Физи́ческий зако́н — эмпирически установленная и выраженная в строгой словесной и/или математической формулировке устойчивая, повторяющаяся во множестве опытов, связь между физическими величинами в повторяющихся явлениях, процессах и состояниях тел и других материальных объектов в окружающем мире[1].

Выявление физических закономерностей составляет основную задачу физической науки.

Описание

Для того, чтобы некая связь могла быть названа физическим законом, она должна удовлетворять следующим требованиям:

  • Эмпирическая подтверждённость. Физический закон считается верным, если подтверждён многократными экспериментами.
  • Универсальность. Закон должен быть справедлив для большого числа объектов. В идеале — для всех объектов во Вселенной.
  • Устойчивость. Физические законы не меняются со временем, хотя и могут признаваться приближениями к более точным законам.

Физические законы, как правило, выражаются в виде короткого словесного утверждения или компактной математической формулы:

Физический закон должен обладать математической красотой

Примеры

Одними из самых известных физических законов являются[2]:

Законы-принципы

Некоторые физические законы носят универсальный характер и по своей сути являются определениями. Такие законы часто называют принципами. К ним относятся, например, второй закон Ньютона (определение силы), закон сохранения энергии (определение энергии), принцип наименьшего действия (определение действия) и др.

Законы-следствия симметрий

Часть физических законов являются простыми следствиями некоторых симметрий, существующих в системе. Так, законы сохранения согласно теореме Нётер являются следствиями симметрии пространства и времени. А принцип Паули, например, является следствием идентичности электронов (антисимметричность их волновой функции относительно перестановки частиц).

Приблизительность законов

Все физические законы являются следствием эмпирических наблюдений и верны с той точностью, с которой верны экспериментальные наблюдения. Это ограничение не позволяет утверждать, что какой-либо из законов носит абсолютный характер. Известно, что часть законов заведомо не являются абсолютно точными, а представляют собой приближения к более точным. Так, законы Ньютона справедливы только для достаточно массивных тел, двигающихся со скоростями, значительно меньшими скорости света. Более точными являются законы квантовой механики и специальной теории относительности. Однако, и они в свою очередь являются приближениями более точных уравнений квантовой теории поля.

См. также

Примечания

  1. Селезнев Ю. А. Основы элементарной физики. – М., Наука, 1966. – Тираж 100 000 экз. – с. 11
  2. ↑ 100 великих научных открытий / Д. К. Самин. — М.: Вече, 2002. — 480 с. — 25 000 экз. — ISBN 5-7838-1085-1.

Литература

  • Pичард Фейнман. Характер физических законов. — Издание второе, исправленное. (1-е изд.— М., «Мир» 1968 г.). — М.: Наука, 1987. — 160 с. — 163 000 экз.
  • Claus Kiefer. On the Concept of Law in Physics (англ.) // Proceedings of the conference «The concept of law in science», Heidelberg, 4-5 June 2012. — arXiv:1301.5110.

wiki.sc

Закон (физика) — Традиция

Материал из свободной русской энциклопедии «Традиция»

Физи́ческий зако́н — эмпирически установленная и выраженная в строгой словесной и/или математической формулировке устойчивая связь между повторяющимися явлениями, процессами и состояниями тел и других материальных объектов в окружающем мире.

Выявление физических закономерностей составляет основную задачу физической науки.

Для того, чтобы некая связь могла быть названа физическим законом, она должна удовлетворять следующим требованиям:

  • Эмпирическая подтверждённость. Физический закон считается верным, если подтверждён многократными экспериментами.
  • Универсальность. Закон должен быть справедлив для большого числа объектов. В идеале — для всех объектов во Вселенной.
  • Устойчивость. Физические законы не меняются со временем, хотя и могут признаваться приближениями к более точным законам.

Физические законы, как правило, выражаются в виде короткого словесного утверждения или компактной математической формулы:

Физический закон должен обладать математической красотой
П. А. М. Дирак

Одними из самых известных физических законов являются[1]:

Законы-принципы[править]

Некоторые физические законы носят универсальный характер и по своей сути являются определениями. Такие законы часто называют принципами. К ним относятся, например, второй закон Ньютона (определение силы), закон сохранения энергии (определение энергии), принцип наименьшего действия (определение действия) и др.

Законы-следствия симметрий[править]

Часть физических законов являются простыми следствиями некоторых симметрий, существующих в системе. Так, законы сохранения согласно теореме Нётер являются следствиями симметрии пространства и времени. А принцип Паули, например, является следствием идентичности электронов (антисимметричность их волновой функции относительно перестановки частиц).

Приблизительность законов[править]

Все физически законы являются следствием эмпирических наблюдений и верны с той точностью, с которой верны экспериментальные наблюдения. Это ограничение не позволяет утверждать, что какой-либо из законов носит абсолютный характер. Известно, что часть законов заведомо не являются абсолютно точными, а представляют собой приближения к более точным. Так, законы Ньютона справедливы только для достаточно массивных тел, двигающихся со скоростями, значительно меньшими скорости света. Более точными являются законы квантовой механики и специальной теории относительности. Однако, и они в свою очередь являются приближениями более точных уравнений квантовой теории поля.

  1. 100 великих научных открытий. — М.: Вече, 2002. — 480 с. — ISBN 5-7838-1085-1>

traditio.wiki

Оставить комментарий