Законы ома для участка и для полной цепи: Закон Ома для полной цепи | Полезные статьи

Закон Ома для участка цепи – онлайн-тренажер для подготовки к ЕНТ, итоговой аттестации и ВОУД

Георг Ом работал преподавателем математики в университете в Кельне, когда начал проводить свои основные опыты. Он посвятил себя изучению электричества, начав публиковать свои первые работы о свойствах гальванической цепи.

На тот момент многие ученые бились над загадкой природы электричества, многие сведения уже были открыты, многое уже было известно, но далеко не все. Именно в этот период Ом начал проводить опыты с прохождением электрического тока по цепи, так он смог найти зависимость напряжения и силы тока.

Однако на тот момент из-за неточности приборов, ученый не смог получить достоверные данные, но уже в 1826 году он написал очередной свой труд, где уже смог сформировать этот закон. Из-за неточности в расчетах многие ученые того времени отказались принимать его, и лишь через восемь лет была доказана его абсолютная правота и научная состоятельность.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:

\(I = \frac U R; [A = \frac B{ Ом}]\).

Ом установил, что сопротивление прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.

\(R = \frac {ρl }{ S}\), где ρ – удельное сопротивление, \(I\) – длина проводника, \(S\) – площадь поперечного сечения проводника.

Закон Ома для полной цепи

Назначение:

Определяет электрический ток в замкнутой цепи, исходя из ЭДС \(\varepsilon \)- (Электродвижущей силы) и внутреннего сопротивления r источника тока (например, аккумулятора).

Устройство:

Ток в полной (замкнутой) цепи зависит не только от внешнего сопротивления \(R\), но и от внутреннего сопротивления r источника тока:

\(I = \frac {ε} {R + r}\).

Принцип действия:

Смысл в том, что в реальной электрической цепи ток не может возрасти до бесконечности при снижении сопротивления нагрузки до нуля (например, при коротком замыкании).

Закон Ома для однородного участка цепи

Участок цепи, на котором не действуют сторонние силы, приводящие к возникновению ЭДС (рис. 1), называется однородным.

рис. 1

Закон Ома для однородного участка цепи был установлен экспериментально в 1826 г. Г. Омом. Согласно этому закону, сила тока I в однородном металлическом проводнике прямо пропорциональна напряжению \(U\) на концах этого проводника и обратно пропорциональна сопротивлению R этого проводника.

На рисунке 2 изображена схема электрической цепи, позволяющая экспериментально проверить этот закон. В участок MN цепи поочередно включают проводники, обладающие различными сопротивлениями.

рис. 2

Напряжение на концах проводника измеряется вольтметром и может изменяться с помощью потенциометра. Силу тока измеряют амперметром, сопротивление которого ничтожно мало (\(RA ≈ 0\)). График зависимости силы тока в проводнике от напряжения на нем – вольт-амперная характеристика проводника – приведен на рисунке 3. Угол наклона вольт-амперной характеристики зависит от электрического сопротивления проводника R (или его электропроводимости G):

рис. 3

Закон Ома для полной цепи – формула, определение

4.6

Средняя оценка: 4.6

Всего получено оценок: 170.

4.6

Средняя оценка: 4.6

Всего получено оценок: 170.

Закон Ома связывает в одной формуле электрические параметры, с помощью которых можно определить токи и напряжения на каждом элементе цепи. Данный закон можно распространить на всю электрическую цепь. Рассмотрим, как это происходит.

Источник ЭДС в полной цепи

Для возникновения электрического тока в замкнутой цепи, эта цепь должна содержать хотя бы один особый элемент, в котором будет происходить работа по переносу зарядов между его полюсами. Силы, переносящие заряды внутри этого элемента, делают это против электрического поля, а значит, их природа должна быть отлична от электрической. Поэтому такие силы называются сторонними.

Рис. 1. Сторонние силы в физике.

Элемент электрической цепи, в котором происходит работа сторонних сил по переносу зарядов против действия электрического поля, называется источником тока. Главная его характеристика – это величина сторонних сил. Для ее характеристики вводится специальная мера – Электродвижущая Сила (ЭДС), она обозначается буквой $\mathscr{E}$.

Значение ЭДС источника тока равно отношению сторонних сил по переносу заряда к величине этого заряда:

$$\mathscr{E}={A_{ст}\over q}$$

Поскольку смысл ЭДС очень близок к смыслу электрического напряжения (напомним, напряжение – это отношение работы, совершаемой электрическим полем, переносящим заряд, к величине этого заряда), то ЭДС так же, как и напряжение, измеряется в Вольтах:

$$1В={Дж\overКл}$$

Второй важнейшей электрической характеристикой реального источника тока является его внутреннее сопротивление.

При переносе зарядов между клеммами происходит их взаимодействие с веществом источника ЭДС, а поэтому, источник для электрического тока также представляет некоторое сопротивление. Внутреннее сопротивление, как и обычное сопротивление, измеряется в Омах, но обозначается малой латинской буквой $r$.

Рис. 2. Примеры источников тока.

Закон Ома для полной цепи

Когда в полной электрической цепи имеется источник ЭДС, в цепи возникает ток. Его величину можно найти, используя закон сохранения энергии и закон Джоуля-Ленца, выражающий энергию, выделяемую на электрическом элементе при прохождении по нему тока.

Если сторонние силы за время $Δt$ переместили заряд $Δq$, то, они совершили работу:

$$А_{ст}=\mathscr{E}q$$

Заряд, переносимый сторонними силами внутри источника, пройдет по цепи за то же время $Δt$, а значит, сила тока в цепи будет равна:

$$I={Δq\over Δt}$$

Таким образом, величина работы сторонних сил:

$$А_{ст}=\mathscr{E}IΔt$$

А согласно закону Джоуля-Ленца, ток $I$, прошедший через цепь, создаст некоторое количество теплоты. 2rΔt$$

Сокращая и перенося значение тока влево, окончательно получаем формулу Закона Ома для полной цепи:

$$I={\mathscr{E}\over R+r}$$

Сила тока в замкнутой цепи равна отношению ЭДС источника тока к сумме сопротивления цепи и внутреннего сопротивления источника.

Внутреннее сопротивление реальных источников тока очень невелико (доли ома), поэтому для небольших мощностей оно почти не оказывает влияния на электрическую цепь. Однако, если мощность цепи велика, то пренебрегать этим сопротивлением нельзя, на нем может выделяться заметное количество тепла.

Сложные цепи с несколькими источниками тока

В замкнутой цепи может быть не один источник тока.

В этом случае полная ЭДС цепи равна алгебраической сумме ЭДС источников. В цепи произвольно выбирается направление обхода, и если источник вызывает ток в этом направлении, его ЭДС считается положительной, а иначе – отрицательной. Сопротивление не имеет направления, а поэтому внешние и внутренние сопротивления всегда суммируются.

В реальных сложных электрических цепях может быть много разветвлений и контуров, причем, источники тока могут находиться в различных местах. Для определения токов на всех ветвях цепи используются системы уравнений, построенные на основе специальных правил (законов) Кирхгофа.

Рис. 3. Сложные цепи и законы Кирхгофа.

Что мы узнали?

Реальные источники тока обладают внутренним сопротивлением. Согласно Закону Ома для полной цепи, ток в замкнутой цепи равен отношению ЭДС источника тока к сумме сопротивления цепи и внутреннего сопротивления источника. Если в простой цепи несколько источников ЭДС, то общая ЭДС равна алгебраической сумме ЭДС источников. Для сложных цепей используются системы уравнений на основе правил Кирхгофа.

Тест по теме

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.6

Средняя оценка: 4.

6

Всего получено оценок: 170.


А какая ваша оценка?

Учебное пособие по закону Ома | Inspirit

Инструменты для творчества скоро появятся, чтобы вдохновить!

Присоединяйтесь к списку рассылки, чтобы узнать, когда мы запустимся.

Физика

Общая физика

Электрический ток

Учебное пособие по закону Ома

Шринити Махадеван

Чтобы определить закон Ома, он утверждает, что ток, протекающий в проводнике, прямо пропорционален напряжению на проводнике.

ВВЕДЕНИЕ

В современном мире полностью доминирует электричество и наша способность его контролировать. Как часто вы останавливались, чтобы подумать обо всех вещах, которые вы считаете само собой разумеющимися, таких как свет в вашем доме, кондиционер, водонагреватель, тостер и электронные гаджеты? Ничто из этого не работало бы без закона Ома! Этот фундаментальный принцип, открытый около двухсот лет назад, позволил создать машины, которые построили мир, который мы знаем сегодня. Так что же говорит закон Ома? Давай выясним!

Источник

ЧТО ТАКОЕ ЗАКОН ОМА?

Источник

При изучении электрических цепей необходимо знать три важных параметра:

Напряжение (В): Напряжение измеряет разность электрических потенциалов в двух точках. Думайте об этом как об источнике давления в электрической цепи, которая проталкивает электроны (ток) по проводам. Поток электронов выполняет работу, например, зажигает лампочку или запускает двигатель.

Ток (I): Ток измеряет, сколько электронов проходит через данную точку в единицу времени. Думайте о токе как о количестве электронов, протекающих по проводам. Единицей силы тока является ампер (А) или амперы. 1 ампер тока равен 1 кулону (6,24 x 1018) электронов, проходящих через точку за 1 секунду. Это все равно, что измерить, сколько воды вытекает из садового шланга менее чем за 1 секунду.

Сопротивление (R): Проще говоря, сопротивление — это сопротивление провода или проводника току, протекающему в электрической цепи. Медь имеет низкое сопротивление; следовательно, он используется в качестве проводника, тогда как резина обладает таким высоким сопротивлением, что полностью ограничивает протекание тока. Разные материалы имеют разные уровни сопротивления протеканию тока.
Определите закон Ома: этот закон гласит, что ток, протекающий в проводнике, прямо пропорционален напряжению на проводнике. Математически уравнение закона Ома утверждает, что: В ∝ Я Или же V=RI

R – константа пропорциональности, которая является сопротивлением. Значение R различно для разных проводников.

Источник

Закон Ома устанавливает зависимость между напряжением, током и сопротивлением. Формулы закона Ома можно использовать для определения тока, протекающего в проводнике, сопротивления или напряжения, если известно какое-либо из двух значений.

НЕКОТОРЫЕ ПРИМЕРЫ ЗАКОНА ОМА:

  • Закон Ома лежит в основе работы плавких предохранителей и автоматических выключателей.
    Предохранители рассчитаны на фиксированный ток и плавятся, когда через них проходит больший ток.
  • Дизайн электронных устройств.
  • Управление скоростью вращения вентиляторов с помощью потенциометра.
  • Функционирование нагревательных элементов.

ЗАКЛЮЧЕНИЕ:

  • Закон Ома дает проводнику зависимость между напряжением, током и сопротивлением.
  • Напряжение измеряет разность электрических потенциалов в двух точках проводника.
  • Ток измеряет, сколько электронов проходит через данную точку в единицу времени.
  • Сопротивление — это сопротивление провода или проводника току, протекающему в электрической цепи.

Часто задаваемые вопросы:

1. Что такое закон Ома?

Закон Ома определяет зависимость между напряжением, током и сопротивлением в проводнике. Согласно закону Ома, ток в двух точках проводника прямо пропорционален напряжению в точках.

2. Что такое закон Ома? Напишите формулу?

Ток, текущий в проводнике, прямо пропорционален напряжению на проводнике.

Математически: V=RI

3. Какие три формулы в законе Ома?

V=RI, I=V/R и R=V/I

Мы надеемся, что вам понравился этот урок, и вы узнали что-то интересное о Законе Ома ! Присоединяйтесь к нашему сообществу Discord, чтобы получить ответы на любые вопросы и пообщаться с другими студентами, такими же, как и вы! Не забудьте загрузить наше приложение, чтобы испытать наши веселые классы виртуальной реальности – мы обещаем, это делает учебу намного веселее! 😎

ИСТОЧНИКИ:

  1. 20.10 Закон Ома. https://flexbooks.ck12.org/cbook/ck-12-middle-school-physical-science-flexbook-2.0/section/20.10/primary/lesson/ohms-law-ms-ps/. По состоянию на 28 января 2022 г.
  2. Что такое напряжение?. https://www.fluke.com/en-in/learn/blog/electrical/what-is-voltage#:~:text=Voltage%20is%20the%20pressure%20from, измерено%20in%20volts%20(V ). По состоянию на 28 января 2022 г.
  3. 20,5 Ток. https://flexbooks.ck12.org/cbook/ck-12-middle-school-physical-science-flexbook-2.0/section/20.5/primary/lesson/electric-current-ms-ps/https://www. fluke.com/en-in/learn/blog/electrical/what-is-resistance. По состоянию на 28 января 2022 г.

Сопротивление и простые схемы – Колледж физики

Резюме

  • Объясните происхождение закона Ома.
  • Расчет напряжения, тока или сопротивления по закону Ома.
  • Объясните, что такое омический материал.
  • Опишите простую схему.

Что управляет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, настенные розетки и т. д., которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и в широком смысле называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов $latex \boldsymbol{V} $, которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток.

Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению $latex \boldsymbol{V} $. Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что сила тока в металлической проволоке прямо пропорциональна приложенному напряжению :

.

$латекс \boldsymbol{I \propto V}. $

Это важное соотношение известно как закон Ома. Его можно рассматривать как причинно-следственную связь, где напряжение является причиной, а ток — следствием. Это эмпирический закон, аналогичный закону трения — экспериментально наблюдаемому явлению. Такая линейная зависимость не всегда имеет место.

Если напряжение управляет током, что этому препятствует? Электрическое свойство, препятствующее току (грубо похожее на трение и сопротивление воздуха), называется сопротивлением RR размером 12{R} {}. Столкновения движущихся зарядов с атомами и молекулами в веществе передают энергию веществу и ограничивают ток. Сопротивление определяется как обратно пропорциональное току, или

$латекс \boldsymbol{I \propto} $

Так, например, ток уменьшается вдвое, если сопротивление удваивается. Сочетание отношений тока к напряжению и тока к сопротивлению дает

$латекс \boldsymbol{I =} $

Это соотношение также называют законом Ома. Закон Ома в этой форме действительно определяет сопротивление для определенных материалов. Закон Ома (как и закон Гука) не является универсальным. Многие вещества, для которых выполняется закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы обладают сопротивлением $latex \boldsymbol{R} $, которое не зависит от напряжения $latex \boldsymbol{V} $ и тока $latex \boldsymbol{I} $. Объект, который имеет простое сопротивление, называется резистор , даже если его сопротивление мало. Единицей измерения сопротивления является ом, который обозначается символом $latex\Omega$ (греческая омега в верхнем регистре). Перестановка $latex \boldsymbol{I = V/R} $ дает $latex \boldsymbol{R = V/I} $, поэтому единицами сопротивления являются 1 Ом = 1 вольт на ампер:

$латекс \boldsymbol{1 \;\Omega = 1} $

На рис. 1 показана схема простой цепи. Простая схема имеет один источник напряжения и один резистор. Провода, соединяющие источник напряжения с резистором, можно считать имеющими пренебрежимо малое сопротивление, либо их сопротивление можно включить в $latex \boldsymbol{R} $.

Рисунок 1. Простая электрическая цепь, в которой замкнутый путь для протекания тока обеспечивается проводниками (обычно металлическими проводами), соединяющими нагрузку с клеммами батареи, представленными красными параллельными линиями. Зигзагообразный символ представляет одиночный резистор и включает любое сопротивление в соединениях с источником напряжения.

Пример 1: расчет сопротивления: автомобильная фара

Чему равно сопротивление автомобильной фары, через которую протекает ток 2,50 А при подаче на нее 12,0 В?

Стратегия

Мы можем преобразовать закон Ома в соответствии с формулой $latex \boldsymbol{I=V/R} $ и использовать его для нахождения сопротивления.

Решение

Перестановка $latex \boldsymbol{I = V/R} $ и подстановка известных значений дает

$latex \boldsymbol{R =}$ $latex \boldsymbol{=} $ $latex \boldsymbol{= 4.80 \;\Omega } $

Обсуждение

Это относительно небольшое сопротивление, но оно больше морозостойкости фары. Как мы увидим в главе 20.3 Сопротивление и удельное сопротивление, сопротивление обычно увеличивается с температурой, поэтому лампочка имеет более низкое сопротивление при первом включении и будет потреблять значительно больший ток в течение короткого периода прогрева. 9{-5} \;\Omega} $, а сверхпроводники вообще не имеют сопротивления (они неомические). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в главе 20.3 Сопротивление и удельное сопротивление.

Дополнительная информация получена путем решения $latex \boldsymbol{I = V/R} $, что дает

$латекс \boldsymbol{V = IR}.$

Это выражение для $latex \boldsymbol{V} $ можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока $латекс \boldsymbol{I} $. Фраза $latex \boldsymbol{IR} $  drop часто используется для обозначения этого напряжения. Например, фара в примере 1 имеет $латексное \boldsymbol{IR}$ падение напряжения, равное 12,0 В. Если измерить напряжение в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывающему ток — поток заряда. Резистор подобен трубе, которая снижает давление и ограничивает поток из-за своего сопротивления. Сохранение энергии имеет здесь важные последствия. Источник напряжения поставляет энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, в тепловую энергию). В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, поскольку $latex \boldsymbol{PE = q \Delta V} $, и тот же $latex \boldsymbol{ q} $ проходит через каждый. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны. (См. рис. 2.)

Рисунок 2. Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

Соединения: сохранение энергии

В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму. О сохранении энергии здесь свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму одним только резистором. Мы обнаружим, что закон сохранения энергии имеет и другие важные применения в цепях и является мощным инструментом анализа цепей.

PhET Исследования: Закон Ома

Посмотрите, как формула закона Ома соотносится с простой цепью. Отрегулируйте напряжение и сопротивление и посмотрите, как изменится ток в соответствии с законом Ома. Размеры символов в уравнении изменяются в соответствии с принципиальной схемой.

Рис. 3. Закон Ома
  • Простая цепь — это цепь, в которой есть один источник напряжения и одно сопротивление.
  • Одно из утверждений закона Ома дает отношение между током $latex \boldsymbol{I} $, напряжением $latex \boldsymbol{V} $ и сопротивлением $latex \boldsymbol{R} $ в простой цепи как $latex \boldsymbol {I = \frac{V}{R}} $.
  • Сопротивление выражается в омах ($latex \boldsymbol{\Omega}$), связанных с вольтами и амперами как $latex \boldsymbol{1 \;\Omega = 1 \;\textbf{V} / \textbf{A}} $.
  • Падение напряжения или $latex \boldsymbol{IR} $ на резисторе, вызванное протеканием через него тока, задается как $latex \boldsymbol{V = IR} $.

Оставить комментарий