Запишите закон ома для полной цепи: Полный закон Ома для полной цепи. Формула закона Ома.

Содержание

Закон Ома для полной цепи и для участка цепи: формулы, описание и объяснение


Профессиональному электрику, специалисту электронщику никак не обойти в собственной деятельности закон Ома, решая любые задачи, связанные с наладкой, настройкой, ремонтом электронных и электрических схем.

Собственно, понимание этого закона необходимо каждому. Потому что каждому в быту приходится иметь дело с электричеством.

И хотя учебным курсом средней школы закон немецкого физика Ома и предусмотрен, но на практике не всегда своевременно изучается. Поэтому рассмотрим в нашем материале такую актуальную для жизни тему и разберемся с вариантами записи формулы.

Содержание статьи:

Отдельный участок и полная электрическая цепь

Рассматривая электрическую цепь с точки зрения применения к схеме закона Ома, следует отметить два возможных варианта расчета: для отдельно взятого участка и для полноценной схемы.

Расчет тока участка электрической схемы

Участком электрической цепи, как правило, рассматривается часть схемы, исключающая источник ЭДС, как обладающий дополнительным внутренним сопротивлением.

Поэтому расчетная формула, в данном случае, выглядит просто:

I = U/ R,

Где, соответственно:

  • I – сила тока;
  • U – приложенное напряжение;
  • R – сопротивление.

Трактовка формулы простая – ток, протекающий по некоему участок цепи, пропорционален приложенному к нему напряжению, а сопротивлению – обратно пропорционален.

Так называемая графическая «ромашка», посредством которой представлен весь набор вариаций формулировок, основанных на законе Ома. Удобный инструмент для карманного хранения: сектор “P” – формулы мощности; сектор “U” – формулы напряжения; сектор “I” – формулы тока; сектор “R” – формулы сопротивления

Таким образом, формулой чётко описывается зависимость протекания тока по отдельному участку электрической цепи относительно определенных значений напряжения и сопротивления.

Формулой удобно пользоваться, например, рассчитывая параметры сопротивления, которое требуется впаять в схему, если заданы напряжение с током.

Закон Ома и два следствия, которыми необходимо владеть каждому профессиональному электромеханику, инженеру-электрику, электронщику и всем, кто связан с работой электрических цепей. Слева направо: 1 – определение тока; 2 – определение сопротивления; 3 – определение напряжения, где I – сила тока, U – напряжение, R – сопротивление

Вышеприведенный рисунок поможет определить, например ток, протекающий через 10-омное сопротивление, к которому приложено напряжение 12 вольт. Подставив значения, найдем – I = 12 / 10 = 1.2 ампера.

Аналогично решаются задачи поиска сопротивления (когда известны ток с напряжением) или напряжения (когда известны напряжение с током).

Тем самым всегда можно подобрать требуемое рабочее напряжение, нужную силу тока и оптимальный резистивный элемент.

Формула, которой предложено пользоваться, не требует учитывать параметры источника напряжения. Однако, схема, содержащая, например, аккумулятор, будет рассчитываться по другой формуле. На схеме: А – включение амперметра; V – включение вольтметра.

Кстати, соединительные провода любой схемы – это сопротивления. Величина нагрузки, которую им предстоит нести, определяется напряжением.

Соответственно, опять же пользуясь законом Ома, становится допустимым точный подбор необходимого сечения проводника, в зависимости от материала жилы.

У нас на сайте есть подробная инструкция по по мощности и току.

Вариант расчета для полной цепи

Полноценную цепь составляет уже участок (участки), а также источник ЭДС. То есть, фактически к существующему резистивному компоненту участка цепи добавляется внутреннее сопротивление источника ЭДС.

Поэтому логичным является некоторое изменение выше рассмотренной формулы:

I = U / (R + r)

Конечно, значение внутреннего сопротивления ЭДС в законе Ома для полной электрической цепи можно считать ничтожно малым, правда во многом это значение сопротивления зависит от структуры источника ЭДС.

Тем не менее, при расчетах сложных электронных схем, электрических цепей с множеством проводников, наличие дополнительного сопротивления является важным фактором.

Для расчетов в условиях полноценной электрической цепи всегда берется к учету резистивное значение источника ЭДС. Это значение суммируется с резистивным сопротивлением непосредственно электрической цепи. На схеме: I – прохождение тока; R – резистивный элемент внешний; r – резистивный фактор ЭДС (источника энергии)

Как для участка цепи, так и для полной схемы следует учитывать естественный момент – использование тока постоянной или переменной величины.

Если отмеченные выше моменты, характерные для закона Ома, рассматривались с точки зрения использования постоянного тока, соответственно с переменным током всё выглядит несколько иначе.

Рассмотрение действия закона к переменной величине

Понятие «сопротивление» к условиям прохождения переменного тока следует рассматривать уже больше как понятие «импеданса».  Здесь имеется в виду сочетание активной резистивной нагрузки (Ra) и нагрузки, образованной реактивным резистором (Rr).

Обусловлены подобные явления параметрами индуктивных элементов и законами коммутации применительно к переменной величине напряжения – синусоидальной величине тока.

Такой видится эквивалентная схема электрической цепи переменного тока под расчет с применением формулировок, исходящих из принципов закона Ома: R – резистивная составляющая; С – емкостная составляющая; L – индуктивная составляющая; ЭДС -источник энергии; I -прохождение тока

Другими словами, имеет место эффект опережения (отставания) токовых значений от значений напряжения, что сопровождается появлением активной (резистивной) и реактивной (индуктивной или емкостной) мощностей.

Расчёт подобных явлений ведётся при помощи формулы:

Z = U / I или Z = R + J * (XL – XC)

где: Z – импеданс; R – активная нагрузка; XL , XC – индуктивная и емкостная нагрузка; J – коэффициент.

Последовательное и параллельное включение элементов

Для элементов электрической цепи (участка цепи) характерным моментом является последовательное либо параллельное соединение.

Соответственно, каждый вид соединения сопровождается разным характером течения тока и подводкой напряжения. На этот счёт закон Ома также применяется по-разному, в зависимости от варианта включения элементов.

Цепь последовательно включенных резистивных элементов

Применительно к последовательному соединению (участку цепи с двумя компонентами) используется формулировка:

  • I = I1 = I2 ;
  • U = U1 + U2 ;
  • R = R1 + R2

Такая формулировка явно демонстрирует, что, независимо от числа последовательно соединенных резистивных компонентов, ток, текущий на участке цепи, не меняет значения.

Соединение резистивных элементов на участке схемы последовательно один с другим. Для этого варианта действует свой закон расчета. На схеме: I, I1, I2 – прохождение тока; R1, R2 – резистивные элементы; U, U1, U2 – приложенное напряжение

Величина напряжения, приложенного к действующим резистивным компонентам схемы, является суммой и составляет в целом значение источника ЭДС.

При этом напряжение на каждом отдельном компоненте равно: Ux = I * Rx.

Общее сопротивление следует рассматривать как сумму номиналов всех резистивных компонентов цепи.

Цепь параллельно включенных резистивных элементов

На случай, когда имеет место параллельное включение резистивных компонентов, справедливой относительно закона немецкого физика Ома считается формулировка:

  • I = I1 + I2 ;
  • U = U1 = U2 ;
  • 1 / R = 1 / R1 + 1 / R2 + …

Не исключаются варианты составления схемных участков «смешанного» вида, когда используется параллельное и последовательное соединение.

Соединение резистивных элементов на участке цепи параллельно один с другим. Для этого варианта применяется свой закон расчета. На схеме: I, I1, I2 – прохождение тока; R1, R2 – резистивные элементы; U – подведённое напряжение; А, В – точки входа/выхода

Для таких вариантов расчет обычно ведется изначальным расчетом резистивного номинала параллельного соединения. Затем к полученному результату добавляется номинал резистора, включенного последовательно.

Интегральная и дифференциальная формы закона

Все вышеизложенные моменты с расчетами применимы к условиям, когда в составе электрических схем используются проводники, так сказать, «однородной» структуры.

Между тем на практике нередко приходится сталкиваться с построением схематики, где на различных участках структура проводников меняется. К примеру, используются провода большего сечения или, напротив, меньшего, сделанные на основе разных материалов.

Для учёта таких различий существует вариация, так называемого, «дифференциально-интегрального закона Ома». Для бесконечно малого проводника рассчитывается уровень плотности тока в зависимости от напряженности и величины удельной проводимости.

Под дифференциальный расчет берется формула: J = ό * E

Для интегрального расчета, соответственно, формулировка: I * R = φ1 – φ2 + έ   

Однако эти примеры скорее уже ближе к школе высшей математики и в реальной практике простого электрика фактически не применяются.

Выводы и полезное видео по теме

Подробный разбор закона Ома в видеоролике, представленном ниже, поможет окончательно закрепить знания в этом направлении.

Своеобразный видеоурок качественно подкрепляет теоретическое письменное изложение:

Работа электрика или деятельность электронщика неотъемлемо связана с моментами, когда реально приходится наблюдать закон Георга Ома в действии. Это своего рода прописные истины, которые следует знать каждому профессионалу.

Объёмных знаний по данному вопросу не требуется – достаточно выучить три основных вариации формулировки, чтобы успешно применять на практике.

Хотите дополнить изложенный выше материал ценными замечаниями или выразить свое мнение? Пишите, пожалуйста, комментарии в блоке под статьей. Если у вас остались вопросы, не стесняйтесь задавать их нашим экспертам.

практикум . “Закон Ома для полной цепи”, Прохладный, КБР

     

Знание составляется из мелких
крупинок ежедневного опыта.
Д.И. Писарев

Цели: формировать понятия о физическом эксперименте и методах исследования, осуществить комплексный контроль усвоения знаний и сформированности практических умений.
Задачи урока:
    Осмыслить применение изученных величин и связывающих их формул;
    Обобщить знания об ЭДС и законе Ома для полной цепи;
    Самостоятельно применять знания и практические умения при решении расчетных задач, лабораторном и демонстрационном эксперименте.

Этапы урока Длительность Формы и методы обучения
I
Актуализация знаний учащихся.
Постановка задач урока
5-7 мин. Физическая эстафета. Физический диктант.
Задание «Укажи ошибку!»
II Формирование умений и навыков 15-20 мин. Работа в группах. Записи в тетрадях
III Подведение итогов 7-10 мин. Сообщения лидеров групп
IV Домашнее задание 3 мин. Сообщение учителя

1. Вступительное слово учителя.

В 1827 году появляется основной прославивший Ома труд «Гальваническая цепь, разработанная математически доктором Г.С.Омом». В этой работе он практически установил знаменитый закон, носящий его имя. Именно этому открытию, закону – основе современной электротехнике, посвящен сегодняшний урок. Начнем с физической эстафеты. В качестве разминки. Для этого мне потребуется 4 человека.


Физический диктант

Вариант 1

    Постоянный электрический ток – это…
    Каково назначение источника тока?
    Как формулируется закон Ома для полной цепи?
    Запишите выражение для силы тока в цепи, содержащей 2 резистора с одинаковым сопротивлением R, соединенные последовательно.

    При каком условии напряжение, измеренное на полюсах источника, можно считать равным его ЭДС? ( напротив варианты заданий «В чем ошибка?»)

Вариант 2

    Сформулируйте закон Ома для участка цепи (математическая запись).
    Какие силы называются сторонними? (приведите примеры)
    Что такое ЭДС? (формула, единица измерения).
    Запишите выражение для силы тока в цепи, содержащей 2 резистора с одинаковым сопротивлением R, соединенные параллельно.
    Какое явление называется коротким замыканием? От чего зависит ток короткого замыкания? ( напротив варианты заданий «В чем ошибка?»)

Физическая пауза: Это Интересно!

Работу Ома встретили в Германии очень хорошо. В 1883 году ученый был уже профессором политехнической школы в Нюрнберге. Однако за рубежом, особенно во Франции и Англии, работы Ома долгое время оставались неизвестными. Через 10 лет после появления его работы французский физик Пулье на основе экспериментов пришел к таким же выводам. Но Пулье было доказано, что установленный им закон еще в 1827 году был открыт Омом. Любопытно, что французские школьники и поныне изучают закон Ома под именем закона Пулье.

2. «Решай, да проверяй!»

Вам предлагаются результаты эксперимента, а вы должны описать ход самого опыта и доказать правильность своего ответа.
Задание 1.
Какова ошибка измерения ЭДС источника тока, если школьный вольтметр, присоединенный к его полюсам, показывает 4В, внутреннее сопротивление источника тока 0,55Ом, а сопротивление вольтметра 700Ом?                                            Дано:                                                                  Решение:


Ошибка незначительная, ею можно пренебречь и считать, что вольтметр измеряет ЭДС.

Задание 2.

На рисунке изображена электрическая цепь. Определить показания амперметра и вольтметра для положений 1 и 2 переключателя П. ЭДС источника 1,5В, его внутреннее сопротивление г = 0,5Ом, сопротивление R = 2,50м. Сопротивление амперметра и подводящих проводников ничтожно мало, а сопротивление вольтметра очень велико. Каковы будут показания амперметра и вольтметра, если переключатель окажется на контакте 3?

Положение 1:

Положение 2:

Положение 3:

Задание 3.

Используя источник тока, вольтметр, амперметр, реостат, ключ и соединительные провода, измерить ЭДС и внутреннее сопротивление источника тока.


Физическая пауза: Это Интересно!

Как вы думаете, какое напряжение может представлять опасность для жизни человека? (Подсказка: опасная для жизни человека сила тока равна 0,05 А). Сопротивление человеческого тела между его руками изменяется в зависимости от его самочувствия, опускаясь до 800Ом. Следовательно, человек может погибнуть при напряжении уже в 40В! С током лучше не шутить! Лидеры групп докладывают о выполнении заданий и комментируют задачу, используя слайды.

Домашнее задание:

Реостат сопротивлением R.2=20 Ом включен в цепь, как показано на рисунке. ЭДС батареи 4,5В, ее внутреннее сопротивление г = 0,5 Ом; сопротивление R1=10,5 Ом. Определить показания амперметра и вольтметра, когда ползунок включает:
а) 0,2 сопротивления реостата;
б) 0,7 сопротивления реостата.

     

ЭДС. Закон Ома для полной цепи.

Если свободные заряды перемещаются в электрической цепи по замкнутой траектории, то такую цепь называют

полной или замкнутой.

При этом на каждом из участков такой цепи работа электростатических сил переходит в тепловую, механическую или энергию химических связей. Так как работа электростатических сил, перемещающих заряд по замкнутой траектории, всегда равна нулю, то только силы электростатического поля не могут обеспечить постоянное движение зарядов по замкнутой траектории.

Чтобы электрический ток в замкнутой цепи не прекращался, необходимо включить в неё источник тока (см. рис. а), внутри которого перемещение свободных зарядов происходило бы не под действием электростатических сил, а при участии любых других сил, называемых

сторонними. Сторонние силы – силы неэлектростатического происхождения, действующих на заряды со стороны источника тока. Природа сторонних сил может быть различной (кроме неподвижных зарядов):

1) химические реакции – в гальванических элементах (батарейках), аккумуляторах (сторонние силы возникают в результате химических реакций между электродами и жидким электролитом),

2) электромагнитной – в генераторах. При этом генераторы могут использовать а) механическую энергию – ГЭС, б) ядерную – АЭС, в) тепловую – ТЭС, г) приливов и отливов – ПЭС, д) ветровую – ВЭС и т.д. (силы, действующие на свободные заряды, перемещающиеся в магнитном поле).

3) использование фотоэффекта – фото-ЭДС в калькуляторах и солнечных батареях (в фотоэлементах сторонние силы возникают при действии света на электроны атомов, входящих в состав некоторых веществ),

4) пьезоэффект – пьезо-ЭДС, например, в пьезозажигалках,

5) контактная разность потенциалов – термо-ЭДС в термопарах и т.д.

Например, в цепи на рис. а, свободные заряды, перемещаются от тела А к телу Б под действием электростатических сил, а сторонние силы источника питания заставляют их возвращаться обратно – от Б к А.

Сторонние силы в источнике тока разделяют разноимённые электрические заряды друг от друга, совершая работу против электростатических (кулоновских сил). Контакт (полюс) источника тока, где в результате действия сторонних сил накапливается положительный заряд, называют положительным, а противоположно заряженный полюс – отрицательным, обозначая их так, как изображено на рис.

б. Очевидно, что чем больший заряд накопится на полюсе источника тока, тем больше работы совершили сторонние силы по разделению зарядов, т.к. работа против кулоновских сил прямо пропорциональна величине заряда. Поэтому  отношение работы, Аст, сторонних сил, перемещающих заряд q внутри источника тока от отрицательного полюса к положительному, не зависит от величины заряда и служит характеристикой источника тока, называемой электродвижущей силой (ЭДС) источника,

.

 

Как и разность потенциалов, ЭДС в СИ измеряют в вольтах.

Сопротивление источника тока или внутреннее сопротивление тоже является его важной характеристикой. Внутренним сопротивлением гальванического элемента, например, является сопротивление электродов и электролита, находящегося между ними. Внешним участком замкнутой цепи называют её участок, подсоединённый снаружи к источнику тока (см. рис. а).

Чтобы определить, как зависит сила тока от ЭДС источника в цепи, изображённой на рис. а, нарисуем эквивалентную схему (см. рис. в), где R соответствует сопротивлению проводника между А и Б, (внешняя цепь), а r – внутреннему сопротивлению источника тока. Согласно закону Джоуля-Ленца работа  Аполн тока, протекающего по замкнутой цепи, за интервал времени t равна: Аполн = I2.R.t + I2.r.t .  Из закона сохранения энергии следует, что работа тока должна быть равна работе сторонних сил Астор = Ɛ.q = Ɛ.It . Приравняв Аполн и Астор, получаем следующее выражение для 

которое называют законом Ома для полной цепи.

1) Напряжение на зажимах источника, а соответственно и во внешней цепи

где величина Irпадение напряжения внутри источника тока.

2) Если внешнее сопротивление замкнутой цепи равно нулю, то такой режим источника тока называется коротким замыканием.

3) Для полной цепи закон Джоуля-Ленца

Легко показать, что, если полная цепь содержит несколько последовательно соединённых источников тока, то для вычисления силы тока следует вместо Ɛ взять алгебраическую сумму ЭДС всех этих источников, выбрав какое-нибудь направление обхода цепи, например, по часовой стрелке (рис. г). Если при таком обходе мы идём от положительного полюса источника тока к отрицательному, то ЭДС данного источника следует суммировать со знаком минус.  

  Более подробную информацию смотри ЗДЕСЬ.

Соединение проводников Закон Ома для полной цепи Электродвижущая сила

Урок № 36-169 Соединение проводников. Закон Ома для полной цепи. Электродвижущая сила. Д/з: 8.6; п.8.7; п.8.9 [1]

1. Соединение проводников.

1.1 Последовательное – соединение, при котором конец предыдущего проводника соединяется с началом последующего.

При последовательном соединении: I1=I2 (если ток постоянен, то за время t через любое сечение проводника протекают одинаковые заряды)

U=U1+U2 (работа электростатических сил при перемещении единичного заряда по участкам 1 и 2 равна сумме работ на этих участках).

Эквивалентный проводник (сопротивление) – проводник, заменяющий группу проводников (сопротивлений) без изменения токов и напряжений на рассматриваемом участке цепи.

По закону Ома: U=IR, т.е. U1=IR1; U2=IR2; IR=IR1+IR2= I(R1+R2) , т.е R= R1+R2 или иначе R=

Частный случай: R1= R2=…=Rn , тогда R=nR, где n – число проводников с одинаковым сопротивлением.

При последовательном соединении эквивалентное сопротивление всей цепи равно сумме сопротивлений отдельных участков цепи. Поскольку I1=I2; I1=; I2 =; то U1=I1R1 а U2=I2R2 следовательно, =
При последовательном соединении проводников напряжение, действующее на проводниках, прямо пропорционально их сопротивлениям.

Недостаток: при размыкании цепи у одного из последовательно соединенных потребителей ток исчезает по всей цепи (неудобно па практике).

1.2 Параллельное – соединение, при котором начала проводников соединяют в один узел, а концы – в другой.

U=U1=U2; I= I1=I2 По закону Ома: I= I1=; I2=, т.е. =+=+ или = ; q =q1+ q2

Проводимость всего разветвления (все вместе параллельно соединенные проводники) равна сумме проводимостей отдельных ветвей (каждый параллельно соединенный проводник).

Частный случай: R1= R2=…=Rn , тогда R=, где n – число проводников с одинаковым сопротивлением.

Из соотношений U1=U2;U1=; U2= следует, что =- при параллельном соединении проводников силы токов в ветвях обратно пропорциональны их сопротивлениям.

Преимущество: если напряжение между узлами остается постоянным, то токи в ветвях не зависят друг от друга

2.Закон Ома для полной цепи

Полная цепь содержит:

внешний участок – потребитель тока, регулирующие, контролирующие и т. п. устройства с общим сопротивлением R

– внутренний участок – источник тока с эдс ε и с внутренним сопротивлением г (сопротивление, которым обладает источник электрической энергии, т. к. является проводником, ток выделяет в нем тепло).

Рассмотрим замкнутую цепь, состоящую из внешней части, имеющей сопро­тивление R, и внутренней — источника тока, сопротивление которого г.

Согласно закону сохранения энергии, ЭДС источника тока равна сумме падений напряжений на

внешнем и внутреннем участках цепи, так как при перемещении по замкнутой цепи заряд возвращается в исходное положение — в точку с тем же потенциалом (т. е. φА = φ В): ε = IR+Ir,

где IR и Ir — падения напряжения на внешнем и внутреннем участках цепи. Отсюда закон Ома для полной цепи:

I=

Закон Ома для полной цепи: сила тока цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивле­ния источника.

3.ЭДС Действие сторонних сил характеризуется физической величиной, называемой электродвижущей силой ( ЭДС)

Электродвижущая сила в замкнутом контуре представ­ляет собой отношение работы сторонних сил при пере­мещении заряда вдоль контура к заряду: ε=

Если на батарейке написано 1,5 В, то это означает, что сторонние силы (хи­мические в данном случае) совершают работу 1,5 Дж при перемещении заряда в 1 Кл от одного полюса батарейки к другому. Постоянный ток не может существовать в замк­нутой цепи, если в ней не действуют сторонние силы, т. е. нет ЭДС.

ЭДС, как и сила тока,- величина алгебраическая. Если ЭДС способствует дви­жению положительных зарядов в

выбранном направлении, то она считается по­ложительной (ε > 0). Если ЭДС препятствует движению положительных заря­дов в выбранном направлении, то она считается отрицательной (ε

Следует иметь в виду, что данной формулой можно пользоваться лишь тогда, когда ток идет внутри источника от отрицательного полюса к положительному, а во внешней цепи — от положительного к отрицательному.

3. Соединение источников электрической энергии в батарею.

3.1. Последовательное соединение. “+” полюс предыдущего источника соединяется с”—” полюса последующего. Закон Ома для всей цепи при последовательном соединении. I =

3.2. Параллельное соединение. “+” полюс присоединяют к одной клемме,

а “—” полюс – к другой. Закон Ома для всей цепи при параллельном

соединении: I =

3.3 Смешанное соединение. Закон Ома для всей цепи при смешанном соединении:

I =

Экзаменационные вопросы

28. Рассчитать общее сопротивление соединения резисторов, если R1=2 Ом, R2=3 Ом

А. 1,2 Ом Б. 5,2 Ом В. 5 Ом

29. Рассчитать общее сопротивление соединения резисторов, если R1=2 Ом, R2=3 Ом

А. 1,2 Ом Б. 5,2 Ом В. 5 Ом

30. Рассчитать общее сопротивление соединения резисторов,

если R1=2 Ом, R2=3 Ом, R3=4 Ом А. 1,2 Ом Б. 5,2 Ом В. 5 Ом

31. Какая физическая величина определяется отношением работы, совершаемой сторонними силами при перемещении заряда q по всей замкнутой электрической цепи, к значению этого заряда?

А. Сила тока. Б. Напряжение. В. Электрическое сопротивление. Г. Удельное электрическое сопротивление. Д. Электродвижущая сила.

32. Какая из приведенных ниже формул выражает закон Ома для полной цепи?

А. I =; Б. I = ; В. IUΔt; Г. P=UI; Д. ρ = ρ0(1+α t).

33. Источник тока с ЭДС 18 В имеет внутреннее сопротивление 30 Ом. Какое значение будет иметь сила тока при подключении к этому источнику резистора с электрическим сопротивлением 60 Ом? А. 0,6 А. Б. 0,3 А. В. 0,2 А. Г. 0,9 А.Д. 0,4 А.

Задачи

№ 1. Гальванический элемент с ЭДС 5,0 В и внутренним сопротивлением равным 0,2 Ом замкнут на проводник сопротивлением 40,0 Ом. Чему равно напряжение U на этом проводнике?

№ 2 В сеть с напряжением 220 В включены последовательно две электрические лампы

сопротивлением 200 Ом каждая. Определить силу тока, проходящего через каждую лампу.

№ 3 Найти общее сопротивление участка цепи, изображенной на рисунке,

если R1=20 Ом, R2=R.3=R4=15 Ом, R5=3 Ом, R6=90 Ом.

№ 4. Даны четыре резистора по 60 Ом каждый. Начертить схемы соединений всех четырех резисторов, чтобы общее сопротивление оказалось равным соответственно: 15, 45, 60, 80, 150 и 240 Ом. Возле каждой схемы написать расчет общего сопротивления.

№ 5. ЭДС источника электрической энергии равна 100 В. При внешнем сопротивлении 49 Ом сила тока в цепи

2 А. Найти падение напряжения внутри источника и его внутреннее сопротивление.

№ 6. Разность потенциалов на клеммах разомкнутого источника тока 4 В. Определить внутреннее сопротивление источника тока, если при сопротивлении внешнего участка цепи 4 Ом сила тока равна 0,8 А.

№ 7.Источник тока с ЭДС 220 В и внутренним сопротивлением 2 Ом замкнут проводником сопротивлением 108 Ом. Определить падение напряжения внутри источника тока.

№ 8. Определить ЭДС и внутреннее сопротивление источника тока, если при внешнем сопротивлении 3,9 Ом сила тока в цепи равна 0,5 А, а при внешнем сопротивлении 1.9 Ом сила тока равна 1 А.

№ 9. Определить силу тока при коротком замыкании батареи с ЭДС 12 В, если при замыкании ее на внешнее сопротивление 4 Ом сила тока в цепи равна 2 А. Почему при коротком замыкании падение напряжения на внешнем участке цепи близко к нулю, хотя в этом случае в цепи существует наибольший ток?

№ 10. ЭДС источника тока равна 220 В, внутреннее сопротивление 1,5 Ом. Какое надо взять сопротивление внешнего участка цепи, чтобы сила тока была равна 4 А?

/promo/fra/

Закон Ома для полной цепи

«Требуются очень глубокие знания,

чтобы заметить простейшие, но

подлинные отношения вещей между собой»

Георг Лихтенберг

В данной теме рассмотрим решение задач на закон Ома для полной цепи.

Задача 1. К источнику с ЭДС 6 В подключают лампочку с сопротивлением 10 Ом. Когда к лампочке подключили вольтметр, оказалось, что напряжение на ней равно 5 В. Найдите внутреннее сопротивление источника.

ДАНО:

РЕШЕНИЕ

Запишем закон Ома для участка цепи

И закон Ома для полной цепи

Преобразуем эти два выражения, используя основное свойство пропорции.

Теперь ясно видно, что разность между ЭДС и напряжением на лампочке равна произведению силы тока и внутреннего сопротивления источника

Ответ: 2 Ом.

Задача 2. ЭДС источника равна 12 В. Каково напряжение на полюсах источника, если внутреннее сопротивление источника равно половине внешнего сопротивления цепи?

ДАНО:

РЕШЕНИЕ

Запишем закона Ома для полной цепи

Напряжение на полюсах источника равно разности между ЭДС и суммой падений напряжений в цепи

Ответ: 4 В.

Задача 3. К источнику ЭДС подключили электрический элемент, вольт-амперная характеристика которого задана уравнением , причём U > 0. Если ЭДС источника равна 10 В, а внутреннее сопротивление составляет 1 Ом, каково напряжение на подключенном элементе?

ДАНО:

РЕШЕНИЕ

Запишем закона Ома для полной цепи

Запишем закон Ома для участка цепи

Преобразуем закон Ома для полной цепи

Согласно условию задачи вольт-амперная характеристика имеет вид

Тогда получаем

Получили стандартное квадратное уравнение. Найдем дискриминант

Тогда корни квадратного уравнения равны

По условию задачи U > 0.

Ответ:

Задача 4. Источник тока с ЭДС 25 В и внутренним сопротивлением 2,5 Ом замкнут на элементе с сопротивлением R. Постройте графики зависимости напряжения на элементе и силы тока в цепи от сопротивления R.

ДАНО:

РЕШЕНИЕ

Запишем закона Ома для полной цепи

Подставив числовые данные, получим функцию зависимости и от R

Как видно из этой функции, сила тока в цепи обратно пропорциональна сопротивлению элемента (то есть, график будет гиперболический).

Для того чтобы построить график, необходимо рассмотреть крайние случаи. Например, когда элемент замыкается накоротко, сопротивление R = 0, и в цепи течёт ток короткого замыкания, равный

Это максимальное возможное значение силы тока для данной цепи. Если же представить, что сопротивление

Запишем закон Ома для участка цепи

Используя закон Ома для полной цепи, преобразуем полученное выражение

При нулевом сопротивлении, напряжение на элементе будет равно нулю. А при бесконечно большом сопротивлении

Тогда графики зависимостей будут иметь вид

Задача 5. На схеме указана цепь с двумя источниками, внутреннее сопротивление каждого из которых равно 1 Ом. Сопротивления резисторов и ЭДС источников указаны на схеме. Найдите ток в каждом резисторе.

ДАНО:

РЕШЕНИЕ

Полная ЭДС цепи

Для того чтобы определить, является ли ЭДС положительной или отрицательной, необходимо обозначить направление обхода тока. Известно, что условно принято считать, что ток течёт от положительного полюса к отрицательному. Исходя из этого, направление тока от  совпадает с направлением обхода, а направление тока от  противоположно направлению обхода. Тогда

При последовательном соединении

При параллельном соединении

Запишем закон Ома для полной цепи

При параллельном соединении

Запишем закон Ома для участка цепи

Тогда

Ответ:

Закон Ома для полной цепи | Полезные статьи

Вывод закона Ома для полного участка цепи.

Возьмем источник постоянного тока, состоящий из сосуда с серной кислотой и помещёнными в него цинковым и угольным электродами. Цинк отдаёт в кислоту двухвалентные ионы, становясь согласно закону сохранения заряда отрицательно заряженным. Для рассмотрения закона Ома для полной цепи на участке между электродами помещается резистор, замыкающий цепь, что приводит к появлению постоянного электрического тока –  избыток электронов цинка начнёт движение в угольный электрод. В ходе химической реакции совершается работа А по переносу заряда q. Её целесообразно выразить через ЭДС:

ε = A/q

Кроме того, по закону сохранения энергии работа расходуется на выделение тепла Q в нагрузке и в самом источнике:

A = Q

Количество теплоты согласно закону Джоуля-Ленца для источника и нагрузки:

Q = I²• r • t, где r – сопротивление источника
и 
Q = I²• R • t, где R – сопротивление нагрузки.

Выразим количество электричества (заряд) через силу тока:

q = I • t

Для вывода закона Ома продолжаем преобразования и получаем ЭДС для полной цепи:

ε • I • t = I²• r • t + I²• R • t

ε = I•r + I•R – из этого выражения выводится формула закона Ома для полной цепи:

I = ε/(r+R)

Классическая формулировка закона Ома для полной цепи: сила тока полной цепи прямопропорциональна ЭДС источника и обратноспропорциональна полному сопротивлению цепи.

Обычно сопротивление источника значительно ниже сопротивления нагрузки: R ≫ r.  В таких случаях ε ≈ U, а формула принимает вид уравнения закона Ома для участка цепи: 

I = U/R.

Примечательно, что изначально принятые Георгом Омом символы отличаются от используемых сегодня.

Закон Ома для переменного тока.

Рис. 2. Модель идеализированной цепи переменного тока

В случае токов, подчиняющихся гармоническому закону, нагрузка проявляет ряд особенностей. В реальной цепи наравне с активной (резистивной) нагрузкой в той или иной степени обязательно присутствуют ёмкость и индуктивность, создавая колебательный контур. Эти элементы представляют собой реактивную составляющую нагрузки, расчёт которой несколько сложнее. 

Возьмем последовательную цепь из резистора, конденсатора и катушки в установившемся режиме, питающуюся от источника ЭДС с пренебрежимым сопротивлением (при этом e ≈ U), соединённую идеальными проводниками:
 

За основу векторной диаграммы возьмем ток, так как он одинаковый на всех элементах схемы. Напряжение на резисторе совпадает по направлению с током. В катушке появляется ЭДС индукции, противодействующая изменению напряжения, а в конденсаторе напряжение препятствует току, соответственно, фазы колебаний в них отличаются: в катушке напряжение опережает ток, в конденсаторе зависимость обратная: 

где ω – радиальная частота, равняющаяся 2πf, т. е. 100π при 50 Гц.

Результирующее напряжение согласно параллелограмму сил:

Емкостное сопротивление обозначается XС, а индуктивное XL. Полное сопротивление обозначается Z и называется импедансом. Для простоты его называют сопротивлением, учитывающим частоту.

Выразим отсюда полное сопротивление, т. е. сопротивление, определяющее активно-реактивный характер нагрузки:

Имея все параметры рассматриваемой модели в установившемся режиме можно записать закон Ома для полной цепи переменного тока в установившемся режиме:

разница с выражением для участка контура, определение, формула

Среди известных широкой общественности физических формул лидирует E=mc2. По популярности с ней может соперничать только U=IR. Это простое выражение имеет фундаментальное значение для электротехники и описывает математически соотношение между параметрами участка электрической цепи. Менее известен закон Ома для полной цепи, который рассматривает нагрузку неотделимо от источника напряжения.

Основные понятия

Электрический ток течёт, когда замкнутый контур позволяет электронам перемещаться от высокого потенциала к более низкому в цепи. Иначе говоря, ток требует источника электронов, обладающего энергией для приведения их в движение, а также точки их возвращения отрицательных зарядов, для которой характерен их дефицит. Как физическое явление ток в цепи характеризуется тремя фундаментальными величинами:

  • напряжение;
  • сила тока;
  • сопротивление проводника, по которому движутся электроны.

Сила и напряжение

Сила тока (I, измеряется в Амперах) есть объём электронов (заряд), перемещающихся через место в цепи за единицу времени. Иными словами, измерение I — это определение количества электронов, находящихся в движении. Важно понимать, что термин относится только к движению: статические заряды, например, на клеммах неподсоединённой батареи, не имеют измеряемого значения I. Ток, который протекает в одном направлении, называется постоянным (DC), а периодически изменяющий направление — переменным (AC).

Вольт — единица измерения, применяемая для электрической разницы потенциалов, самого потенциала и электродвижущей силы. Термин напряжение (U) относится к электрической разности потенциалов между точками. Любые статические заряды имеют значение в Вольтах, а величина их разности определяется как U.

Напряжение можно проиллюстрировать таким явлением, как давление, или как разность потенциальной энергии предметов под воздействием гравитации. Для того чтобы создать этот дисбаланс, нужно затратить предварительно энергию, которая и будет реализована в движении при соответствующих обстоятельствах. Например, в падении груза с высоты реализуется работа по его подъёму, в гальванических батареях разность потенциалов на клеммах образуется за счёт преобразования химической энергии, в генераторах — в результате воздействия электромагнитного поля.

Сопротивление проводников

Независимо от того, насколько хорош обычный проводник, он никогда не будет пропускать сквозь себя электроны без какого-либо сопротивления их движению. Можно рассматривать сопротивление как аналог механического трения, хотя это сравнение не будет совершенным. Когда ток протекает через проводник, некоторая разность потенциалов преобразуется в тепло, поэтому всегда будет падение напряжения на резисторе. Электрические обогреватели, фены и другие подобные устройства предназначены исключительно для рассеивания электрической энергии в виде тепла.

Упрощённо сопротивление (обозначается как R) является мерой того, насколько поток электронов тормозится в цепи. Оно измеряется в Омах. Проводимость резистора или другого элемента определяется двумя свойствами:

  • геометрией;
  • материалом.

Форма имеет важнейшее значение, это очевидно на гидравлической аналогии: протолкнуть воду через длинную и узкую трубу гораздо тяжелее, чем через короткую и широкую. Материалы играют определяющую роль. Например, электроны могут свободно перемещаться в медном проводе, но не способны протекать вообще через такие изоляторы, как каучук, независимо от их формы. Кроме геометрии и материала, существуют и другие факторы, влияющие на проводимость.

Закон для участка цепи

Существует фундаментальная связь между напряжением, током и проводимостью. Это знаменитое уравнение называется законом Ома, и его можно отобразить тремя эквивалентными способами:

Выраженный в словах он звучит так: ток, протекающий через проводник между двумя контактами, прямо пропорционален напряжению на этих контактах. Первые два выражения фиксируют константу пропорциональности между током и напряжением. Последнее можно рассматривать как определение для единичного резистора — элемента, позволяющего протекать единице тока под единичным напряжением.

Приведённые математические соотношения — основа для электротехники и электроники. Закон был назван в честь немецкого физика Георга Симона Ома, который в монографии, опубликованной в 1827 г., описал измерения приложенного напряжения и тока с помощью простых электрических цепей, состоящих из проводов различной длины.

Исследователь объяснил свои экспериментальные результаты несколько сложнее, чем отражено в приведённых уравнениях, известных в современной физике как неполный закон Ома. Для того чтобы сформулировать закон Ома для полной электрической цепи, необходимо оперировать понятиями внутреннего сопротивления источника тока и электродвижущей силы.

Электродвижущая сила

Перемещение электронов в любом источнике создаётся с помощью сторонних сил. Их природа может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов. В генераторах тока они появляются как результат движения проводников в магнитном поле. Источник тока в электрической схеме играет ту же роль, что и насос, перекачивающий жидкость в замкнутой гидравлической системе.

Под воздействием внешних сил заряды двигаются внутри источника тока против сил электростатического поля. Это позволяет поддерживать постоянный ток в замкнутом контуре до тех пор, пока работают внешние силы. Физическая величина, равная отношению затраченной энергии сторонних сил на перемещение заряда, называется электродвижущей силой источника тока. Она может быть представлена формулой ℰ = A/q. В этом выражении:

  • ℰ — ЭДС в вольтах;
  • A — работа в джоулях;
  • q — заряд в кулонах.

По аналогии с замкнутой гидравлической системой и насосом, электрические заряды протекают непрерывно по всему контуру, и привести их в движение могут только внешние силы. Это означает, что работу по перемещению заряда любым источником можно рассматривать как ЭДС и измерять в вольтах. Вывод о модели цепи с источником, в которой протекает ток, как о замкнутом контуре крайне важен для понимания закона Ома для полного участка цепи.

Внешнее и внутреннее сопротивление

Все батареи и генераторы обладают внутренним сопротивлением: электроды и электролиты неабсолютные проводники, как и провода обмоток электрических машин. Оно может варьироваться от тысячных долей ома до нескольких ом. Этот физический параметр является ключевым в законе Ома для всей цепи. В качестве математических моделей для рассмотрения и иллюстрации электрических процессов различают:

  • Идеальный источник тока (ИИТ). Генерирует электрический ток, не зависящий от изменений напряжения. Внутреннее сопротивление ИИТ бесконечно, напряжение полностью определяется подключённой схемой. Ни один физический источник тока не может работать в условиях разрыва цепи, поэтому ИИТ возможен только в качестве абстрактной модели.
  • Идеальный источник напряжения (ИИН). Представляет собой устройство, поддерживающее постоянное выходное напряжение независимо от тока, протекающего по контуру. Обладает нулевым внутренним сопротивлением. ИИН удобен для моделирования практических источников, которые можно представить как ИНН с подключённым резистором.

Внутренне сопротивление источника электрической энергии является фактором обеспечения максимальной мощности для подключённой к нему нагрузки. Наиболее эффективный перенос энергии происходит, когда внешнее сопротивление значительно превышает внутреннее у источника.

Например, свинцово-кислотные аккумуляторы автомобиля, благодаря низкому внутреннему сопротивлению, способны создавать относительно высокие токи при сравнительно низком напряжении. Однако, с другой стороны, высоковольтные источники должны иметь высокое внутренне сопротивление, чтобы ограничить количество тока, протекающего в результате случайного короткого замыкания.

Полный закон

Выражение U=IR описывает явления во фрагменте электрической цепи, через которую протекает ток. В этом уравнении не принимается во внимание наличие источников. Если исправить такое упрощение, то можно получить формулу закона Ома для полной цепи: ℰ =I (R+r).

В этом уравнении предусмотрено наличие в контуре источника питания электродвижущей силы ℰ c внутренним сопротивлением r. Поскольку ЭДС — практически величина, зависящая от внешних сил, то физический смысл имеет расчёт силы тока для полной цепи при помощи выражения: I=ℰ/(R+r).

Таким образом, полный постулат Ома гласит о зависимости силы тока в замкнутом контуре от внутреннего сопротивления его источника, то есть учитывает сопротивление электролита и электродов для гальванических элементов и проводимость обмоток генераторов. Основное практическое применение — расчёт силы тока в линейных электрических цепях DC, определение мощности и импеданса любых элементов цепи.

Закон

Ома для простых электрических цепей, Рон Куртус

SfC Home> Физика> Электричество>

Рона Куртуса (от 23 октября 2019 г.)

Закон Ома является наиболее фундаментальной формулой для простых электрических цепей . Он утверждает, что электрический ток, проходящий через проводник, прямо пропорционален разности потенциалов на проводнике. Впервые он был сформулирован в 1827 году немецким физиком Георгом Омом во время экспериментов по изучению того, насколько хорошо металлы проводят электричество.

Закон

Ома лучше всего демонстрируется в простой электрической цепи постоянного тока. Хотя это также относится к цепям переменного тока, необходимо учитывать другие возможные переменные.

Связь между током, напряжением и сопротивлением в цепи позволяет вычислить одну переменную, если вы используете значения двух других.

Вопросы, которые могут у вас возникнуть:

  • Что означают параметры в уравнении?
  • Какая конфигурация схемы?
  • Как применить закон Ома?

Этот урок ответит на эти вопросы.Полезный инструмент: Конвертация единиц



Уравнение

Закон

Ома показывает взаимосвязь между напряжением, током и сопротивлением в простой электрической цепи. Самая простая форма уравнения:

В = ИК

где:

  • V – напряжение в вольтах ( V )
  • I – ток в амперах или амперах ( A )
  • R – сопротивление в Ом ( Ом, – греческая буква Омега)

Таким образом, если вы знаете ток и сопротивление, вы можете использовать формулу для определения напряжения.

Используя алгебру, вы можете изменить порядок переменных в соответствии со своими потребностями. Например, если вы знаете напряжение и сопротивление и хотите найти ток, вы можете использовать:

I = V / R

Или, если вы знаете напряжение и ток и хотите найти сопротивление, вы можете использовать:

R = V / I

Конфигурация

Простая электрическая цепь состоит из металлических проводов, идущих к источнику питания и от него, а также источника сопротивления, такого как резисторы или электрическая лампочка, соединенных последовательно с источником.Типичным источником питания является батарея постоянного тока, хотя также может применяться генератор постоянного или переменного тока.

Примечание : Если цепь переменного тока включает в себя такие компоненты, как конденсаторы или катушки индуктивности, закон Ома не применяется.

Простая цепь постоянного тока

Используя уравнение

Важность закона Ома заключается в том, что, если вы знаете значение двух переменных в уравнении, вы можете определить третью. Вы можете измерить любой из параметров с помощью вольтметра.Большинство вольтметров или мультиметров измеряют напряжение, ток и сопротивление как переменного, так и постоянного тока.

Найти напряжение

Если вам известны ток и сопротивление, вы можете найти напряжение из В = I R . Например, если ток I = 0,2 А и сопротивление R = 1000 Ом , то

В = 0,2 А * 1000 Ом = 200 В

Найти текущий

Если вы знаете напряжение и сопротивление, вы можете использовать алгебру, чтобы изменить уравнение на I = V / R , чтобы найти ток.Например, если В = 110 В и R = 22000 Ом , то

I = 110 В / 22000 Ом = 0,005 А

Найдите сопротивление

Если вы знаете напряжение и ток, вы можете использовать алгебру, чтобы изменить уравнение на R = V / I , чтобы найти сопротивление. Если В = 220 В и I = 5 А , то

R = 220 В / 5 A = 44 Ом

Сводка

Закон Ома – это уравнение V = I R , которое показывает взаимосвязь между напряжением, током и сопротивлением в простой электрической цепи.Он может применяться как к цепям переменного, так и постоянного тока.


Будьте полны решимости сделать все возможное


Ресурсы и ссылки

Полномочия Рона Куртуса

Сайты

Немного истории об Ом – Краткая история

Закон Ома – Объяснение, включая калькулятор закона Ома

Основные электрические законы – Включает теорию схем

Формулы электрических цепей – Уравнения высокого уровня для решения проблем

Электроэнергетические ресурсы постоянного и переменного тока

Физические ресурсы

Книги

Научитесь электричеству и электронике Стэна Гибилиско; Макгроу-Хилл; (2001) 34 доллара.95 – Руководство для профессионалов, любителей и техников, желающих изучить цепи переменного и постоянного тока


Вопросы и комментарии

Есть ли у вас какие-либо вопросы, комментарии или мнения по этой теме? Если да, отправьте свой отзыв по электронной почте. Я постараюсь вернуться к вам как можно скорее.


Поделиться страницей

Нажмите кнопку, чтобы добавить эту страницу в закладки или поделиться ею через Twitter, Facebook, электронную почту или другие службы:


Студенты и исследователи

Веб-адрес этой страницы:
www.school-for-champions.com/science/
electric_ohms_law.htm

Пожалуйста, включите его в качестве ссылки на свой веб-сайт или в качестве ссылки в своем отчете, документе или тезисе.

Авторские права © Ограничения


Где ты сейчас?

Школа чемпионов

Физические темы

Закон Ома для простых электрических цепей

Закон Ома: что это такое и почему это важно?

Обновлено 28 декабря 2020 г.

Ли Джонсон

Электрические цепи повсеместно встречаются в нашей повседневной жизни.От сложных интегральных схем, управляющих устройством, которое вы читаете в этой статье, до проводки, которая позволяет вам включать и выключать лампочку в вашем доме, вся ваша жизнь была бы радикально другой, если бы вы не были окружены цепями повсюду. ты иди.

Но большинство людей на самом деле не изучают мельчайших деталей того, как работают схемы, и довольно простые уравнения, такие как закон Ома, которые объясняют взаимосвязь между ключевыми понятиями, такими как электрическое сопротивление, напряжение и электрический ток.Однако более глубокое погружение в физику электроники может дать вам гораздо более глубокое понимание основных правил, лежащих в основе большинства современных технологий.

Что такое закон Ома?

Закон Ома – одно из самых важных уравнений, когда дело доходит до понимания электрических цепей, но если вы собираетесь его понять, вам понадобится хорошее понимание основных понятий, которые он связывает: напряжение , ток и сопротивление . Закон Ома – это просто уравнение, которое описывает соотношение между этими тремя величинами для большинства проводников.

Напряжение – это наиболее часто используемый термин для обозначения разности электрических потенциалов между двумя точками, который обеспечивает «толчок», который позволяет электрическому заряду перемещаться по проводящей петле.

Электрический потенциал – это форма потенциальной энергии, подобная гравитационной потенциальной энергии, и определяется как электрическая потенциальная энергия на единицу заряда. Единицей измерения напряжения в системе СИ является вольт (В), а 1 В = 1 Дж / Кл, или один джоуль энергии на кулон заряда. Иногда его также называют электродвижущей силой , или ЭДС.

Электрический ток – это скорость протекания электрического заряда через заданную точку в цепи, которая имеет ампер (А) в системе СИ, где 1 А = 1 Кл / с (один кулон заряда в секунду). Он поставляется в форме постоянного (DC) и переменного (AC) тока, и хотя постоянный ток проще, цепи переменного тока используются для подачи энергии в большинство домашних хозяйств по всему миру, потому что его проще и безопаснее передавать на большие расстояния.

Последняя концепция, которую вам нужно понять, прежде чем приступить к рассмотрению закона Ома, – это сопротивление, которое является мерой сопротивления току, протекающему в цепи.Единицей измерения сопротивления в системе СИ является ом (в котором используется греческая буква омега, Ом), где 1 Ом = 1 В / А.

Уравнение закона Ома

Немецкий физик Георг Ом описал взаимосвязь между напряжением, током и сопротивлением в своем одноименном уравнении. Формула закона Ома:

В = IR

, где В, – напряжение или разность потенциалов, I – величина тока, а сопротивление R – окончательная величина.

Уравнение можно легко переформулировать, чтобы получить формулу для расчета тока на основе напряжения и сопротивления или сопротивления на основе тока и напряжения. Если вам неудобно переставлять уравнения, вы можете найти треугольник закона Ома (см. Раздел “Ресурсы”), но это довольно просто для любого, кто знаком с основными правилами алгебры.

Ключевые моменты, которые показывает уравнение закона Ома, заключаются в том, что напряжение прямо пропорционально электрическому току (поэтому чем выше напряжение, тем выше ток), и этот ток обратно пропорционален сопротивлению (поэтому чем выше сопротивление, тем ниже электрический ток).

Вы можете использовать аналогию с потоком воды, чтобы запомнить ключевые моменты, которые основаны на трубе с одним концом на вершине холма и одним концом внизу. Напряжение похоже на высоту холма (более крутой и высокий холм означает большее напряжение), ток подобен потоку воды (вода течет быстрее по крутому склону), а сопротивление похоже на трение между сторонами трубы. и вода (более тонкая труба создает большее трение и снижает скорость потока воды, как более высокое сопротивление для электрического тока).

Почему важен закон Ома?

Закон Ома жизненно важен для описания электрических цепей, поскольку он связывает напряжение с током, а значение сопротивления регулирует взаимосвязь между ними. Из-за этого вы можете использовать закон Ома для управления величиной тока в цепи, добавляя резисторы, чтобы уменьшить ток, и снимая их, чтобы увеличить величину тока.

Его также можно расширить, чтобы описать электрическую мощность (скорость потока энергии в секунду), потому что мощность P = IV, и поэтому вы можете использовать ее, чтобы гарантировать, что ваша схема обеспечивает достаточно энергии, например, для 60-ваттного прибора.

Для студентов-физиков наиболее важным в законе Ома является то, что он позволяет анализировать принципиальные схемы, особенно когда вы объединяете его с законами Кирхгофа, которые следуют из него.

Закон Кирхгофа по напряжению гласит, что падение напряжения вокруг любого замкнутого контура в цепи всегда равно нулю, а закон тока утверждает, что величина тока, протекающего в переходе или узле в цепи, равна величине, вытекающей из Это. Вы можете использовать закон Ома с законом напряжения, в частности, для расчета падения напряжения на любом компоненте схемы, что является общей проблемой, возникающей в классах электроники.

Примеры закона Ома

Вы можете использовать закон Ома, чтобы найти любую неизвестную величину из трех, при условии, что вам известны две другие величины для рассматриваемой электрической цепи. Работа с некоторыми базовыми примерами показывает, как это делается.

Во-первых, представьте, что у вас есть 9-вольтовая батарея, подключенная к цепи с общим сопротивлением 18 Ом. Сколько тока течет при подключении цепи? Изменив закон Ома (или используя треугольник), вы можете найти:

\ begin {align} I & = \ frac {V} {R} \\ & = \ frac {9 \ text {V}} {18 \ текст {Ω}} \\ & = 0.5 \ text {A} \ end {align}

Итак, 0,5 ампер тока течет по цепи. А теперь представьте, что это идеальная величина тока для компонента, который вы хотите запитать, но у вас есть только батарея на 12 В. Какое сопротивление вы должны добавить, чтобы убедиться, что компонент получает оптимальную силу тока? Опять же, вы можете переставить закон Ома и решить его, чтобы найти ответ:

\ begin {align} R & = \ frac {V} {I} \\ & = \ frac {12 \ text {V}} {0.5 \ text {A}} \\ & = 24 \ text {Ω} \ end {align}

Итак, вам понадобится резистор 24 Ом, чтобы замкнуть вашу схему.Наконец, каково падение напряжения на резисторе 5 Ом в цепи с током 2 А, протекающим через нее? На этот раз стандартная форма закона V = IR работает нормально:

\ begin {align} V & = IR \\ & = 2 \ text {A} × 5 \ text {Ω} \\ & = 10 \ text {V} \ end {align}

Омические и неомические резисторы

Вы можете использовать закон Ома в огромном количестве ситуаций, но есть ограничения на его применимость – это не действительно фундаментальный закон физики. .Закон описывает линейную зависимость между напряжением и током, но эта зависимость сохраняется только в том случае, если резистор или резистивный элемент цепи, с которым вы работаете, имеет постоянное сопротивление при различных значениях напряжения В и тока I .

Материалы, которые подчиняются этому правилу, называются омическими резисторами, и хотя большинство физических проблем связано с омическими резисторами, вы знакомы со многими неомическими резисторами из своей повседневной жизни.

Лампочка – прекрасный пример неомического резистора.Когда вы строите график зависимости В от I для омических резисторов, он показывает полностью прямолинейную зависимость, но если вы сделаете это для чего-то вроде лампочки, ситуация изменится. По мере того как нить накала в лампе нагревается, сопротивление лампы увеличивается на , что означает, что график становится кривой, а не прямой линией, и закон Ома не действует.

Что такое закон Ома? Объяснение и ограничения закона Ома

Когда разность электрических потенциалов (В) приложена к проводнику, как показано на рисунке ниже, через него протекает некоторый ток (I) .Протеканию тока противостоит сопротивление проводника и цепи. Связь между напряжением, током и сопротивлением объясняется законом Ома.

Законы

Ома гласят, что ток через любые две точки проводника прямо пропорционален разности потенциалов, приложенной к проводнику, при условии, что физические условия, то есть температура и т. Д., Не изменяются. Оно измеряется в ( Ом, ) Ом.

Математически это выражается как

Другими словами, закон Ома также можно сформулировать как;

Отношение разности потенциалов в конечной точке проводника к току, протекающему между ними, всегда постоянно, но физические условия проводника i.е. температура и т. д. остаются такими же.

Эта постоянная также называется сопротивлением (R) проводника (или цепи)

Его можно записать как

В цепи, когда ток течет через резистор, разность потенциалов на резисторе известна как падение напряжения на нем, то есть В = IR.

Ограничения закона Ома

  • Закон Ома не применяется в односторонних сетях.Односторонние сети позволяют току течь в одном направлении. Такие типы сетей состоят из таких элементов, как диод, транзистор и т. Д.
  • Не применяется для нелинейной сети. В нелинейной сети параметр сети изменяется в зависимости от напряжения и тока. Их параметры, такие как сопротивление, индуктивность, емкость, частота и т. Д., Не остаются постоянными с течением времени. Так что закон Ома неприменим к нелинейной сети.

Закон Ома используется для определения сопротивления цепи, а также для определения напряжения и тока цепи.

Примеры закона

Ом – Сборка электронных схем

Обычно я не использую много математики при работе с электроникой, но закон Ома чрезвычайно полезен!

Закон был найден Георгом Омом и основан на том, как связаны напряжение, ток и сопротивление:

Посмотрите на рисунок выше и убедитесь, что для вас это имеет смысл:

  • Если вы увеличите напряжение в цепи при неизменном сопротивлении, вы получите больший ток.
  • Если вы увеличите сопротивление в цепи при неизменном напряжении, вы получите меньший ток.

Закон Ома – это способ описания взаимосвязи между напряжением, сопротивлением и током с использованием математики:

В = RI

  • В – обозначение напряжения.
  • I – обозначение тока.
  • R – символ сопротивления.

ОЧЕНЬ часто пользуюсь. Это формула электроники.

Вы можете переключить его и получить R = V / I или I = V / R. Если у вас есть две переменные, вы можете рассчитать последнюю.

Треугольник закона Ома

Вы можете использовать этот треугольник, чтобы запомнить закон Ома:

Как использовать:
Накройте рукой письмо, которое вы хотите найти.Если оставшиеся буквы лежат друг на друге, значит, верхнюю разделите на нижнюю. Если они рядом, значит, умножаются друг на друга.

Пример: Напряжение

Найдем формулу для напряжения:

Положите руку на V в треугольнике, затем посмотрите на R и I. I и R расположены рядом друг с другом, поэтому вам нужно умножить. Это означает, что вы получите:

В = I * R

Пример: сопротивление

Найдем формулу сопротивления:

Положите руку на R.Тогда вы увидите, что V находится над I. Это означает, что вам нужно разделить V на I:

.

R = V / I

Пример: Текущий

Найдем формулу для тока:

Положите руку на I. Затем вы увидите букву V над R, что означает разделение V на R:

I = V / R

Как запомнить закон Ома

Самый простой способ запомнить вещи – создать с ним глупую ассоциацию, чтобы вы запомнили это, потому что это так глупо.

Итак, чтобы помочь вам запомнить закон Ома, позвольте мне представить VRIIIIIIII! правило.

Представьте, что вы ведете машину очень быстро, а затем внезапно резко нажимаете на тормоза. Какой звук вы слышите?

«ВРИИИИИИИИИИИИ!»

И так можно запомнить V = RI;)

Практический пример

Лучший способ научить пользоваться им – это на собственном примере.

Ниже представлена ​​очень простая схема с батареей и резистором. Батарея представляет собой батарею на 12 вольт, а сопротивление резистора составляет 600 Ом.Сколько тока течет по цепи?

Чтобы найти величину тока, вы можете использовать треугольник выше к формуле для тока: I = V / R. Теперь вы можете рассчитать ток, используя напряжение и сопротивление:

I = 12 В / 600 Ом
I = 0,02 A = 20 мА (миллиампер)

Значит ток в цепи 20 мА.

Если вы не любите вычислять самостоятельно, воспользуйтесь этим калькулятором закона Ома.

Другой пример

Попробуем еще один пример.

Ниже мы снова видим схему с резистором и батареей. Но на этот раз мы не знаем напряжение батареи. Вместо этого мы представляем, что измерили ток в цепи и обнаружили, что он составляет 3 мА (миллиампер).

Сопротивление резистора 600 Ом. Какое напряжение у АКБ?

Вспоминая «VRIIII!» правило, вы получаете:

В = RI
В = 600 Ом * 3 мА
В = 1,8 В

Значит, напряжение АКБ должно быть 1.8 В.

Возврат от закона Ома к электронным схемам

Закон

Ом
  • Изучив этот раздел, вы должны уметь:
  • Опишите закон Ома для металлических проводников:
  • • Сопротивление, напряжение и ток.
  • Определить:
  • Ом, Ампер и Вольт.

Ом, вольт и ампер.

Сопротивление проводника измеряется в Омах, а Ом – это единица измерения, названная в честь немецкого физика Джорджа Симона Ома (1787–1854 гг.), Который первым показал взаимосвязь между сопротивлением, током и напряжением. При этом он разработал свой закон, который показывает взаимосвязь между тремя основными электрическими свойствами сопротивления, напряжения и тока. Он демонстрирует одну из самых важных взаимосвязей в электротехнике и электронной технике.

Закон Ома гласит: «В металлических проводниках при постоянной температуре и нулевом магнитном поле протекающий ток пропорционален напряжению на концах проводника и обратно пропорционален сопротивлению проводника.”

Проще говоря, при условии, что температура постоянна и электрическая цепь не подвержена влиянию магнитных полей, тогда:

• В цепи с постоянным сопротивлением, чем больше напряжение, приложенное к цепи, тем больше будет протекать ток.

• При подаче постоянного напряжения, чем больше сопротивление цепи, тем меньше будет протекать ток.

Обратите внимание, что закон Ома гласит: «В металлических проводниках». Это означает, что закон применим для большинства металлических материалов, но не для всех.Например, вольфрам, используемый для накаливания накала лампочек, имеет сопротивление, которое изменяется в зависимости от температуры нити, отсюда в законе Ома ссылка на «при постоянной температуре». В электронике также используются компоненты, которые имеют нелинейную зависимость между тремя электрическими свойствами: напряжением, током и сопротивлением, но их можно описать разными формулами. Для большинства схем или компонентов, которые можно описать законом Ома:

Вместо того, чтобы запоминать весь закон Ома, три электрических свойства напряжения, тока и сопротивления отдельными буквами:

Сопротивление обозначается буквой R и измеряется в единицах Ом, которые имеют символ Ω (греческая заглавная буква O).

Напряжение обозначается буквой V (или иногда E, сокращением от Electromotive Force) и измеряется в вольтах, которые имеют символ V.

Ток обозначается буквой I (не C, поскольку он используется для обозначения емкости) и измеряется в единицах ампер (часто сокращается до ампер), которые имеют символ A.

Используя буквы V, I и R для выражения отношений, определенных в Законе Ома, дает три простые формулы:

Каждый из них показывает, как найти значение любой из этих величин в цепи, если известны две другие.Например, чтобы найти напряжение V (в вольтах) на резисторе, просто умножьте ток I (в амперах) через резистор на значение резистора R (в омах).

Обратите внимание, что при использовании этих формул значения V I и R, записанные в формуле, должны быть в БАЗОВЫХ ЕДИНИЦАХ, то есть в ВОЛЬТАХ (не в милливольтах) в Омах (не в киломах) и в АМПЕРАХ (не в микроамперах) и т. Д.

Вкратце 15 кОм (килоом) вводится как 15 EXP 03, а 25 мА (миллиампер) вводится как 25 EXP-03 и т. Д. Это проще всего сделать с помощью научного калькулятора.

Как пользоваться калькулятором с инженерными обозначениями, широко используемыми в электронике, объясняется в нашем бесплатном буклете под названием «Подсказки по математике». Загрузите его со страницы загрузки.

Определение Ом, Ампера и Вольт

1 Ом

Может быть определено как «величина сопротивления, которая создает разность потенциалов (p.d.) или напряжение в 1 вольт на нем, когда через него протекает ток в 1 ампер».

1 АМПЕР

Может быть определено как «Величина тока, которая при прохождении через сопротивление 1 Ом создает разность потенциалов на сопротивлении 1 Вольт.«

(Хотя доступны более полезные определения ампера)

1 ВОЛЬТ

Можно определить как «Разность потенциалов (напряжений), возникающая на сопротивлении в 1 Ом, через которое протекает ток в 1 Ампер».

Эти определения относятся к Вольтам, Амперам и Ом в пределах величин, описанных в Законе Ома, но также могут использоваться альтернативные определения с использованием других величин.

ПОПРОБУЙТЕ ПРОСТЫЕ РАСЧЕТЫ, ИСПОЛЬЗУЯ Закон Ома.

Закон Ома – Инженерное мышление

Узнайте, как понять закон Ома, как он работает и как его использовать.

Также в конце статьи есть 2 задачи, которые вы можете проверить и решить.

Прокрутите вниз, чтобы просмотреть обучающее видео на YouTube.

Что такое закон Ома

Закон Ома – это соотношение между напряжением, током и сопротивлением и их взаимосвязь. Закон Ома был разработан немецким физиком по имени Георг Ом, который провел множество экспериментов для развития своей теории, включая измерение тока путем прикосновения к электрическим цепям, чтобы увидеть, насколько это больно.Чем больше ток, тем больнее.

Закон Ома Связь между напряжением, током и сопротивлением

Формулы закона Ома

Теперь есть три формулы, которые нам нужно использовать для определения закона Ома. НО нам не нужно помнить об этом, поскольку мы дадим вам очень простой совет буквально через мгновение.

Итак, мы используем три формулы:

  • Напряжение = Ток x Сопротивление
  • Ток = Напряжение / Сопротивление
  • Сопротивление = Напряжение / Ток
Три формулы, используемые для Закона Ома

не волнуйтесь, потому что вам не нужно их запоминать.Все, что вам нужно запомнить, – это треугольник Ома, который выглядит как на изображении ниже.

Итак, вам просто нужно запомнить три буквы в этом порядке, VIR. Затем просто запишите их в треугольник с буквой V вверху и проведите линию, разделяющую их.

На самом деле вам даже не нужно их запоминать, потому что мы сделали БЕСПЛАТНОЕ руководство в формате PDF с некоторыми рабочими примерами, которые вы можете сохранить на своем ПК или мобильном телефоне и получить к нему доступ в любое время. Щелкните здесь, чтобы загрузить

Теперь все, что мы делаем, когда нам нужно использовать формулу, – это прикрывать нужную нам букву.

Чтобы найти напряжение

Итак, если мы хотим найти напряжение, мы пишем V = и затем закрываем V в треугольнике, что оставляет нас с I и R. Итак, мы пишем I x R. Это означает, что напряжение = ток. умноженное на Сопротивление. Вы можете написать небольшой символ умножения в треугольнике между двумя буквами, если это вам поможет.

Найдите напряжение с помощью закона Ома

Мы знаем, о чем вы думаете. Почему ток представлен буквой I, а не C для тока или даже A для единицы измерения в амперах.Единицей измерения тока является ампер или ампер, названный в честь Андре Ампера, французского физика. Пару сотен лет назад он провел множество экспериментов, многие из которых включали изменение величины электрического тока, поэтому он назвал это интенсивностью куранта или силой тока. Поэтому, когда они опубликовали его работу, они взяли букву I, и она стала стандартом до сих пор.

Вы также можете встретить формулы, в которых буква E используется вместо V. E обозначает ЭДС или электродвижущую силу, но не беспокойтесь об этом, просто используйте V и замените V на E, если вы видите, что это используется в вопрос закона Ома.

Иногда «E» используется вместо «V» для закона Ома.

Покрывая V, мы получаем напряжение = ток, умноженный на сопротивление.

Чтобы найти ток

Если мы хотим найти ток, мы записываем I = и затем закрываем букву I. Это дает нам V и R, и поскольку V находится над R как дробь, мы можем написать V ÷ R Следовательно, ток равен напряжению, деленному на сопротивление.

Найти ток с помощью закона Ома

Найти сопротивление

Если мы хотим найти сопротивление, мы пишем R = и закрываем R, что оставляет нас с V и I, поэтому мы пишем V ÷ I, что дает нам сопротивление = напряжение, деленное на Текущий.

Найдите сопротивление с помощью закона Ома

Давайте рассмотрим несколько примеров использования этих формул. Во-первых, давайте посмотрим, как мы находим напряжение и как оно соотносится с другими частями.

Пример определения напряжения

Допустим, у нас есть простая электрическая цепь с батареей и резистором. Однако мы не знаем, какое напряжение у батареи. Сопротивление резистора составляет 3 Ом, и когда мы подключаем мультиметр к цепи, мы видим, что получаем значение 2 А.

Треугольник Ом

Нам нужно найти напряжение, поэтому, используя треугольник Ом, мы покрываем V и получаем V = I x R.Мы знаем, что сила тока составляет 2 ампера, поэтому мы записываем это значение и знаем, что сопротивление равно 3 Ом, поэтому мы записываем и это значение. Следовательно, 2А, умноженные на 3 Ом, дают нам 6 Вольт. Таким образом, батарея на 6 В.

Если вы хотите проверить свои ответы, воспользуйтесь нашим БЕСПЛАТНЫМ калькулятором закона Ома. Щелкните здесь .

Если мы удвоим напряжение, подключив две батареи по 6 В последовательно, мы получим 12 В. Если мы теперь подключим его к той же цепи, ток также удвоится с 2А до 4А.Если мы снова удвоим напряжение до 24 В, ток также удвоится до 8 А.

Какие здесь отношения? Мы видим, что ток прямо пропорционален напряжению.

Закон соотношения тока и напряжения по закону Ома

Помните; напряжение похоже на давление. Это толкающая сила в цепи. Он толкает электроны вокруг проводов, и мы помещаем такие предметы, как лампы, на пути электронов, поэтому они должны проходить через него, и это заставляет лампу загораться.

Удваивая напряжение, мы видим, что ток также удваивается, что означает, что поток электронов увеличивается по мере того, как мы прикладываем большее давление.Так же, как если мы используем насос большего размера, будет течь больше воды.

Пример определения тока

Допустим, теперь у нас есть лампа 3 Ом, подключенная к источнику питания 6 В. Чтобы найти ток, запишем I = и закроем I в треугольник. Это дает нам V ÷ R, поэтому ток равен напряжению, разделенному на сопротивление. Мы знаем, что напряжение составляет 6 В, а сопротивление – 3 Ом, поэтому ток равен 2 А, и это то, что мы видим с помощью мультиметра.

Треугольник в Омах

Кстати, если у вас нет мультиметра, мы настоятельно рекомендуем вам его приобрести, он необходим для поиска неисправностей, а также для повышения ваших знаний в области электротехники.Ниже есть несколько ссылок, по которым можно добраться и откуда.

Итак, мы увидели, что происходит, когда мы используем в цепи сопротивление 3 Ом. Но если мы удвоим сопротивление до 6 Ом, вставив в цепь еще одну лампу на 3 Ом, ток упадет вдвое до 1А.

Если мы снова удвоим сопротивление до 12 Ом, ток снова упадет вдвое до 0,5 А. Мы можем видеть это визуально, потому что лампы станут менее яркими по мере уменьшения тока из-за увеличения сопротивления.

Какие здесь отношения? Мы видим, что ток обратно пропорционален сопротивлению.Когда мы удвоим сопротивление, ток уменьшится вдвое. Если мы уменьшим сопротивление вдвое, ток удвоится.

Закон соотношения Ома Ток и сопротивление

Ток – это поток электронов или поток свободных электронов. Чтобы лампа засветилась, нам нужно протолкнуть через нее электроны. Как мы это делаем? Мы прикладываем напряжение к обоим концам. Напряжение толкает электроны. Атомы внутри медной проволоки имеют свободные электроны в своей валентной оболочке, что означает, что они могут очень легко перемещаться к другим атомам меди, и они будут естественным образом перемещаться к другим атомам сами по себе, но в случайных направлениях, которые нам не нужны.Чтобы лампа включилась, нам нужно, чтобы много электронов текло в одном направлении. Когда мы подключаем источник напряжения, мы используем давление батареи, чтобы протолкнуть электроны по цепи в одном и том же направлении.

Например, для питания этой резистивной лампы на 1,5 Ом с батареей на 1,5 В требуется 1 ампер тока, который равен (6 242 000 000 000 000 000) шести квинтиллионам двумстам сорока двум квадриллионам электронов, проходящих от батареи через лампу каждую секунду. , чтобы лампа оставалась включенной на полную мощность.Если напряжение или ток уменьшатся или сопротивление цепи увеличится, лампа станет тусклее.

Пример определения сопротивления

Допустим, у нас есть резистивная лампа, подключенная к источнику питания 12 В. Мы не знаем, какое сопротивление он добавляет к цепи, но мы измеряем ток как 0,5 А.

Закон Ома сопротивления

Чтобы найти сопротивление, мы записываем R = и закрываем R на треугольнике. Остались V и I, поэтому сопротивление = напряжение, деленное на ток. Мы знаем, что напряжение составляет 12 В, а ток равен 0.5А, то есть 12, разделенное на 0,5, дает нам сопротивление 24 Ом.

Сопротивление – это противодействие потоку электронов. Он пытается помешать течению электронов. Вот почему мы используем резисторы в цепях, чтобы уменьшить ток и защитить такие компоненты, как светодиод. Если мы попытаемся подключить светодиод напрямую к батарее 9 В, он перегорит, потому что напряжение и ток слишком высоки. Но когда мы добавляем резистор в схему, они уменьшаются, поэтому светодиод защищен и будет ярко светить.

Итак, в схеме мы можем увеличить ток, увеличивая напряжение, или мы можем также увеличить ток, но уменьшив сопротивление. Мы также можем уменьшить ток, увеличив сопротивление.

Обзор закона Ома

Проверьте свои навыки

Сможете ли вы решить эти проблемы?

Проблема 1) Допустим, у нас есть лампа с сопротивлением 240 Ом. Если мы подключим его к розетке в США, где используется напряжение 120 В, какой будет ток?

Проблема 1

Проблема 2) Если я подключу ту же лампу с резистором 240 Ом к розетке в Великобритании, мы получим ток 0.958A, так какое напряжение подается?

Задача 2

Решения

Задача 1) Для определения тока мы используем формулу I = V ÷ R. Мы знаем, что сопротивление R равно 240 Ом, и мы знаем, что напряжение V равно 120 В, поэтому мы опускаем эти числа в формулу, чтобы получить
I = V ÷ R
I = 120 В ÷ 240 Ом
I = 0,5 A

Задача 2) Для определения напряжения мы используем формулу V = I x R. Мы знаем, что ток (I) равен 0,958 A, а сопротивление (R) составляет 240 Ом, поэтому мы опускаем эти числа в формулу, чтобы получить
V = I x R
V = 0.958A x 240 Ом
В = 229,9 В (~ 230 В)


Как применять закон Ома – Jade Learning

Как применять закон Ома

Автор: Вес Губиц | 07 августа 2019 г.

Электроэнергия работает в предсказуемых пределах. Мы пришли к выводу, что эти границы являются законом Ома. Закон Ома был разработан как средство объяснения того, как электричество работает в замкнутой цепи. Формула закона Ома помогает установить взаимосвязь между различными свойствами в электрической цепи.Мы можем использовать закон Ома, чтобы объяснить, что произошло, а также что произойдет, когда на электрическую цепь накладываются определенные условия.

Основные свойства электрической цепи: Напряжение, ток и сопротивление . Они специфичны, определены и не меняются – при условии, что все свойства остаются постоянными. Однако измените значение только одного из этих свойств, и все свойства изменят значение соответствующим образом.

Закон Ома – это самая основная из электрических формул, он был разработан путем простого наблюдения за свойствами электричества в электрической цепи.Электричество ведет себя иначе из-за ограничений, налагаемых формулой закона Ома; формула просто представляет наши наблюдения за поведением, уже происходящим в электрической цепи.

Хотя закон Ома – всего лишь вводная ступенька на лестнице электротехники, для понимания того, как закон Ома как формула применяется к простой цепи, необходимо базовое понимание электрической цепи. Простая схема состоит из источника питания, нагрузки, проводов, устройства максимального тока и устройства управления.Ток будет течь в этой простой цепи, если имеется достаточное напряжение, чтобы преодолеть любое сопротивление цепи.
Напряжение считается давлением в электрической цепи; это уместно называется электродвижущей силой. Это давление или «сила» вызывается разными электрическими полюсами, которые хотят уравновесить себя. Толчок и притяжение, наложенные на электроны в проводнике, подключенном к этим разным полюсам, заставят электроны двигаться, если для них существует полный путь.Единственное, что может остановить движение электронов, – это приложенное сопротивление сверх того напряжения, которое заставляет их двигаться, или разрыв цепи, который нарушает поток этих электронов. Требуется один вольт (В) этой электродвижущей силы, чтобы протолкнуть один ампер (А) тока через один ом (Ом) сопротивления – это закон Ома. Напряжение (E или V) равно току (I), умноженному на сопротивление (R). Или, другими словами, E (или V) = IR.

Символы

  • Вольт (E или V) = электродвижущая сила, опять же, это давление, которое заставляет электроны перемещаться по проводнику (и через нагрузку) в замкнутой цепи.
  • Ток (I) = интенсивность, представляет ток, протекающий в цепи. Помните, что «интенсивность» тока в цепи измеряется в амперах.
  • Сопротивление (R) = Ом, сопротивление току. Сопротивление может быть преднамеренным или случайным, но в любом случае оно является противодействием свободному току в цепи и отображается на вашем электрическом счетчике в виде Ом. Нулевое сопротивление или близкое к нему означает буквально отсутствие сопротивления току. Медь имеет очень низкое значение сопротивления на фут и является высококачественным материалом для создания эффективных проводников.

Оставить комментарий