Значения производной функции: Значение производной функции в точке по графику

Содержание

Наименьшее значение функции по графику производной

Рассмотрим примеры, в которых дан график производной и требуется определить, в какой точке данного отрезка функция принимает наименьшее значение.

№1

На рисунке изображён график производной функции f(x), определённой на интервале (-10;8). В какой точке отрезка [-8;-1] функция f(x) принимает наименьшее значение?

Решение:

Выделяем отрезок [-8;-1].

На этом отрезке производная f'(x) принимает положительные значения.

Значит, на [-8;-1] функция f(x) возрастает, то есть бо́льшему значению аргумента соответствует бо́льшее значение функции:

x1,x2 ∈[-8;-1], x2>x1, ⇒ f(x2)>f(x1).

Следовательно, наименьшее значение f(x) принимает при наименьшем значении аргумента, то есть на левом конце отрезка, при x=-8.

Ответ: -8.

№2

На рисунке изображён график производной функции f(x), определённой на интервале (-6;8).

В какой точке отрезка [-3;6] функция f(x) принимает наименьшее значение?

Решение:

Выделяем отрезок [-3;6].

На этом отрезке f'(x)<0, поэтому f(x) убывает, то есть бо́льшему значению аргумента соответствует меньшее значение функции:

x1,x2 ∈[-3;6], x2>x1, ⇒ f(x2)<f(x1).

Поэтому наименьшее значение функция f(x) в этом случае принимает при наибольшем значении аргумента, то есть на правом конце отрезка, при x=6.

Ответ: 6.

№3

Функция y=f(x) определена на промежутке (-9;6). На рисунке изображён график её производной. Найти абсциссу точки, в которой функция y=f(x) принимает наименьшее значение.

Решение:

В точке с абсциссой x=2 производная меняет знак с минуса на плюс.

Значит, x=2 — точка минимума.

Производная f'(x) существует на всём интервале (-9;6), следовательно, функция f(x) на (-9;6) непрерывна.

Если непрерывная функция f(x) имеет на заданном интервале (a;b) только одну точку экстремума xo и это точка минимума, то на (a;b) функция принимает своё наименьшее значение в точке xo.

Таким образом, наименьшее значение функция f(x) принимает в точке с абсциссой x=2.

Ответ: 2.

№4

Функция y=f(x) определена и непрерывна на отрезке [-4;9]. На рисунке изображён график её производной. Найти точку xo, в которой функция принимает наименьшее значение, если f(9)≤f(-4).

Решение:

На промежутках (-4;-3) и (2;9) производная f'(x) принимает положительные значения, поэтому функция f(x) на этих промежутках возрастает.

На промежутке (-3;2) производная f'(x)<0, поэтому функция f(x) убывает.

Так как функция определена и непрерывна на отрезке [-4;9], то точки -4, -3, 2 и 9 можно включить в промежутки монотонности.

Следовательно, функция f(x) возрастает на промежутках [-4;-3] и [2;9] и убывает на [-3;2].

На промежутках возрастания своё наименьшее значение функция принимает на левом конце отрезка. На отрезке [2;9] наименьшее значение f(x) принимает в точке x=2 (точке минимума), на [-4;-3] — в точке x=-4. 2П/4=-1-1+1=-1;
 5) область значений функции y=sina
-1≤sina≤1
y=7sina
-7≤sina≤7

Значение производной отрицательно. Найти значение производной функции в точке х0

Этот раздел содержит задачи ЕГЭ по математике на темы, связанные с исследованием функций и их производных.

В демонстрационных вариантах ЕГЭ 2018 года они могут встретиться под номером 14 для базового уровня и под номером 7

для профильного уровня.

Посмотрите внимательно на эти три графика функций.
Заметили ли вы, что эти функции в некотором смысле “родственники”?
Например, на тех участках, где график зеленой функции расположен выше нуля, красная функция возрастает. На тех участках, где график зеленой функции ниже нуля, красная функция убывает.
Аналогичные замечания можно сделать относительно красного и синего графиков.
Также можно заметить, что нули зеленой функции (точки x = −1 и x = 3) совпадают с точками экстремумов красного графика: при x = −1 на красном графике мы видим локальный максимум, при х = 3 на красном графике локальный минимум.


Нетрудно заметить, что локальные максимумы и минимумы синего графика достигаются в тех же точках, где красный график проходит через значение y = 0.
Можно сделать еще несколько выводов об особенностях поведения этих графиков, потому что они действительно связаны между собой. Посмотрите на формулы функций, расположенные под каждым из графиков, и путем вычислений убедитесь, что каждая предыдущая является производной для последующей и, соответственно, каждая следующая является одной из превообразных предыдущей функции.

φ 1 (x ) = φ” 2 (x ) φ

2 (x ) = Φ 1 (x )
φ 2 (x ) = φ” 3 (x ) φ 3 (x ) = Φ 2 (x )

Вспомним, что мы знаем о производной:

Производная функции y = f (x ) в точке х выражает скорость изменения функции в точке x .

Физический смысл производной заключается в том, что производная выражает скорость протекания процесса, описываемого зависимостью y = f(x).

Геометрический смысл производной заключается в том, что её значение в рассматриваемой точке равняется угловому коэффициенту касательной, проведенной к графику дифференцируемой функции в этой точке.

А теперь пусть красного графика на рисунке нет. Допустим, что и формулы функций нам неизвестны.

Могу ли я спросить вас о чем то, связанном с поведением функции φ 2 (x ), если известно, что она является производной функции φ 3 (x ) и первообразной функции φ 1 (x )?
Могу. И на многие вопросы можно дать точный ответ, ведь мы знаем, что производная является характеристикой скорости изменения функции, поэтому можем судить о некоторых особенностях поведения одной из этих функций, глядя на график другой.

Прежде, чем отвечать на следующие вопросы, прокрутите страницу вверх так, чтобы скрылся верхний рисунок, содержащий красный график. Когда ответы будут даны, верните его обратно, чтобы проверить результат. И только после этого смотрите моё решение.

Внимание: Для усиления обучающего эффекта ответы и решения загружаются отдельно для каждой задачи последовательным нажатием кнопок на желтом фоне. (Когда задач много, кнопки могут появиться с задержкой. Если кнопок не видно совсем, проверьте, разрешен ли в вашем браузере JavaScript.
)

1) Пользуясь графиком производной φ” 2 (x ) (в нашем случае это зеленый график), определите какое из 2-ух значений функции больше φ 2 (−3) или φ 2 (−2)?

По графику производной видно, что на участке [−3;−2] её значения строго положительны, значит функция на этом участке только возрастает, поэтому значение функции в левом конце x = −3 меньше, чем её значение в правом конце x = −2.

Ответ: φ 2 (−3) φ 2 (−2)

2) Пользуясь графиком первообразной Φ 2 (x ) (в нашем случае это синий график), определите какое из 2-ух значений функции больше φ 2 (−1) или

φ 2 (4)?

По графику первообразной видно, что точка x = −1 находится на участке возрастания, следовательно значение соответсвующей производной положительно. Точка x = 4 находится на участке убывания и значение соответствующей производной отрицательно. Поскольку положительное значение больше отрицательного, делаем вывод – значение неизвестной функции, которая как раз и является производной, в точке 4 меньше, чем в точке −1.

Ответ: φ 2 (−1) > φ 2 (4)

Подобных вопросов по отсутствующему графику можно задать много, что обуславливает большое разноообразие задач с кратким ответом, построенных по такой же схеме. Попробуйте решить некоторые из них.

Задачи на определение характеристик производной по графику функции.


Рисунок 1.


Рисунок 2.

Задача 1

y = f (x ), определенной на интервале (−10,5;19). Определите количество целых точек, в которых производная функции положительна.

Производная функции положительна на тех участках, где функция возрастает. По рисунку видно, что это промежутки (−10,5;−7,6), (−1;8,2) и (15,7;19). Перечислим целые точки внутри этих интервалов: “−10″,”−9”, “−8″,”0”, “1”,”2″, “3”,”4″, “5”,”6″, “7”,”8″, “16”,”17″, “18”. Всего 15 точек.

Ответ: 15

Замечания.
1. Когда в задачах о графиках функций требуют назвать “точки”, как правило, имеют в виду только значения аргумента x , которые являются абсциссами соответствующих точек, расположенных на графике. Ординаты этих точек – значения функции, они являются зависимыми и могут быть легко вычислены при необходимости.
2. При перечислении точек мы не учитывали края интервалов, так как функция в этих точках не возрастает и не убывает, а “разворачивается”. Производная в таких точках не положительна и не отрицательна, она равна нулю, поэтому они называются стационарными точками. Кроме того, мы не рассматриваем здесь границы области определения, потому что в условии сказано, что это интервал.

Задача 2

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Определите количество целых точек, в которых производная функции f ” (x ) отрицательна.

Производная функции отрицательна на тех участках, где функция убывает. По рисунку видно, что это промежутки (−7,6;−1) и (8,2;15,7). Целые точки внутри этих интервалов: “−7″,”−6”, “−5″,”−4”, “−3″,”−2”, “9”,”10″, “11”,”12″, “13”,”14″, “15”. Всего 13 точек.

Ответ: 13

См. замечания к предыдущей задаче.

Для решения следующих задач нужно вспомнить еще одно определение.

Точки максимума и минимума функции объединяются общим названием – точки экстремума .

В этих точках производная функции либо равна нулю, либо не существует (необходимое условие экстремума ).
Однако необходимое условие – это признак, но не гарантия существования экстремума функции. Достаточным условием экстремума является смена знака производной: если производная в точке меняет знак с “+” на “−”, то это точка максимума функции; если производная в точке меняет знак с “−” на “+” , то это точка минимума функции; если в точке производная функции равна нулю, либо не существует, но знак производной при переходе через эту точку не меняется на противоположный, то указанная точка не является точкой экстремума функции. Это может быть точка перегиба, точка разрыва или точка излома графика функции.

Задача 3

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 6 или совпадает с ней.

Вспомним, что уравнение прямой имеет вид y = kx + b , где k – коэффициент наклона этой прямой к оси Ox . В нашем случае k = 0, т.е. прямая y = 6 не наклонена, а параллельна оси Ox . Значит искомые касательные также должны быть параллельны оси Ox и также должны иметь коэффициент наклона 0. Таким свойством касательные обладают в точках экстремумов функций. Поэтому для ответа на вопрос нужно просто посчитать все точки экстремумов на графике. Здесь их 4 – две точки максимума и две точки минимума.

Ответ: 4

Задача 4

Функции y = f (x ), определенной на интервале (−11;23). Найдите сумму точек экстремума функции на отрезке .

На указанном отрезке мы видим 2 точки экстремума. Максимум функции достигается в точке x 1 = 4, минимум в точке x 2 = 8.
x 1 + x 2 = 4 + 8 = 12.

Ответ: 12

Задача 5

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Найдите количество точек, в которых производная функции f ” (x ) равна 0.

Производная функции равна нулю в точках экстремума, которых на графике видно 4:
2 точки максимума и 2 точки минимума.

Ответ: 4

Задачи на определение характеристик функции по графику её производной.


Рисунок 1.

Рисунок 2.

Задача 6

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). В какой точке отрезка [−6;2] функция f (x ) принимает наибольшее значение.

На указанном отрезке производная нигде не была положительной, следовательно функция не возрастала. Она убывала или проходила через стационарные точки. Таким образом, наибольшего значения функция достигала на левой границе отрезка: x = −6.

Ответ: −6

Замечание: По графику производной видно, что на отрезке [−6;2] она равна нулю трижды: в точках x = −6, x = −2, x = 2. Но в точке x = −2 она не меняла знака, значит в этой точке не могло быть экстремума функции. Скорее всего там была точка перегиба графика исходной функции.

Задача 7

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). В какой точке отрезка функция принимает наименьшее значение.

На отрезке производная строго положительна, следовательно функция на этом участке только возрастала. Таким образом, наименьшего значения функция достигала на левой границе отрезка: x = 3.

Ответ: 3

Задача 8

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек максимума функции f (x ), принадлежащих отрезку [−5;10].

Согласно необходимому условию экстремума максимум функции может быть в точках, где её производная равна нулю. На заданном отрезке это точки: x = −2, x = 2, x = 6, x = 10. Но согласно достаточному условию он точно будет только в тех из них, где знак производной меняется с “+” на “−”. На графике производной мы видим, что из перечисленных точек такой является только точка x = 6.

Ответ: 1

Задача 9

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек экстремума функции f (x ), принадлежащих отрезку .

Экстремумы функции могут быть в тех точках, где её производная равна 0. На заданном отрезке графика производной мы видим 5 таких точек: x = 2, x = 6, x = 10, x = 14, x = 18. Но в точке x = 14 производная не поменяла знак, следовательно её надо исключить из рассмотрения. Таким образом, остаются 4 точки.

Ответ: 4

Задача 10

На рисунке 1 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−10,5;19). Найдите промежутки возрастания функции f (x ). В ответе укажите длину наибольшего из них.

Промежутки возрастания функции совпадают с промежутками положительности производной. На графике мы видим их три – (−9;−7), (4;12), (18;19). Самый длинный из них второй. Его длина l = 12 − 4 = 8.

Ответ: 8

Задача 11

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек, в которых касательная к графику функции f (x ) параллельна прямой y = −2x − 11 или совпадает с ней.

Угловой коэффициент (он же тангенс угла наклона) заданной прямой k = −2. Нас интересуют параллельные или совпадающие касательные, т.е. прямые с таким же наклоном. Исходя из геометрического смысла производной – угловой коэффициент касательной в рассматриваемой точке графика функции, пересчитываем точки, в которых производная равна −2. На рисунке 2 таких точек 9. Их удобно считать по пересечениям графика и линии координатной сетки, проходящей через значение −2 на оси Oy .

Ответ: 9

Как видите, по одному и тому же графику можно задать самые разнообразные вопросы о поведении функции и её производной. Также один тот же вопрос можно отнести к графикам разных функций. Будьте внимательны при решении этой задачи на экзамене, и она покажется Вам очень легкой. Другие виды задач этого задания – на геометрический смысл первообразной – будут рассмотрены в другом разделе.

При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют производной функцией (или просто производной) данной функции f(x) и обозначают символом

Тот процесс, с помощью которого из данной функции f(x) получают новую функцию f ” (x) , называют дифференцированием и состоит он из следующих трех шагов: 1) даем аргументу x приращение  x и определяем соответствующее приращение функции  y = f(x+  x) -f(x) ; 2) составляем отношение

3) считая x постоянным, а  x 0, находим
, который обозначаем черезf ” (x) , как бы подчеркивая тем самым, что полученная функция зависит лишь от того значения x , при котором мы переходим к пределу. Определение : Производной y ” =f ” (x) данной функции y=f(x) при данном x называется предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю, если, конечно, этот предел существует, т.е. конечен. Таким образом,
, или

Заметим, что если при некотором значении x , например при x=a , отношение
при x 0 не стремится к конечному пределу, то в этом случае говорят, что функция f(x) при x=a (или в точке x=a ) не имеет производной или не дифференцируема в точке x=a .

2. Геометрический смысл производной.

Рассмотрим график функции у = f (х), дифференцируемой в окрест­ностях точки x 0

f(x)

Рассмотрим произвольную прямую, проходящую через точку гра­фика функции – точку А(x 0 , f (х 0)) и пересекающую график в некоторой точке B(x;f(x)). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆x; ВС =∆у; tgβ=∆y/∆x .

Так как АС || Ox, то ALO = BAC = β (как соответственные при параллельных). Но ALO – это угол наклона секущей АВ к положи­тельному направлению оси Ох. Значит, tgβ = k – угловой коэффициент прямой АВ.

Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет прибли­жаться к точке А по графику, а секущая АВ будет поворачиваться. Пре­дельным положением секущей АВ при ∆х→ 0 будет прямая (a), называемая касательной к графику функции у = f (х) в точке А.

Если перейти к пределу при ∆х → 0 в равенстве tgβ =∆y/∆x, то получим
илиtg =f “(x 0), так как
-угол накло­на касательной к положительному направлению оси Ох
, по определению производной. Но tg = k – угловой коэффициент каса­тельной, значит, k = tg = f “(x 0).

Итак, геометрический смысл производной заключается в следую­щем:

Производная функции в точке x 0 равна угловому коэффициенту ка­сательной к графику функции, проведенной в точке с абсциссой x 0 .

3. Физический смысл производной.

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.

Vср = ∆x/∆t. Перейдем к пределу в последнем равенстве при ∆t → 0.

lim Vср (t) = (t 0) – мгновенная скорость в момент времени t 0 , ∆t → 0.

а lim = ∆x/∆t = x”(t 0) (по определению производной).

Итак, (t) =x”(t).

Физический смысл производной заключается в следующем: произ­водная функции y = f (x ) в точке x 0 – это скорость изменения функции f (х) в точке x 0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

(t) = x”(t) – скорость,

a(f) = ”(t) – ускорение, или

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращатель­ном движении:

φ = φ(t) – изменение угла от времени,

ω = φ”(t) – угловая скорость,

ε = φ”(t) – угловое ускорение, или ε = φ”(t).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m(х) – масса,

x  , l – длина стержня,

р = m”(х) – линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = -kx, x – переменная координата, k- коэффициент упругости пружины. Положив ω 2 =k/m, получим дифференциальное уравнение пружинного маятника х”(t) + ω 2 x(t) = 0,

где ω = √k/√m частота колебаний (l/c), k – жесткость пружины (H/m).

Уравнение вида у” + ω 2 y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решени­ем таких уравнений является функция

у = Asin(ωt + φ 0) или у = Acos(ωt + φ 0), где

А – амплитуда колебаний, ω – циклическая частота,

φ 0 – начальная фаза.

В промежутке (а, b ), а х – является случайно выбранной точкой данного промежутка. Дадим аргументу х приращение Δх (положительное или отрицательное).

Функция у =f(x) получит приращение Δу равное:

Δy = f(x + Δx)-f(x).

При бесконечно малом Δх приращение Δу тоже бесконечно мало.

Например:

Рассмотрим решение производной функции на примере свободного падения тела.

Так как t 2 = t l + Δt, то

.

Вычислив предел, найдем:

Обозначение t 1 вводится с целью подчеркивания постоянства t при вычислении предела функции. Так как t 1 является произвольным значением времени, то индекс 1 можно отбросить; тогда получаем:

Видно, что скорость v, как и путь s , есть функция времени. Вид функции v всецело зависит от вида функции s , так что функция s как бы «производит» функцию v . Отсюда название «производная функция ».

Рассмотри еще один пример .

Найти значение производной функции:

у = х 2 при х = 7 .

Решение. При х = 7 имеем у=7 2 = 49 . Дадим аргументу х приращение Δ х . Аргумент станет равным 7 + Δ х , а функция получит значение (7 + Δ х) 2 .

В координатной плоскости хОу рассмотрим график функции y=f (x) . Зафиксируем точку М(х 0 ; f (x 0)) . Придадим абсциссе х 0 приращение Δх . Мы получим новую абсциссу х 0 +Δх . Это абсцисса точки N , а ордината будет равна f (х 0 +Δх ). Изменение абсциссы повлекло за собой изменение ординаты. Это изменение называют приращение функции и обозначают Δy .

Δy=f (х 0 +Δх) — f (x 0). Через точки M и N проведем секущую MN , которая образует угол φ с положительным направлением оси Ох . Определим тангенс угла φ из прямоугольного треугольника MPN .

Пусть Δх стремится к нулю. Тогда секущая MN будет стремиться занять положение касательной МТ , а угол φ станет углом α . Значит, тангенс угла α есть предельное значение тангенса угла φ :

Предел отношения приращения функции к приращению аргумента, при стремлении последнего к нулю, называют производной функции в данной точке:

Геометрический смысл производной заключается в том, что численно производная функции в данной точке равна тангенсу угла, образованного касательной, проведенной через эту точку к данной кривой, и положительным направлением оси Ох :

Примеры.

1. Найти приращение аргумента и приращение функции y=x 2 , если начальное значение аргумента было равно 4 , а новое –4,01 .

Решение.

Новое значение аргумента х=х 0 +Δx . Подставим данные: 4,01=4+Δх, отсюда приращение аргумента Δх =4,01-4=0,01. Приращение функции, по определению, равно разности между новым и прежним значениями функции, т.е. Δy=f (х 0 +Δх) – f (x 0). Так как у нас функция y=x 2 , то Δу =(х 0 +Δx) 2 — (х 0) 2 =(х 0) 2 +2x 0 · Δx+(Δx) 2 — (х 0) 2 =2x 0 · Δx+(Δx) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

Ответ: приращение аргумента Δх =0,01; приращение функции Δу =0,0801.

Можно было приращение функции найти по-другому: Δy =y (х 0 +Δx) -y (х 0)=у(4,01) -у(4)=4,01 2 -4 2 =16,0801-16=0,0801.

2. Найти угол наклона касательной к графику функции y=f (x) в точке х 0 , если f “(х 0) = 1 .

Решение.

Значение производной в точке касания х 0 и есть значение тангенса угла наклона касательной (геометрический смысл производной). Имеем: f “(х 0) = tgα = 1 → α = 45°, так как tg45°=1.

Ответ: касательная к графику данной функции образует с положительным направлением оси Ох угол, равный 45° .

3. Вывести формулу производной функции y=x n .

Дифференцирование — это действие нахождения производной функции.

При нахождении производных применяют формулы, которые были выведены на основании определения производной, так же, как мы вывели формулу производной степени: (x n)” = nx n-1 .

Вот эти формулы.

Таблицу производных легче будет заучить, проговаривая словесные формулировки:

1. Производная постоянной величины равна нулю.

2. Икс штрих равен единице.

3. Постоянный множитель можно вынести за знак производной.

4. Производная степени равна произведению показателя этой степени на степень с тем же основанием, но показателем на единицу меньше.

5. Производная корня равна единице, деленной на два таких же корня.

6. Производная единицы, деленной на икс равна минус единице, деленной на икс в квадрате.

7. Производная синуса равна косинусу.

8. Производная косинуса равна минус синусу.

9. Производная тангенса равна единице, деленной на квадрат косинуса.

10. Производная котангенса равна минус единице, деленной на квадрат синуса.

Учим правила дифференцирования .

1. Производная алгебраической суммы равна алгебраической сумме производных слагаемых.

2. Производная произведения равна произведению производной первого множителя на второй плюс произведение первого множителя на производную второго.

3. Производная «у», деленного на «вэ» равна дроби, в числителе которой “у штрих умноженный на «вэ» минус «у, умноженный на вэ штрих», а в знаменателе — «вэ в квадрате».

4. Частный случай формулы 3.

Как найти производную функции в точке? Из формулировки следуют два очевидных пункта этого задания:

1) Необходимо найти производную.

2) Необходимо вычислить значение производной в заданной точке.

Пример 1

Справка: Следующие способы обозначения функции эквивалентны:

В некоторых заданиях бывает удобно обозначить функцию «игреком», а в некоторых через «эф от икс».

Сначала находим производную:

Надеюсь, многие уже приноровились находить такие производные устно.

На втором шаге вычислим значение производной в точке :

Небольшой разминочный пример для самостоятельного решения:

Пример 2

В точке

Полное решение и ответ в конце урока.

Необходимость находить производную в точке возникает в следующих задачах: построение касательной к графику функции (следующий параграф), исследование функции на экстремум , исследование функции на перегиб графика , полное исследование функции и др.

Но рассматриваемое задание встречается в контрольных работах и само по себе. И, как правило, в таких случаях функцию дают достаточно сложную. В этой связи рассмотрим еще два примера.

Пример 3

Вычислить производную функции в точке .
Сначала найдем производную:

Производная, в принципе, найдена, и можно подставлять требуемое значение . Но что-то делать это не сильно хочется. Выражение очень длинное, да и значение «икс» у нас дробное. Поэтому стараемся максимально упростить нашу производную. В данном случае попробуем привести к общему знаменателю три последних слагаемых:

Ну вот, совсем другое дело. Вычислим значение производной в точке :

В том случае, если Вам не понятно, как найдена производная, вернитесь к первым двум урокам темы. Если возникли трудности (недопонимание) с арктангенсом и его значениями, обязательно изучите методический материал Графики и свойства элементарных функций – самый последний параграф. Потому-что арктангенсов на студенческий век ещё хватит.

Пример 4

Вычислить производную функции в точке .

Это пример для самостоятельного решения.

Как найти наибольшее значение производной по графику. Производная функции

В задаче B9 дается график функции или производной, по которому требуется определить одну из следующих величин:

  1. Значение производной в некоторой точке x 0 ,
  2. Точки максимума или минимума (точки экстремума),
  3. Интервалы возрастания и убывания функции (интервалы монотонности).

Функции и производные, представленные в этой задаче, всегда непрерывны, что значительно упрощает решение. Не смотря на то, что задача относится к разделу математического анализа, она вполне по силам даже самым слабым ученикам, поскольку никаких глубоких теоретических познаний здесь не требуется.

Для нахождения значения производной, точек экстремума и интервалов монотонности существуют простые и универсальные алгоритмы — все они будут рассмотрены ниже.

Внимательно читайте условие задачи B9, чтобы не допускать глупых ошибок: иногда попадаются довольно объемные тексты, но важных условий, которые влияют на ход решения, там немного.

Вычисление значения производной. Метод двух точек

Если в задаче дан график функции f(x), касательная к этому графику в некоторой точке x 0 , и требуется найти значение производной в этой точке, применяется следующий алгоритм:

  1. Найти на графике касательной две «адекватные» точки: их координаты должны быть целочисленными. Обозначим эти точки A (x 1 ; y 1) и B (x 2 ; y 2). Правильно выписывайте координаты — это ключевой момент решения, и любая ошибка здесь приводит к неправильному ответу.
  2. Зная координаты, легко вычислить приращение аргумента Δx = x 2 − x 1 и приращение функции Δy = y 2 − y 1 .
  3. Наконец, находим значение производной D = Δy/Δx. Иными словами, надо разделить приращение функции на приращение аргумента — и это будет ответ.

Еще раз отметим: точки A и B надо искать именно на касательной, а не на графике функции f(x), как это часто случается. Касательная обязательно будет содержать хотя бы две таких точки — иначе задача составлена некорректно.

Рассмотрим точки A (−3; 2) и B (−1; 6) и найдем приращения:
Δx = x 2 − x 1 = −1 − (−3) = 2; Δy = y 2 − y 1 = 6 − 2 = 4.

Найдем значение производной: D = Δy/Δx = 4/2 = 2.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

Рассмотрим точки A (0; 3) и B (3; 0), найдем приращения:
Δx = x 2 − x 1 = 3 − 0 = 3; Δy = y 2 − y 1 = 0 − 3 = −3.

Теперь находим значение производной: D = Δy/Δx = −3/3 = −1.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

Рассмотрим точки A (0; 2) и B (5; 2) и найдем приращения:
Δx = x 2 − x 1 = 5 − 0 = 5; Δy = y 2 − y 1 = 2 − 2 = 0.

Осталось найти значение производной: D = Δy/Δx = 0/5 = 0.

Из последнего примера можно сформулировать правило: если касательная параллельна оси OX, производная функции в точке касания равна нулю. В этом случае даже не надо ничего считать — достаточно взглянуть на график.

Вычисление точек максимума и минимума

Иногда вместо графика функции в задаче B9 дается график производной и требуется найти точку максимума или минимума функции. При таком раскладе метод двух точек бесполезен, но существует другой, еще более простой алгоритм. Для начала определимся с терминологией:

  1. Точка x 0 называется точкой максимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x 0) ≥ f(x).
  2. Точка x 0 называется точкой минимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x 0) ≤ f(x).

Для того чтобы найти точки максимума и минимума по графику производной, достаточно выполнить следующие шаги:

  1. Перечертить график производной, убрав всю лишнюю информацию. Как показывает практика, лишние данные только мешают решению. Поэтому отмечаем на координатной оси нули производной — и все.
  2. Выяснить знаки производной на промежутках между нулями. Если для некоторой точки x 0 известно, что f’(x 0) ≠ 0, то возможны лишь два варианта: f’(x 0) ≥ 0 или f’(x 0) ≤ 0. Знак производной легко определить по исходному чертежу: если график производной лежит выше оси OX, значит f’(x) ≥ 0. И наоборот, если график производной проходит под осью OX, то f’(x) ≤ 0.
  3. Снова проверяем нули и знаки производной. Там, где знак меняется с минуса на плюс, находится точка минимума. И наоборот, если знак производной меняется с плюса на минус, это точка максимума. Отсчет всегда ведется слева направо.

Эта схема работает только для непрерывных функций — других в задаче B9 не встречается.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−5; 5]. Найдите точку минимума функции f(x) на этом отрезке.

Избавимся от лишней информации — оставим только границы [−5; 5] и нули производной x = −3 и x = 2,5. Также отметим знаки:

Очевидно, в точке x = −3 знак производной меняется с минуса на плюс. Это и есть точка минимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7]. Найдите точку максимума функции f(x) на этом отрезке.

Перечертим график, оставив на координатной оси только границы [−3; 7] и нули производной x = −1,7 и x = 5. Отметим на полученном графике знаки производной. Имеем:

Очевидно, в точке x = 5 знак производной меняется с плюса на минус — это точка максимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−6; 4]. Найдите количество точек максимума функции f(x), принадлежащих отрезку [−4; 3].

Из условия задачи следует, что достаточно рассмотреть только часть графика, ограниченную отрезком [−4; 3]. Поэтому строим новый график, на котором отмечаем только границы [−4; 3] и нули производной внутри него. А именно, точки x = −3,5 и x = 2. Получаем:

На этом графике есть лишь одна точка максимума x = 2. Именно в ней знак производной меняется с плюса на минус.

Небольшое замечание по поводу точек с нецелочисленными координатами. Например, в последней задаче была рассмотрена точка x = −3,5, но с тем же успехом можно взять x = −3,4. Если задача составлена корректно, такие изменения не должны влиять на ответ, поскольку точки «без определенного места жительства» не принимают непосредственного участия в решении задачи. Разумеется, с целочисленными точками такой фокус не пройдет.

Нахождение интервалов возрастания и убывания функции

В такой задаче, подобно точкам максимума и минимума, предлагается по графику производной отыскать области, в которых сама функция возрастает или убывает. Для начала определим, что такое возрастание и убывание:

  1. Функция f(x) называется возрастающей на отрезке если для любых двух точек x 1 и x 2 из этого отрезка верно утверждение: x 1 ≤ x 2 ⇒ f(x 1) ≤ f(x 2). Другими словами, чем больше значение аргумента, тем больше значение функции.
  2. Функция f(x) называется убывающей на отрезке если для любых двух точек x 1 и x 2 из этого отрезка верно утверждение: x 1 ≤ x 2 ⇒ f(x 1) ≥ f(x 2). Т.е. большему значению аргумента соответствует меньшее значение функции.

Сформулируем достаточные условия возрастания и убывания:

  1. Для того чтобы непрерывная функция f(x) возрастала на отрезке , достаточно, чтобы ее производная внутри отрезка была положительна, т.е. f’(x) ≥ 0.
  2. Для того чтобы непрерывная функция f(x) убывала на отрезке , достаточно, чтобы ее производная внутри отрезка была отрицательна, т.е. f’(x) ≤ 0.

Примем эти утверждения без доказательств. Таким образом, получаем схему для нахождения интервалов возрастания и убывания, которая во многом похожа на алгоритм вычисления точек экстремума:

  1. Убрать всю лишнюю информацию. На исходном графике производной нас интересуют в первую очередь нули функции, поэтому оставим только их.
  2. Отметить знаки производной на интервалах между нулями. Там, где f’(x) ≥ 0, функция возрастает, а где f’(x) ≤ 0 — убывает. Если в задаче установлены ограничения на переменную x, дополнительно отмечаем их на новом графике.
  3. Теперь, когда нам известно поведение функции и ограничения, остается вычислить требуемую в задаче величину.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7,5]. Найдите промежутки убывания функции f(x). В ответе укажите сумму целых чисел, входящих в эти промежутки.

Как обычно, перечертим график и отметим границы [−3; 7,5], а также нули производной x = −1,5 и x = 5,3. Затем отметим знаки производной. Имеем:

Поскольку на интервале (− 1,5) производная отрицательна, это и есть интервал убывания функции. Осталось просуммировать все целые числа, которые находятся внутри этого интервала:
−1 + 0 + 1 + 2 + 3 + 4 + 5 = 14.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−10; 4]. Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.

Избавимся от лишней информации. Оставим только границы [−10; 4] и нули производной, которых в этот раз оказалось четыре: x = −8, x = −6, x = −3 и x = 2. Отметим знаки производной и получим следующую картинку:

Нас интересуют промежутки возрастания функции, т.е. такие, где f’(x) ≥ 0. На графике таких промежутков два: (−8; −6) и (−3; 2). Вычислим их длины:
l 1 = − 6 − (−8) = 2;
l 2 = 2 − (−3) = 5.

Поскольку требуется найти длину наибольшего из интервалов, в ответ записываем значение l 2 = 5.

Производная функции – одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна . Мы не будем сейчас стремиться к математической строгости изложения. Самое главное – понять смысл.

Запомним определение:

Производная – это скорость изменения функции.

На рисунке – графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден – третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная , – разная. Что касается Матвея – у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами – насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной – то есть может меняться быстрее или медленнее.

Производная функции обозначается .

Покажем, как найти с помощью графика.

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого – тангенс угла наклона касательной .

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Обратите внимание – в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника :

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике под номером .

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Величина в этом уравнении называется угловым коэффициентом прямой . Она равна тангенсу угла наклона прямой к оси .

.

Мы получаем, что

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других – убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол с положительным направлением оси . Значит, в точке производная положительна.

В точке наша функция убывает. Касательная в этой точке образует тупой угол с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка – точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке – точке минимума – производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

возрастаетточка максимумаубываетточка минимумавозрастает
+00+

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое – на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая :

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала – и после точки продолжает возрастать. Знак производной не меняется – она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется

Этот раздел содержит задачи ЕГЭ по математике на темы, связанные с исследованием функций и их производных.

В демонстрационных вариантах ЕГЭ 2020 года они могут встретиться под номером 14 для базового уровня и под номером 7 для профильного уровня.

Посмотрите внимательно на эти три графика функций.
Заметили ли вы, что эти функции в некотором смысле “родственники”?
Например, на тех участках, где график зеленой функции расположен выше нуля, красная функция возрастает. На тех участках, где график зеленой функции ниже нуля, красная функция убывает.
Аналогичные замечания можно сделать относительно красного и синего графиков.
Также можно заметить, что нули зеленой функции (точки x = −1 и x = 3) совпадают с точками экстремумов красного графика: при x = −1 на красном графике мы видим локальный максимум, при х = 3 на красном графике локальный минимум.
Нетрудно заметить, что локальные максимумы и минимумы синего графика достигаются в тех же точках, где красный график проходит через значение y = 0.
Можно сделать еще несколько выводов об особенностях поведения этих графиков, потому что они действительно связаны между собой. Посмотрите на формулы функций, расположенные под каждым из графиков, и путем вычислений убедитесь, что каждая предыдущая является производной для последующей и, соответственно, каждая следующая является одной из превообразных предыдущей функции.

φ 1 (x ) = φ” 2 (x ) φ 2 (x ) = Φ 1 (x )
φ 2 (x ) = φ” 3 (x ) φ 3 (x ) = Φ 2 (x )

Вспомним, что мы знаем о производной:

Производная функции y = f (x ) в точке х выражает скорость изменения функции в точке x .

Физический смысл производной заключается в том, что производная выражает скорость протекания процесса, описываемого зависимостью y = f(x).

Геометрический смысл производной заключается в том, что её значение в рассматриваемой точке равняется угловому коэффициенту касательной, проведенной к графику дифференцируемой функции в этой точке.

А теперь пусть красного графика на рисунке нет. Допустим, что и формулы функций нам неизвестны.

Могу ли я спросить вас о чем то, связанном с поведением функции φ 2 (x ), если известно, что она является производной функции φ 3 (x ) и первообразной функции φ 1 (x )?
Могу. И на многие вопросы можно дать точный ответ, ведь мы знаем, что производная является характеристикой скорости изменения функции, поэтому можем судить о некоторых особенностях поведения одной из этих функций, глядя на график другой.

Прежде, чем отвечать на следующие вопросы, прокрутите страницу вверх так, чтобы скрылся верхний рисунок, содержащий красный график. Когда ответы будут даны, верните его обратно, чтобы проверить результат. И только после этого смотрите моё решение.

Внимание: Для усиления обучающего эффекта ответы и решения загружаются отдельно для каждой задачи последовательным нажатием кнопок на желтом фоне. (Когда задач много, кнопки могут появиться с задержкой. Если кнопок не видно совсем, проверьте, разрешен ли в вашем браузере JavaScript. )

1) Пользуясь графиком производной φ” 2 (x ) (в нашем случае это зеленый график), определите какое из 2-ух значений функции больше φ 2 (−3) или φ 2 (−2)?

По графику производной видно, что на участке [−3;−2] её значения строго положительны, значит функция на этом участке только возрастает, поэтому значение функции в левом конце x = −3 меньше, чем её значение в правом конце x = −2.

Ответ: φ 2 (−3) φ 2 (−2)

2) Пользуясь графиком первообразной Φ 2 (x ) (в нашем случае это синий график), определите какое из 2-ух значений функции больше φ 2 (−1) или φ 2 (4)?

По графику первообразной видно, что точка x = −1 находится на участке возрастания, следовательно значение соответсвующей производной положительно. Точка x = 4 находится на участке убывания и значение соответствующей производной отрицательно. Поскольку положительное значение больше отрицательного, делаем вывод – значение неизвестной функции, которая как раз и является производной, в точке 4 меньше, чем в точке −1.

Ответ: φ 2 (−1) > φ 2 (4)

Подобных вопросов по отсутствующему графику можно задать много, что обуславливает большое разноообразие задач с кратким ответом, построенных по такой же схеме. Попробуйте решить некоторые из них.

Задачи на определение характеристик производной по графику функции.


Рисунок 1.


Рисунок 2.

Задача 1

y = f (x ), определенной на интервале (−10,5;19). Определите количество целых точек, в которых производная функции положительна.

Производная функции положительна на тех участках, где функция возрастает. По рисунку видно, что это промежутки (−10,5;−7,6), (−1;8,2) и (15,7;19). Перечислим целые точки внутри этих интервалов: “−10″,”−9”, “−8″,”0”, “1”,”2″, “3”,”4″, “5”,”6″, “7”,”8″, “16”,”17″, “18”. Всего 15 точек.

Ответ: 15

Замечания.
1. Когда в задачах о графиках функций требуют назвать “точки”, как правило, имеют в виду только значения аргумента x , которые являются абсциссами соответствующих точек, расположенных на графике. Ординаты этих точек – значения функции, они являются зависимыми и могут быть легко вычислены при необходимости.
2. При перечислении точек мы не учитывали края интервалов, так как функция в этих точках не возрастает и не убывает, а “разворачивается”. Производная в таких точках не положительна и не отрицательна, она равна нулю, поэтому они называются стационарными точками. Кроме того, мы не рассматриваем здесь границы области определения, потому что в условии сказано, что это интервал.

Задача 2

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Определите количество целых точек, в которых производная функции f ” (x ) отрицательна.

Производная функции отрицательна на тех участках, где функция убывает. По рисунку видно, что это промежутки (−7,6;−1) и (8,2;15,7). Целые точки внутри этих интервалов: “−7″,”−6”, “−5″,”−4”, “−3″,”−2”, “9”,”10″, “11”,”12″, “13”,”14″, “15”. Всего 13 точек.

Ответ: 13

См. замечания к предыдущей задаче.

Для решения следующих задач нужно вспомнить еще одно определение.

Точки максимума и минимума функции объединяются общим названием – точки экстремума .

В этих точках производная функции либо равна нулю, либо не существует (необходимое условие экстремума ).
Однако необходимое условие – это признак, но не гарантия существования экстремума функции. Достаточным условием экстремума является смена знака производной: если производная в точке меняет знак с “+” на “−”, то это точка максимума функции; если производная в точке меняет знак с “−” на “+” , то это точка минимума функции; если в точке производная функции равна нулю, либо не существует, но знак производной при переходе через эту точку не меняется на противоположный, то указанная точка не является точкой экстремума функции. Это может быть точка перегиба, точка разрыва или точка излома графика функции.

Задача 3

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 6 или совпадает с ней.

Вспомним, что уравнение прямой имеет вид y = kx + b , где k – коэффициент наклона этой прямой к оси Ox . В нашем случае k = 0, т.е. прямая y = 6 не наклонена, а параллельна оси Ox . Значит искомые касательные также должны быть параллельны оси Ox и также должны иметь коэффициент наклона 0. Таким свойством касательные обладают в точках экстремумов функций. Поэтому для ответа на вопрос нужно просто посчитать все точки экстремумов на графике. Здесь их 4 – две точки максимума и две точки минимума.

Ответ: 4

Задача 4

Функции y = f (x ), определенной на интервале (−11;23). Найдите сумму точек экстремума функции на отрезке .

На указанном отрезке мы видим 2 точки экстремума. Максимум функции достигается в точке x 1 = 4, минимум в точке x 2 = 8.
x 1 + x 2 = 4 + 8 = 12.

Ответ: 12

Задача 5

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Найдите количество точек, в которых производная функции f ” (x ) равна 0.

Производная функции равна нулю в точках экстремума, которых на графике видно 4:
2 точки максимума и 2 точки минимума.

Ответ: 4

Задачи на определение характеристик функции по графику её производной.


Рисунок 1.

Рисунок 2.

Задача 6

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). В какой точке отрезка [−6;2] функция f (x ) принимает наибольшее значение.

На указанном отрезке производная нигде не была положительной, следовательно функция не возрастала. Она убывала или проходила через стационарные точки. Таким образом, наибольшего значения функция достигала на левой границе отрезка: x = −6.

Ответ: −6

Замечание: По графику производной видно, что на отрезке [−6;2] она равна нулю трижды: в точках x = −6, x = −2, x = 2. Но в точке x = −2 она не меняла знака, значит в этой точке не могло быть экстремума функции. Скорее всего там была точка перегиба графика исходной функции.

Задача 7

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). В какой точке отрезка функция принимает наименьшее значение.

На отрезке производная строго положительна, следовательно функция на этом участке только возрастала. Таким образом, наименьшего значения функция достигала на левой границе отрезка: x = 3.

Ответ: 3

Задача 8

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек максимума функции f (x ), принадлежащих отрезку [−5;10].

Согласно необходимому условию экстремума максимум функции может быть в точках, где её производная равна нулю. На заданном отрезке это точки: x = −2, x = 2, x = 6, x = 10. Но согласно достаточному условию он точно будет только в тех из них, где знак производной меняется с “+” на “−”. На графике производной мы видим, что из перечисленных точек такой является только точка x = 6.

Ответ: 1

Задача 9

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек экстремума функции f (x ), принадлежащих отрезку .

Экстремумы функции могут быть в тех точках, где её производная равна 0. На заданном отрезке графика производной мы видим 5 таких точек: x = 2, x = 6, x = 10, x = 14, x = 18. Но в точке x = 14 производная не поменяла знак, следовательно её надо исключить из рассмотрения. Таким образом, остаются 4 точки.

Ответ: 4

Задача 10

На рисунке 1 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−10,5;19). Найдите промежутки возрастания функции f (x ). В ответе укажите длину наибольшего из них.

Промежутки возрастания функции совпадают с промежутками положительности производной. На графике мы видим их три – (−9;−7), (4;12), (18;19). Самый длинный из них второй. Его длина l = 12 − 4 = 8.

Ответ: 8

Задача 11

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек, в которых касательная к графику функции f (x ) параллельна прямой y = −2x − 11 или совпадает с ней.

Угловой коэффициент (он же тангенс угла наклона) заданной прямой k = −2. Нас интересуют параллельные или совпадающие касательные, т.е. прямые с таким же наклоном. Исходя из геометрического смысла производной – угловой коэффициент касательной в рассматриваемой точке графика функции, пересчитываем точки, в которых производная равна −2. На рисунке 2 таких точек 9. Их удобно считать по пересечениям графика и линии координатной сетки, проходящей через значение −2 на оси Oy .

Ответ: 9

Как видите, по одному и тому же графику можно задать самые разнообразные вопросы о поведении функции и её производной. Также один тот же вопрос можно отнести к графикам разных функций. Будьте внимательны при решении этой задачи на экзамене, и она покажется Вам очень легкой. Другие виды задач этого задания – на геометрический смысл первообразной – будут рассмотрены в другом разделе.

Сергей Никифоров

Если производная функции знакопостоянна на интервале, а сама функция непрерывна на его границах, то граничные точки при­со­еди­ня­ют­ся как к про­ме­жут­кам воз­рас­та­ния, так и к про­ме­жут­кам убы­ва­ния, что полностью соответствует определению возрастающих и убывающих функций.

Фарит Ямаев 26.10.2016 18:50

Здравствуйте. Как же (на каком основании) можно утверждать, что в точке, где производная равна нулю, функция возрастает. Приведите доводы. Иначе, это просто чей-то каприз. По какой теореме? А также доказательство. Спасибо.

Служба поддержки

Значение производной в точке не имеет прямого отношения к возрастанию функции на промежутке. Рассмотрите, например, функции – все они возрастают на отрезке

Владлен Писарев 02.11.2016 22:21

Если функция возрастает на интервале (а;b) и определена и непрерывна в точках а и b, то она возрастает на отрезке . Т.е. точка x=2 входит в данный промежуток.

Хотя, как правило возрастание и убывание рассматривается не на отрезке, а на интервале.

Но в самой точке x=2, функция имеет локальный минимум. И как объяснять детям, что когда они ищут точки возрастания (убывания), то точки локального экстремума не считаем, а в промежутки возрастания (убывания) – входят.

Учитывая, что первая часть ЕГЭ для “средней группы детского сада”, то наверное такие нюансы- перебор.

Отдельно, большое спасибо за “Решу ЕГЭ” всем сотрудникам- отличное пособие.

Сергей Никифоров

Простое объяснение можно получить, если отталкиваться от определения возрастающей/убывающей функции. Напомню, что звучит оно так: функция называется возрастающей/убывающей на промежутке, если большему аргументу функции соответствует большее/меньшее значение функции. Такое определение никак не использует понятие производной, поэтому вопросов о точках, где производная обращается в ноль возникнуть не может.

Ирина Ишмакова 20.11.2017 11:46

Добрый день. Здесь в комментариях я вижу убеждения, что границы включать нужно. Допустим, я с этим соглашусь. Но посмотрите, пожалуйста, ваше решение к задаче 7089. Там при указании промежутков возрастания границы не включаются. И это влияет на ответ. Т.е. решения заданий 6429 и 7089 противоречат друг другу. Проясните, пожалуйста, эту ситуацию.

Александр Иванов

В заданиях 6429 и 7089 совершенно разные вопросы.

В одном про промежутки возрастания, а в другом про промежутки с положительной производной.

Противоречия нет.

Экстремумы входят в промежутки возрастания и убывания, но точки, в которых производная равна нулю, не входят в промежутки, на которых производная положительна.

A Z 28.01.2019 19:09

Коллеги, есть понятие возрастания в точке

(см. Фихтенгольц например)

и ваше понимание возрастания в точке x=2 противочет классическому определению.

Возрастание и убывание это процесс и хотелось бы придерживаться этого принципа.

В любом интервале, который содержит точку x=2, функция не является возрастающей. Поэтому включение данный точки x=2 процесс особый.

Обычно, чтобы избежать путаницы о включении концов интервалов говорят отдельно.

Александр Иванов

Функция y=f(x) называется возрастающей на некотором промежутке, если бо́льшему значению аргумента из этого промежутка соответствует бо́льшее значение функции.

В точке х=2 функция дифференцируема, а на интервале (2; 6) производная положительна, значит, на промежутке }

Наименьшее значение производной по графику функции. Производная функции. Геометрический смысл производной. Нахождение интервалов возрастания и убывания функции

Этот раздел содержит задачи ЕГЭ по математике на темы, связанные с исследованием функций и их производных.

В демонстрационных вариантах ЕГЭ 2020 года они могут встретиться под номером 14 для базового уровня и под номером 7 для профильного уровня.

Посмотрите внимательно на эти три графика функций.
Заметили ли вы, что эти функции в некотором смысле “родственники”?
Например, на тех участках, где график зеленой функции расположен выше нуля, красная функция возрастает. На тех участках, где график зеленой функции ниже нуля, красная функция убывает.
Аналогичные замечания можно сделать относительно красного и синего графиков.
Также можно заметить, что нули зеленой функции (точки x = −1 и x = 3) совпадают с точками экстремумов красного графика: при x = −1 на красном графике мы видим локальный максимум, при х = 3 на красном графике локальный минимум.
Нетрудно заметить, что локальные максимумы и минимумы синего графика достигаются в тех же точках, где красный график проходит через значение y = 0.
Можно сделать еще несколько выводов об особенностях поведения этих графиков, потому что они действительно связаны между собой. Посмотрите на формулы функций, расположенные под каждым из графиков, и путем вычислений убедитесь, что каждая предыдущая является производной для последующей и, соответственно, каждая следующая является одной из превообразных предыдущей функции.

φ 1 (x ) = φ” 2 (x ) φ 2 (x ) = Φ 1 (x )
φ 2 (x ) = φ” 3 (x ) φ 3 (x ) = Φ 2 (x )

Вспомним, что мы знаем о производной:

Производная функции y = f (x ) в точке х выражает скорость изменения функции в точке x .

Физический смысл производной заключается в том, что производная выражает скорость протекания процесса, описываемого зависимостью y = f(x).

Геометрический смысл производной заключается в том, что её значение в рассматриваемой точке равняется угловому коэффициенту касательной, проведенной к графику дифференцируемой функции в этой точке.

А теперь пусть красного графика на рисунке нет. Допустим, что и формулы функций нам неизвестны.

Могу ли я спросить вас о чем то, связанном с поведением функции φ 2 (x ), если известно, что она является производной функции φ 3 (x ) и первообразной функции φ 1 (x )?
Могу. И на многие вопросы можно дать точный ответ, ведь мы знаем, что производная является характеристикой скорости изменения функции, поэтому можем судить о некоторых особенностях поведения одной из этих функций, глядя на график другой.

Прежде, чем отвечать на следующие вопросы, прокрутите страницу вверх так, чтобы скрылся верхний рисунок, содержащий красный график. Когда ответы будут даны, верните его обратно, чтобы проверить результат. И только после этого смотрите моё решение.

Внимание: Для усиления обучающего эффекта ответы и решения загружаются отдельно для каждой задачи последовательным нажатием кнопок на желтом фоне. (Когда задач много, кнопки могут появиться с задержкой. Если кнопок не видно совсем, проверьте, разрешен ли в вашем браузере JavaScript. )

1) Пользуясь графиком производной φ” 2 (x ) (в нашем случае это зеленый график), определите какое из 2-ух значений функции больше φ 2 (−3) или φ 2 (−2)?

По графику производной видно, что на участке [−3;−2] её значения строго положительны, значит функция на этом участке только возрастает, поэтому значение функции в левом конце x = −3 меньше, чем её значение в правом конце x = −2.

Ответ: φ 2 (−3) φ 2 (−2)

2) Пользуясь графиком первообразной Φ 2 (x ) (в нашем случае это синий график), определите какое из 2-ух значений функции больше φ 2 (−1) или φ 2 (4)?

По графику первообразной видно, что точка x = −1 находится на участке возрастания, следовательно значение соответсвующей производной положительно. Точка x = 4 находится на участке убывания и значение соответствующей производной отрицательно. Поскольку положительное значение больше отрицательного, делаем вывод – значение неизвестной функции, которая как раз и является производной, в точке 4 меньше, чем в точке −1.

Ответ: φ 2 (−1) > φ 2 (4)

Подобных вопросов по отсутствующему графику можно задать много, что обуславливает большое разноообразие задач с кратким ответом, построенных по такой же схеме. Попробуйте решить некоторые из них.

Задачи на определение характеристик производной по графику функции.


Рисунок 1.


Рисунок 2.

Задача 1

y = f (x ), определенной на интервале (−10,5;19). Определите количество целых точек, в которых производная функции положительна.

Производная функции положительна на тех участках, где функция возрастает. По рисунку видно, что это промежутки (−10,5;−7,6), (−1;8,2) и (15,7;19). Перечислим целые точки внутри этих интервалов: “−10″,”−9”, “−8″,”0”, “1”,”2″, “3”,”4″, “5”,”6″, “7”,”8″, “16”,”17″, “18”. Всего 15 точек.

Ответ: 15

Замечания.
1. Когда в задачах о графиках функций требуют назвать “точки”, как правило, имеют в виду только значения аргумента x , которые являются абсциссами соответствующих точек, расположенных на графике. Ординаты этих точек – значения функции, они являются зависимыми и могут быть легко вычислены при необходимости.
2. При перечислении точек мы не учитывали края интервалов, так как функция в этих точках не возрастает и не убывает, а “разворачивается”. Производная в таких точках не положительна и не отрицательна, она равна нулю, поэтому они называются стационарными точками. Кроме того, мы не рассматриваем здесь границы области определения, потому что в условии сказано, что это интервал.

Задача 2

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Определите количество целых точек, в которых производная функции f ” (x ) отрицательна.

Производная функции отрицательна на тех участках, где функция убывает. По рисунку видно, что это промежутки (−7,6;−1) и (8,2;15,7). Целые точки внутри этих интервалов: “−7″,”−6”, “−5″,”−4”, “−3″,”−2”, “9”,”10″, “11”,”12″, “13”,”14″, “15”. Всего 13 точек.

Ответ: 13

См. замечания к предыдущей задаче.

Для решения следующих задач нужно вспомнить еще одно определение.

Точки максимума и минимума функции объединяются общим названием – точки экстремума .

В этих точках производная функции либо равна нулю, либо не существует (необходимое условие экстремума ).
Однако необходимое условие – это признак, но не гарантия существования экстремума функции. Достаточным условием экстремума является смена знака производной: если производная в точке меняет знак с “+” на “−”, то это точка максимума функции; если производная в точке меняет знак с “−” на “+” , то это точка минимума функции; если в точке производная функции равна нулю, либо не существует, но знак производной при переходе через эту точку не меняется на противоположный, то указанная точка не является точкой экстремума функции. Это может быть точка перегиба, точка разрыва или точка излома графика функции.

Задача 3

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 6 или совпадает с ней.

Вспомним, что уравнение прямой имеет вид y = kx + b , где k – коэффициент наклона этой прямой к оси Ox . В нашем случае k = 0, т.е. прямая y = 6 не наклонена, а параллельна оси Ox . Значит искомые касательные также должны быть параллельны оси Ox и также должны иметь коэффициент наклона 0. Таким свойством касательные обладают в точках экстремумов функций. Поэтому для ответа на вопрос нужно просто посчитать все точки экстремумов на графике. Здесь их 4 – две точки максимума и две точки минимума.

Ответ: 4

Задача 4

Функции y = f (x ), определенной на интервале (−11;23). Найдите сумму точек экстремума функции на отрезке .

На указанном отрезке мы видим 2 точки экстремума. Максимум функции достигается в точке x 1 = 4, минимум в точке x 2 = 8.
x 1 + x 2 = 4 + 8 = 12.

Ответ: 12

Задача 5

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Найдите количество точек, в которых производная функции f ” (x ) равна 0.

Производная функции равна нулю в точках экстремума, которых на графике видно 4:
2 точки максимума и 2 точки минимума.

Ответ: 4

Задачи на определение характеристик функции по графику её производной.


Рисунок 1.

Рисунок 2.

Задача 6

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). В какой точке отрезка [−6;2] функция f (x ) принимает наибольшее значение.

На указанном отрезке производная нигде не была положительной, следовательно функция не возрастала. Она убывала или проходила через стационарные точки. Таким образом, наибольшего значения функция достигала на левой границе отрезка: x = −6.

Ответ: −6

Замечание: По графику производной видно, что на отрезке [−6;2] она равна нулю трижды: в точках x = −6, x = −2, x = 2. Но в точке x = −2 она не меняла знака, значит в этой точке не могло быть экстремума функции. Скорее всего там была точка перегиба графика исходной функции.

Задача 7

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). В какой точке отрезка функция принимает наименьшее значение.

На отрезке производная строго положительна, следовательно функция на этом участке только возрастала. Таким образом, наименьшего значения функция достигала на левой границе отрезка: x = 3.

Ответ: 3

Задача 8

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек максимума функции f (x ), принадлежащих отрезку [−5;10].

Согласно необходимому условию экстремума максимум функции может быть в точках, где её производная равна нулю. На заданном отрезке это точки: x = −2, x = 2, x = 6, x = 10. Но согласно достаточному условию он точно будет только в тех из них, где знак производной меняется с “+” на “−”. На графике производной мы видим, что из перечисленных точек такой является только точка x = 6.

Ответ: 1

Задача 9

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек экстремума функции f (x ), принадлежащих отрезку .

Экстремумы функции могут быть в тех точках, где её производная равна 0. На заданном отрезке графика производной мы видим 5 таких точек: x = 2, x = 6, x = 10, x = 14, x = 18. Но в точке x = 14 производная не поменяла знак, следовательно её надо исключить из рассмотрения. Таким образом, остаются 4 точки.

Ответ: 4

Задача 10

На рисунке 1 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−10,5;19). Найдите промежутки возрастания функции f (x ). В ответе укажите длину наибольшего из них.

Промежутки возрастания функции совпадают с промежутками положительности производной. На графике мы видим их три – (−9;−7), (4;12), (18;19). Самый длинный из них второй. Его длина l = 12 − 4 = 8.

Ответ: 8

Задача 11

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек, в которых касательная к графику функции f (x ) параллельна прямой y = −2x − 11 или совпадает с ней.

Угловой коэффициент (он же тангенс угла наклона) заданной прямой k = −2. Нас интересуют параллельные или совпадающие касательные, т.е. прямые с таким же наклоном. Исходя из геометрического смысла производной – угловой коэффициент касательной в рассматриваемой точке графика функции, пересчитываем точки, в которых производная равна −2. На рисунке 2 таких точек 9. Их удобно считать по пересечениям графика и линии координатной сетки, проходящей через значение −2 на оси Oy .

Ответ: 9

Как видите, по одному и тому же графику можно задать самые разнообразные вопросы о поведении функции и её производной. Также один тот же вопрос можно отнести к графикам разных функций. Будьте внимательны при решении этой задачи на экзамене, и она покажется Вам очень легкой. Другие виды задач этого задания – на геометрический смысл первообразной – будут рассмотрены в другом разделе.

Производная функции – одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна . Мы не будем сейчас стремиться к математической строгости изложения. Самое главное – понять смысл.

Запомним определение:

Производная – это скорость изменения функции.

На рисунке – графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден – третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная , – разная. Что касается Матвея – у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами – насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной – то есть может меняться быстрее или медленнее.

Производная функции обозначается .

Покажем, как найти с помощью графика.

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого – тангенс угла наклона касательной .

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Обратите внимание – в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника :

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике под номером .

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Величина в этом уравнении называется угловым коэффициентом прямой . Она равна тангенсу угла наклона прямой к оси .

.

Мы получаем, что

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других – убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол с положительным направлением оси . Значит, в точке производная положительна.

В точке наша функция убывает. Касательная в этой точке образует тупой угол с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка – точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке – точке минимума – производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

возрастаетточка максимумаубываетточка минимумавозрастает
+00+

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое – на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая :

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала – и после точки продолжает возрастать. Знак производной не меняется – она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется

В задаче B9 дается график функции или производной, по которому требуется определить одну из следующих величин:

  1. Значение производной в некоторой точке x 0 ,
  2. Точки максимума или минимума (точки экстремума),
  3. Интервалы возрастания и убывания функции (интервалы монотонности).

Функции и производные, представленные в этой задаче, всегда непрерывны, что значительно упрощает решение. Не смотря на то, что задача относится к разделу математического анализа, она вполне по силам даже самым слабым ученикам, поскольку никаких глубоких теоретических познаний здесь не требуется.

Для нахождения значения производной, точек экстремума и интервалов монотонности существуют простые и универсальные алгоритмы — все они будут рассмотрены ниже.

Внимательно читайте условие задачи B9, чтобы не допускать глупых ошибок: иногда попадаются довольно объемные тексты, но важных условий, которые влияют на ход решения, там немного.

Вычисление значения производной. Метод двух точек

Если в задаче дан график функции f(x), касательная к этому графику в некоторой точке x 0 , и требуется найти значение производной в этой точке, применяется следующий алгоритм:

  1. Найти на графике касательной две «адекватные» точки: их координаты должны быть целочисленными. Обозначим эти точки A (x 1 ; y 1) и B (x 2 ; y 2). Правильно выписывайте координаты — это ключевой момент решения, и любая ошибка здесь приводит к неправильному ответу.
  2. Зная координаты, легко вычислить приращение аргумента Δx = x 2 − x 1 и приращение функции Δy = y 2 − y 1 .
  3. Наконец, находим значение производной D = Δy/Δx. Иными словами, надо разделить приращение функции на приращение аргумента — и это будет ответ.

Еще раз отметим: точки A и B надо искать именно на касательной, а не на графике функции f(x), как это часто случается. Касательная обязательно будет содержать хотя бы две таких точки — иначе задача составлена некорректно.

Рассмотрим точки A (−3; 2) и B (−1; 6) и найдем приращения:
Δx = x 2 − x 1 = −1 − (−3) = 2; Δy = y 2 − y 1 = 6 − 2 = 4.

Найдем значение производной: D = Δy/Δx = 4/2 = 2.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

Рассмотрим точки A (0; 3) и B (3; 0), найдем приращения:
Δx = x 2 − x 1 = 3 − 0 = 3; Δy = y 2 − y 1 = 0 − 3 = −3.

Теперь находим значение производной: D = Δy/Δx = −3/3 = −1.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

Рассмотрим точки A (0; 2) и B (5; 2) и найдем приращения:
Δx = x 2 − x 1 = 5 − 0 = 5; Δy = y 2 − y 1 = 2 − 2 = 0.

Осталось найти значение производной: D = Δy/Δx = 0/5 = 0.

Из последнего примера можно сформулировать правило: если касательная параллельна оси OX, производная функции в точке касания равна нулю. В этом случае даже не надо ничего считать — достаточно взглянуть на график.

Вычисление точек максимума и минимума

Иногда вместо графика функции в задаче B9 дается график производной и требуется найти точку максимума или минимума функции. При таком раскладе метод двух точек бесполезен, но существует другой, еще более простой алгоритм. Для начала определимся с терминологией:

  1. Точка x 0 называется точкой максимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x 0) ≥ f(x).
  2. Точка x 0 называется точкой минимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x 0) ≤ f(x).

Для того чтобы найти точки максимума и минимума по графику производной, достаточно выполнить следующие шаги:

  1. Перечертить график производной, убрав всю лишнюю информацию. Как показывает практика, лишние данные только мешают решению. Поэтому отмечаем на координатной оси нули производной — и все.
  2. Выяснить знаки производной на промежутках между нулями. Если для некоторой точки x 0 известно, что f’(x 0) ≠ 0, то возможны лишь два варианта: f’(x 0) ≥ 0 или f’(x 0) ≤ 0. Знак производной легко определить по исходному чертежу: если график производной лежит выше оси OX, значит f’(x) ≥ 0. И наоборот, если график производной проходит под осью OX, то f’(x) ≤ 0.
  3. Снова проверяем нули и знаки производной. Там, где знак меняется с минуса на плюс, находится точка минимума. И наоборот, если знак производной меняется с плюса на минус, это точка максимума. Отсчет всегда ведется слева направо.

Эта схема работает только для непрерывных функций — других в задаче B9 не встречается.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−5; 5]. Найдите точку минимума функции f(x) на этом отрезке.

Избавимся от лишней информации — оставим только границы [−5; 5] и нули производной x = −3 и x = 2,5. Также отметим знаки:

Очевидно, в точке x = −3 знак производной меняется с минуса на плюс. Это и есть точка минимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7]. Найдите точку максимума функции f(x) на этом отрезке.

Перечертим график, оставив на координатной оси только границы [−3; 7] и нули производной x = −1,7 и x = 5. Отметим на полученном графике знаки производной. Имеем:

Очевидно, в точке x = 5 знак производной меняется с плюса на минус — это точка максимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−6; 4]. Найдите количество точек максимума функции f(x), принадлежащих отрезку [−4; 3].

Из условия задачи следует, что достаточно рассмотреть только часть графика, ограниченную отрезком [−4; 3]. Поэтому строим новый график, на котором отмечаем только границы [−4; 3] и нули производной внутри него. А именно, точки x = −3,5 и x = 2. Получаем:

На этом графике есть лишь одна точка максимума x = 2. Именно в ней знак производной меняется с плюса на минус.

Небольшое замечание по поводу точек с нецелочисленными координатами. Например, в последней задаче была рассмотрена точка x = −3,5, но с тем же успехом можно взять x = −3,4. Если задача составлена корректно, такие изменения не должны влиять на ответ, поскольку точки «без определенного места жительства» не принимают непосредственного участия в решении задачи. Разумеется, с целочисленными точками такой фокус не пройдет.

Нахождение интервалов возрастания и убывания функции

В такой задаче, подобно точкам максимума и минимума, предлагается по графику производной отыскать области, в которых сама функция возрастает или убывает. Для начала определим, что такое возрастание и убывание:

  1. Функция f(x) называется возрастающей на отрезке если для любых двух точек x 1 и x 2 из этого отрезка верно утверждение: x 1 ≤ x 2 ⇒ f(x 1) ≤ f(x 2). Другими словами, чем больше значение аргумента, тем больше значение функции.
  2. Функция f(x) называется убывающей на отрезке если для любых двух точек x 1 и x 2 из этого отрезка верно утверждение: x 1 ≤ x 2 ⇒ f(x 1) ≥ f(x 2). Т.е. большему значению аргумента соответствует меньшее значение функции.

Сформулируем достаточные условия возрастания и убывания:

  1. Для того чтобы непрерывная функция f(x) возрастала на отрезке , достаточно, чтобы ее производная внутри отрезка была положительна, т.е. f’(x) ≥ 0.
  2. Для того чтобы непрерывная функция f(x) убывала на отрезке , достаточно, чтобы ее производная внутри отрезка была отрицательна, т.е. f’(x) ≤ 0.

Примем эти утверждения без доказательств. Таким образом, получаем схему для нахождения интервалов возрастания и убывания, которая во многом похожа на алгоритм вычисления точек экстремума:

  1. Убрать всю лишнюю информацию. На исходном графике производной нас интересуют в первую очередь нули функции, поэтому оставим только их.
  2. Отметить знаки производной на интервалах между нулями. Там, где f’(x) ≥ 0, функция возрастает, а где f’(x) ≤ 0 — убывает. Если в задаче установлены ограничения на переменную x, дополнительно отмечаем их на новом графике.
  3. Теперь, когда нам известно поведение функции и ограничения, остается вычислить требуемую в задаче величину.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7,5]. Найдите промежутки убывания функции f(x). В ответе укажите сумму целых чисел, входящих в эти промежутки.

Как обычно, перечертим график и отметим границы [−3; 7,5], а также нули производной x = −1,5 и x = 5,3. Затем отметим знаки производной. Имеем:

Поскольку на интервале (− 1,5) производная отрицательна, это и есть интервал убывания функции. Осталось просуммировать все целые числа, которые находятся внутри этого интервала:
−1 + 0 + 1 + 2 + 3 + 4 + 5 = 14.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−10; 4]. Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.

Избавимся от лишней информации. Оставим только границы [−10; 4] и нули производной, которых в этот раз оказалось четыре: x = −8, x = −6, x = −3 и x = 2. Отметим знаки производной и получим следующую картинку:

Нас интересуют промежутки возрастания функции, т.е. такие, где f’(x) ≥ 0. На графике таких промежутков два: (−8; −6) и (−3; 2). Вычислим их длины:
l 1 = − 6 − (−8) = 2;
l 2 = 2 − (−3) = 5.

Поскольку требуется найти длину наибольшего из интервалов, в ответ записываем значение l 2 = 5.

Сергей Никифоров

Если производная функции знакопостоянна на интервале, а сама функция непрерывна на его границах, то граничные точки при­со­еди­ня­ют­ся как к про­ме­жут­кам воз­рас­та­ния, так и к про­ме­жут­кам убы­ва­ния, что полностью соответствует определению возрастающих и убывающих функций.

Фарит Ямаев 26.10.2016 18:50

Здравствуйте. Как же (на каком основании) можно утверждать, что в точке, где производная равна нулю, функция возрастает. Приведите доводы. Иначе, это просто чей-то каприз. По какой теореме? А также доказательство. Спасибо.

Служба поддержки

Значение производной в точке не имеет прямого отношения к возрастанию функции на промежутке. Рассмотрите, например, функции – все они возрастают на отрезке

Владлен Писарев 02.11.2016 22:21

Если функция возрастает на интервале (а;b) и определена и непрерывна в точках а и b, то она возрастает на отрезке . Т.е. точка x=2 входит в данный промежуток.

Хотя, как правило возрастание и убывание рассматривается не на отрезке, а на интервале.

Но в самой точке x=2, функция имеет локальный минимум. И как объяснять детям, что когда они ищут точки возрастания (убывания), то точки локального экстремума не считаем, а в промежутки возрастания (убывания) – входят.

Учитывая, что первая часть ЕГЭ для “средней группы детского сада”, то наверное такие нюансы- перебор.

Отдельно, большое спасибо за “Решу ЕГЭ” всем сотрудникам- отличное пособие.

Сергей Никифоров

Простое объяснение можно получить, если отталкиваться от определения возрастающей/убывающей функции. Напомню, что звучит оно так: функция называется возрастающей/убывающей на промежутке, если большему аргументу функции соответствует большее/меньшее значение функции. Такое определение никак не использует понятие производной, поэтому вопросов о точках, где производная обращается в ноль возникнуть не может.

Ирина Ишмакова 20.11.2017 11:46

Добрый день. Здесь в комментариях я вижу убеждения, что границы включать нужно. Допустим, я с этим соглашусь. Но посмотрите, пожалуйста, ваше решение к задаче 7089. Там при указании промежутков возрастания границы не включаются. И это влияет на ответ. Т.е. решения заданий 6429 и 7089 противоречат друг другу. Проясните, пожалуйста, эту ситуацию.

Александр Иванов

В заданиях 6429 и 7089 совершенно разные вопросы.

В одном про промежутки возрастания, а в другом про промежутки с положительной производной.

Противоречия нет.

Экстремумы входят в промежутки возрастания и убывания, но точки, в которых производная равна нулю, не входят в промежутки, на которых производная положительна.

A Z 28.01.2019 19:09

Коллеги, есть понятие возрастания в точке

(см. Фихтенгольц например)

и ваше понимание возрастания в точке x=2 противочет классическому определению.

Возрастание и убывание это процесс и хотелось бы придерживаться этого принципа.

В любом интервале, который содержит точку x=2, функция не является возрастающей. Поэтому включение данный точки x=2 процесс особый.

Обычно, чтобы избежать путаницы о включении концов интервалов говорят отдельно.

Александр Иванов

Функция y=f(x) называется возрастающей на некотором промежутке, если бо́льшему значению аргумента из этого промежутка соответствует бо́льшее значение функции.

В точке х=2 функция дифференцируема, а на интервале (2; 6) производная положительна, значит, на промежутке }

Когда значение производной функции отрицательны. Производная функции. Геометрический смысл производной. Задачи на определение характеристик производной по графику функции

В задаче B9 дается график функции или производной, по которому требуется определить одну из следующих величин:

  1. Значение производной в некоторой точке x 0 ,
  2. Точки максимума или минимума (точки экстремума),
  3. Интервалы возрастания и убывания функции (интервалы монотонности).

Функции и производные, представленные в этой задаче, всегда непрерывны, что значительно упрощает решение. Не смотря на то, что задача относится к разделу математического анализа, она вполне по силам даже самым слабым ученикам, поскольку никаких глубоких теоретических познаний здесь не требуется.

Для нахождения значения производной, точек экстремума и интервалов монотонности существуют простые и универсальные алгоритмы — все они будут рассмотрены ниже.

Внимательно читайте условие задачи B9, чтобы не допускать глупых ошибок: иногда попадаются довольно объемные тексты, но важных условий, которые влияют на ход решения, там немного.

Вычисление значения производной. Метод двух точек

Если в задаче дан график функции f(x), касательная к этому графику в некоторой точке x 0 , и требуется найти значение производной в этой точке, применяется следующий алгоритм:

  1. Найти на графике касательной две «адекватные» точки: их координаты должны быть целочисленными. Обозначим эти точки A (x 1 ; y 1) и B (x 2 ; y 2). Правильно выписывайте координаты — это ключевой момент решения, и любая ошибка здесь приводит к неправильному ответу.
  2. Зная координаты, легко вычислить приращение аргумента Δx = x 2 − x 1 и приращение функции Δy = y 2 − y 1 .
  3. Наконец, находим значение производной D = Δy/Δx. Иными словами, надо разделить приращение функции на приращение аргумента — и это будет ответ.

Еще раз отметим: точки A и B надо искать именно на касательной, а не на графике функции f(x), как это часто случается. Касательная обязательно будет содержать хотя бы две таких точки — иначе задача составлена некорректно.

Рассмотрим точки A (−3; 2) и B (−1; 6) и найдем приращения:
Δx = x 2 − x 1 = −1 − (−3) = 2; Δy = y 2 − y 1 = 6 − 2 = 4.

Найдем значение производной: D = Δy/Δx = 4/2 = 2.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

Рассмотрим точки A (0; 3) и B (3; 0), найдем приращения:
Δx = x 2 − x 1 = 3 − 0 = 3; Δy = y 2 − y 1 = 0 − 3 = −3.

Теперь находим значение производной: D = Δy/Δx = −3/3 = −1.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

Рассмотрим точки A (0; 2) и B (5; 2) и найдем приращения:
Δx = x 2 − x 1 = 5 − 0 = 5; Δy = y 2 − y 1 = 2 − 2 = 0.

Осталось найти значение производной: D = Δy/Δx = 0/5 = 0.

Из последнего примера можно сформулировать правило: если касательная параллельна оси OX, производная функции в точке касания равна нулю. В этом случае даже не надо ничего считать — достаточно взглянуть на график.

Вычисление точек максимума и минимума

Иногда вместо графика функции в задаче B9 дается график производной и требуется найти точку максимума или минимума функции. При таком раскладе метод двух точек бесполезен, но существует другой, еще более простой алгоритм. Для начала определимся с терминологией:

  1. Точка x 0 называется точкой максимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x 0) ≥ f(x).
  2. Точка x 0 называется точкой минимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x 0) ≤ f(x).

Для того чтобы найти точки максимума и минимума по графику производной, достаточно выполнить следующие шаги:

  1. Перечертить график производной, убрав всю лишнюю информацию. Как показывает практика, лишние данные только мешают решению. Поэтому отмечаем на координатной оси нули производной — и все.
  2. Выяснить знаки производной на промежутках между нулями. Если для некоторой точки x 0 известно, что f’(x 0) ≠ 0, то возможны лишь два варианта: f’(x 0) ≥ 0 или f’(x 0) ≤ 0. Знак производной легко определить по исходному чертежу: если график производной лежит выше оси OX, значит f’(x) ≥ 0. И наоборот, если график производной проходит под осью OX, то f’(x) ≤ 0.
  3. Снова проверяем нули и знаки производной. Там, где знак меняется с минуса на плюс, находится точка минимума. И наоборот, если знак производной меняется с плюса на минус, это точка максимума. Отсчет всегда ведется слева направо.

Эта схема работает только для непрерывных функций — других в задаче B9 не встречается.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−5; 5]. Найдите точку минимума функции f(x) на этом отрезке.

Избавимся от лишней информации — оставим только границы [−5; 5] и нули производной x = −3 и x = 2,5. Также отметим знаки:

Очевидно, в точке x = −3 знак производной меняется с минуса на плюс. Это и есть точка минимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7]. Найдите точку максимума функции f(x) на этом отрезке.

Перечертим график, оставив на координатной оси только границы [−3; 7] и нули производной x = −1,7 и x = 5. Отметим на полученном графике знаки производной. Имеем:

Очевидно, в точке x = 5 знак производной меняется с плюса на минус — это точка максимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−6; 4]. Найдите количество точек максимума функции f(x), принадлежащих отрезку [−4; 3].

Из условия задачи следует, что достаточно рассмотреть только часть графика, ограниченную отрезком [−4; 3]. Поэтому строим новый график, на котором отмечаем только границы [−4; 3] и нули производной внутри него. А именно, точки x = −3,5 и x = 2. Получаем:

На этом графике есть лишь одна точка максимума x = 2. Именно в ней знак производной меняется с плюса на минус.

Небольшое замечание по поводу точек с нецелочисленными координатами. Например, в последней задаче была рассмотрена точка x = −3,5, но с тем же успехом можно взять x = −3,4. Если задача составлена корректно, такие изменения не должны влиять на ответ, поскольку точки «без определенного места жительства» не принимают непосредственного участия в решении задачи. Разумеется, с целочисленными точками такой фокус не пройдет.

Нахождение интервалов возрастания и убывания функции

В такой задаче, подобно точкам максимума и минимума, предлагается по графику производной отыскать области, в которых сама функция возрастает или убывает. Для начала определим, что такое возрастание и убывание:

  1. Функция f(x) называется возрастающей на отрезке если для любых двух точек x 1 и x 2 из этого отрезка верно утверждение: x 1 ≤ x 2 ⇒ f(x 1) ≤ f(x 2). Другими словами, чем больше значение аргумента, тем больше значение функции.
  2. Функция f(x) называется убывающей на отрезке если для любых двух точек x 1 и x 2 из этого отрезка верно утверждение: x 1 ≤ x 2 ⇒ f(x 1) ≥ f(x 2). Т.е. большему значению аргумента соответствует меньшее значение функции.

Сформулируем достаточные условия возрастания и убывания:

  1. Для того чтобы непрерывная функция f(x) возрастала на отрезке , достаточно, чтобы ее производная внутри отрезка была положительна, т.е. f’(x) ≥ 0.
  2. Для того чтобы непрерывная функция f(x) убывала на отрезке , достаточно, чтобы ее производная внутри отрезка была отрицательна, т.е. f’(x) ≤ 0.

Примем эти утверждения без доказательств. Таким образом, получаем схему для нахождения интервалов возрастания и убывания, которая во многом похожа на алгоритм вычисления точек экстремума:

  1. Убрать всю лишнюю информацию. На исходном графике производной нас интересуют в первую очередь нули функции, поэтому оставим только их.
  2. Отметить знаки производной на интервалах между нулями. Там, где f’(x) ≥ 0, функция возрастает, а где f’(x) ≤ 0 — убывает. Если в задаче установлены ограничения на переменную x, дополнительно отмечаем их на новом графике.
  3. Теперь, когда нам известно поведение функции и ограничения, остается вычислить требуемую в задаче величину.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7,5]. Найдите промежутки убывания функции f(x). В ответе укажите сумму целых чисел, входящих в эти промежутки.

Как обычно, перечертим график и отметим границы [−3; 7,5], а также нули производной x = −1,5 и x = 5,3. Затем отметим знаки производной. Имеем:

Поскольку на интервале (− 1,5) производная отрицательна, это и есть интервал убывания функции. Осталось просуммировать все целые числа, которые находятся внутри этого интервала:
−1 + 0 + 1 + 2 + 3 + 4 + 5 = 14.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−10; 4]. Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.

Избавимся от лишней информации. Оставим только границы [−10; 4] и нули производной, которых в этот раз оказалось четыре: x = −8, x = −6, x = −3 и x = 2. Отметим знаки производной и получим следующую картинку:

Нас интересуют промежутки возрастания функции, т.е. такие, где f’(x) ≥ 0. На графике таких промежутков два: (−8; −6) и (−3; 2). Вычислим их длины:
l 1 = − 6 − (−8) = 2;
l 2 = 2 − (−3) = 5.

Поскольку требуется найти длину наибольшего из интервалов, в ответ записываем значение l 2 = 5.

Производная функции – одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна . Мы не будем сейчас стремиться к математической строгости изложения. Самое главное – понять смысл.

Запомним определение:

Производная – это скорость изменения функции.

На рисунке – графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден – третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная , – разная. Что касается Матвея – у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами – насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной – то есть может меняться быстрее или медленнее.

Производная функции обозначается .

Покажем, как найти с помощью графика.

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого – тангенс угла наклона касательной .

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Обратите внимание – в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника :

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике под номером .

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Величина в этом уравнении называется угловым коэффициентом прямой . Она равна тангенсу угла наклона прямой к оси .

.

Мы получаем, что

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других – убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол с положительным направлением оси . Значит, в точке производная положительна.

В точке наша функция убывает. Касательная в этой точке образует тупой угол с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка – точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке – точке минимума – производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

возрастаетточка максимумаубываетточка минимумавозрастает
+00+

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое – на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая :

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала – и после точки продолжает возрастать. Знак производной не меняется – она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется

Этот раздел содержит задачи ЕГЭ по математике на темы, связанные с исследованием функций и их производных.

В демонстрационных вариантах ЕГЭ 2020 года они могут встретиться под номером 14 для базового уровня и под номером 7 для профильного уровня.

Посмотрите внимательно на эти три графика функций.
Заметили ли вы, что эти функции в некотором смысле “родственники”?
Например, на тех участках, где график зеленой функции расположен выше нуля, красная функция возрастает. На тех участках, где график зеленой функции ниже нуля, красная функция убывает.
Аналогичные замечания можно сделать относительно красного и синего графиков.
Также можно заметить, что нули зеленой функции (точки x = −1 и x = 3) совпадают с точками экстремумов красного графика: при x = −1 на красном графике мы видим локальный максимум, при х = 3 на красном графике локальный минимум.
Нетрудно заметить, что локальные максимумы и минимумы синего графика достигаются в тех же точках, где красный график проходит через значение y = 0.
Можно сделать еще несколько выводов об особенностях поведения этих графиков, потому что они действительно связаны между собой. Посмотрите на формулы функций, расположенные под каждым из графиков, и путем вычислений убедитесь, что каждая предыдущая является производной для последующей и, соответственно, каждая следующая является одной из превообразных предыдущей функции.

φ 1 (x ) = φ” 2 (x ) φ 2 (x ) = Φ 1 (x )
φ 2 (x ) = φ” 3 (x ) φ 3 (x ) = Φ 2 (x )

Вспомним, что мы знаем о производной:

Производная функции y = f (x ) в точке х выражает скорость изменения функции в точке x .

Физический смысл производной заключается в том, что производная выражает скорость протекания процесса, описываемого зависимостью y = f(x).

Геометрический смысл производной заключается в том, что её значение в рассматриваемой точке равняется угловому коэффициенту касательной, проведенной к графику дифференцируемой функции в этой точке.

А теперь пусть красного графика на рисунке нет. Допустим, что и формулы функций нам неизвестны.

Могу ли я спросить вас о чем то, связанном с поведением функции φ 2 (x ), если известно, что она является производной функции φ 3 (x ) и первообразной функции φ 1 (x )?
Могу. И на многие вопросы можно дать точный ответ, ведь мы знаем, что производная является характеристикой скорости изменения функции, поэтому можем судить о некоторых особенностях поведения одной из этих функций, глядя на график другой.

Прежде, чем отвечать на следующие вопросы, прокрутите страницу вверх так, чтобы скрылся верхний рисунок, содержащий красный график. Когда ответы будут даны, верните его обратно, чтобы проверить результат. И только после этого смотрите моё решение.

Внимание: Для усиления обучающего эффекта ответы и решения загружаются отдельно для каждой задачи последовательным нажатием кнопок на желтом фоне. (Когда задач много, кнопки могут появиться с задержкой. Если кнопок не видно совсем, проверьте, разрешен ли в вашем браузере JavaScript. )

1) Пользуясь графиком производной φ” 2 (x ) (в нашем случае это зеленый график), определите какое из 2-ух значений функции больше φ 2 (−3) или φ 2 (−2)?

По графику производной видно, что на участке [−3;−2] её значения строго положительны, значит функция на этом участке только возрастает, поэтому значение функции в левом конце x = −3 меньше, чем её значение в правом конце x = −2.

Ответ: φ 2 (−3) φ 2 (−2)

2) Пользуясь графиком первообразной Φ 2 (x ) (в нашем случае это синий график), определите какое из 2-ух значений функции больше φ 2 (−1) или φ 2 (4)?

По графику первообразной видно, что точка x = −1 находится на участке возрастания, следовательно значение соответсвующей производной положительно. Точка x = 4 находится на участке убывания и значение соответствующей производной отрицательно. Поскольку положительное значение больше отрицательного, делаем вывод – значение неизвестной функции, которая как раз и является производной, в точке 4 меньше, чем в точке −1.

Ответ: φ 2 (−1) > φ 2 (4)

Подобных вопросов по отсутствующему графику можно задать много, что обуславливает большое разноообразие задач с кратким ответом, построенных по такой же схеме. Попробуйте решить некоторые из них.

Задачи на определение характеристик производной по графику функции.


Рисунок 1.


Рисунок 2.

Задача 1

y = f (x ), определенной на интервале (−10,5;19). Определите количество целых точек, в которых производная функции положительна.

Производная функции положительна на тех участках, где функция возрастает. По рисунку видно, что это промежутки (−10,5;−7,6), (−1;8,2) и (15,7;19). Перечислим целые точки внутри этих интервалов: “−10″,”−9”, “−8″,”0”, “1”,”2″, “3”,”4″, “5”,”6″, “7”,”8″, “16”,”17″, “18”. Всего 15 точек.

Ответ: 15

Замечания.
1. Когда в задачах о графиках функций требуют назвать “точки”, как правило, имеют в виду только значения аргумента x , которые являются абсциссами соответствующих точек, расположенных на графике. Ординаты этих точек – значения функции, они являются зависимыми и могут быть легко вычислены при необходимости.
2. При перечислении точек мы не учитывали края интервалов, так как функция в этих точках не возрастает и не убывает, а “разворачивается”. Производная в таких точках не положительна и не отрицательна, она равна нулю, поэтому они называются стационарными точками. Кроме того, мы не рассматриваем здесь границы области определения, потому что в условии сказано, что это интервал.

Задача 2

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Определите количество целых точек, в которых производная функции f ” (x ) отрицательна.

Производная функции отрицательна на тех участках, где функция убывает. По рисунку видно, что это промежутки (−7,6;−1) и (8,2;15,7). Целые точки внутри этих интервалов: “−7″,”−6”, “−5″,”−4”, “−3″,”−2”, “9”,”10″, “11”,”12″, “13”,”14″, “15”. Всего 13 точек.

Ответ: 13

См. замечания к предыдущей задаче.

Для решения следующих задач нужно вспомнить еще одно определение.

Точки максимума и минимума функции объединяются общим названием – точки экстремума .

В этих точках производная функции либо равна нулю, либо не существует (необходимое условие экстремума ).
Однако необходимое условие – это признак, но не гарантия существования экстремума функции. Достаточным условием экстремума является смена знака производной: если производная в точке меняет знак с “+” на “−”, то это точка максимума функции; если производная в точке меняет знак с “−” на “+” , то это точка минимума функции; если в точке производная функции равна нулю, либо не существует, но знак производной при переходе через эту точку не меняется на противоположный, то указанная точка не является точкой экстремума функции. Это может быть точка перегиба, точка разрыва или точка излома графика функции.

Задача 3

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 6 или совпадает с ней.

Вспомним, что уравнение прямой имеет вид y = kx + b , где k – коэффициент наклона этой прямой к оси Ox . В нашем случае k = 0, т.е. прямая y = 6 не наклонена, а параллельна оси Ox . Значит искомые касательные также должны быть параллельны оси Ox и также должны иметь коэффициент наклона 0. Таким свойством касательные обладают в точках экстремумов функций. Поэтому для ответа на вопрос нужно просто посчитать все точки экстремумов на графике. Здесь их 4 – две точки максимума и две точки минимума.

Ответ: 4

Задача 4

Функции y = f (x ), определенной на интервале (−11;23). Найдите сумму точек экстремума функции на отрезке .

На указанном отрезке мы видим 2 точки экстремума. Максимум функции достигается в точке x 1 = 4, минимум в точке x 2 = 8.
x 1 + x 2 = 4 + 8 = 12.

Ответ: 12

Задача 5

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Найдите количество точек, в которых производная функции f ” (x ) равна 0.

Производная функции равна нулю в точках экстремума, которых на графике видно 4:
2 точки максимума и 2 точки минимума.

Ответ: 4

Задачи на определение характеристик функции по графику её производной.


Рисунок 1.

Рисунок 2.

Задача 6

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). В какой точке отрезка [−6;2] функция f (x ) принимает наибольшее значение.

На указанном отрезке производная нигде не была положительной, следовательно функция не возрастала. Она убывала или проходила через стационарные точки. Таким образом, наибольшего значения функция достигала на левой границе отрезка: x = −6.

Ответ: −6

Замечание: По графику производной видно, что на отрезке [−6;2] она равна нулю трижды: в точках x = −6, x = −2, x = 2. Но в точке x = −2 она не меняла знака, значит в этой точке не могло быть экстремума функции. Скорее всего там была точка перегиба графика исходной функции.

Задача 7

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). В какой точке отрезка функция принимает наименьшее значение.

На отрезке производная строго положительна, следовательно функция на этом участке только возрастала. Таким образом, наименьшего значения функция достигала на левой границе отрезка: x = 3.

Ответ: 3

Задача 8

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек максимума функции f (x ), принадлежащих отрезку [−5;10].

Согласно необходимому условию экстремума максимум функции может быть в точках, где её производная равна нулю. На заданном отрезке это точки: x = −2, x = 2, x = 6, x = 10. Но согласно достаточному условию он точно будет только в тех из них, где знак производной меняется с “+” на “−”. На графике производной мы видим, что из перечисленных точек такой является только точка x = 6.

Ответ: 1

Задача 9

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек экстремума функции f (x ), принадлежащих отрезку .

Экстремумы функции могут быть в тех точках, где её производная равна 0. На заданном отрезке графика производной мы видим 5 таких точек: x = 2, x = 6, x = 10, x = 14, x = 18. Но в точке x = 14 производная не поменяла знак, следовательно её надо исключить из рассмотрения. Таким образом, остаются 4 точки.

Ответ: 4

Задача 10

На рисунке 1 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−10,5;19). Найдите промежутки возрастания функции f (x ). В ответе укажите длину наибольшего из них.

Промежутки возрастания функции совпадают с промежутками положительности производной. На графике мы видим их три – (−9;−7), (4;12), (18;19). Самый длинный из них второй. Его длина l = 12 − 4 = 8.

Ответ: 8

Задача 11

На рисунке 2 изображен график f ” (x ) – производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек, в которых касательная к графику функции f (x ) параллельна прямой y = −2x − 11 или совпадает с ней.

Угловой коэффициент (он же тангенс угла наклона) заданной прямой k = −2. Нас интересуют параллельные или совпадающие касательные, т.е. прямые с таким же наклоном. Исходя из геометрического смысла производной – угловой коэффициент касательной в рассматриваемой точке графика функции, пересчитываем точки, в которых производная равна −2. На рисунке 2 таких точек 9. Их удобно считать по пересечениям графика и линии координатной сетки, проходящей через значение −2 на оси Oy .

Ответ: 9

Как видите, по одному и тому же графику можно задать самые разнообразные вопросы о поведении функции и её производной. Также один тот же вопрос можно отнести к графикам разных функций. Будьте внимательны при решении этой задачи на экзамене, и она покажется Вам очень легкой. Другие виды задач этого задания – на геометрический смысл первообразной – будут рассмотрены в другом разделе.

Сергей Никифоров

Если производная функции знакопостоянна на интервале, а сама функция непрерывна на его границах, то граничные точки при­со­еди­ня­ют­ся как к про­ме­жут­кам воз­рас­та­ния, так и к про­ме­жут­кам убы­ва­ния, что полностью соответствует определению возрастающих и убывающих функций.

Фарит Ямаев 26.10.2016 18:50

Здравствуйте. Как же (на каком основании) можно утверждать, что в точке, где производная равна нулю, функция возрастает. Приведите доводы. Иначе, это просто чей-то каприз. По какой теореме? А также доказательство. Спасибо.

Служба поддержки

Значение производной в точке не имеет прямого отношения к возрастанию функции на промежутке. Рассмотрите, например, функции – все они возрастают на отрезке

Владлен Писарев 02.11.2016 22:21

Если функция возрастает на интервале (а;b) и определена и непрерывна в точках а и b, то она возрастает на отрезке . Т.е. точка x=2 входит в данный промежуток.

Хотя, как правило возрастание и убывание рассматривается не на отрезке, а на интервале.

Но в самой точке x=2, функция имеет локальный минимум. И как объяснять детям, что когда они ищут точки возрастания (убывания), то точки локального экстремума не считаем, а в промежутки возрастания (убывания) – входят.

Учитывая, что первая часть ЕГЭ для “средней группы детского сада”, то наверное такие нюансы- перебор.

Отдельно, большое спасибо за “Решу ЕГЭ” всем сотрудникам- отличное пособие.

Сергей Никифоров

Простое объяснение можно получить, если отталкиваться от определения возрастающей/убывающей функции. Напомню, что звучит оно так: функция называется возрастающей/убывающей на промежутке, если большему аргументу функции соответствует большее/меньшее значение функции. Такое определение никак не использует понятие производной, поэтому вопросов о точках, где производная обращается в ноль возникнуть не может.

Ирина Ишмакова 20.11.2017 11:46

Добрый день. Здесь в комментариях я вижу убеждения, что границы включать нужно. Допустим, я с этим соглашусь. Но посмотрите, пожалуйста, ваше решение к задаче 7089. Там при указании промежутков возрастания границы не включаются. И это влияет на ответ. Т.е. решения заданий 6429 и 7089 противоречат друг другу. Проясните, пожалуйста, эту ситуацию.

Александр Иванов

В заданиях 6429 и 7089 совершенно разные вопросы.

В одном про промежутки возрастания, а в другом про промежутки с положительной производной.

Противоречия нет.

Экстремумы входят в промежутки возрастания и убывания, но точки, в которых производная равна нулю, не входят в промежутки, на которых производная положительна.

A Z 28.01.2019 19:09

Коллеги, есть понятие возрастания в точке

(см. Фихтенгольц например)

и ваше понимание возрастания в точке x=2 противочет классическому определению.

Возрастание и убывание это процесс и хотелось бы придерживаться этого принципа.

В любом интервале, который содержит точку x=2, функция не является возрастающей. Поэтому включение данный точки x=2 процесс особый.

Обычно, чтобы избежать путаницы о включении концов интервалов говорят отдельно.

Александр Иванов

Функция y=f(x) называется возрастающей на некотором промежутке, если бо́льшему значению аргумента из этого промежутка соответствует бо́льшее значение функции.

В точке х=2 функция дифференцируема, а на интервале (2; 6) производная положительна, значит, на промежутке }

Найдите значение производной функции в указанной точке. h (x) = x / {x – 5} Точка (6, 6)

Вопрос:

Найдите значение производной функции в указанной точке.

{eq} \ displaystyle h (x) = \ dfrac x {x – 5} {/ eq}

Point {eq} (6, \ 6) {/ eq}

Стоимость производной:

  • Значение производной функции в данной точке представляет скорость изменения функции в этой точке. 2} ~ \, \, \, && \ left [\ text {Это правило частного} \ right] \\ [0.{n-1} & & \ left [\ text {Это силовое правило дифференциации} \ right] \\ [0,3 см] \ end {align} \\

    $

    Ответ и объяснение: 1

    Дано

    $$ \ begin {align} \\ h (x) & = \ dfrac {x} {x – 5} \\ [0,3 см] (x, y) & = (6, \ 6) \\ [0,3 см] \ end {align} \\ $$

    Требуется:

    Решение

    Продифференцируем данное уравнение, применяя правило дифференцирования частных.2} && \ left [\ text {Plugin} ~ x = 6 \ right] \\ [0,3 см] h ‘(6) & = – \ dfrac {5} {1} \\ [0,3 см] h ‘(6) & = – 5 \\ [0,3 см] \ end {align} \\ $$

    Следовательно, {eq} \ displaystyle \ boldsymbol {h ‘(6) = – 5} {/ eq}

    AP Calculus Review: Оценка производных по графикам – Magoosh Blog

    Итак, вы, возможно, запомнили все производные правила. Вы можете получить f ‘(x) из f ( x ) независимо от того, насколько сложна функция.Но как вы оцениваете производные прямо по графику?

    Как мы увидим в этой обзорной статье, все дело в уклоне !

    Угол наклона производной меры

    Давайте начнем с фундаментальной связи между производными и графиками функций.

    Значение производной f ‘(a) равно наклону касательной к графику y = f ( x ) при x = a .

    Я рекомендую сначала освежить идею касательных линий. Вот несколько ресурсов, которые могут помочь.

    Пример – оценка производных с использованием касательных линий

    Используйте информацию на графике f ( x ) ниже, чтобы оценить значение f ‘(1).

    График параболы с касательной, присоединенной в точках (1, 1).

    Решение

    Помните, производные значения – это наклоны! Итак, f ‘(1) равно наклону касательной, прикрепленной к графику при x = 1.

    Все, что нужно, – это две точки на линии, чтобы определить наклон. Один момент легко заметить, потому что он также находится на самом графике f : (1, 1). Затем мы смотрим по касательной, пока не найдем другую точку, координаты которой легко оценить. Попробуйте найти точку, которая пересекает «перекресток», потому что тогда она будет иметь целочисленные координаты. Например, (2, 3), или (3, 5), или (0, -1) и т. Д.

    Я выберу (3, 5) в качестве второй точки. Однако, если вы выберете любую другую точку, пока она находится на касательной, ваш ответ должен быть равен (или очень близок) моему.

    Затем используйте формулу наклона ( RISE over RUN ), чтобы вычислить наклон касательной.

    Следовательно, f ‘(1) = 2.

    Увеличение, уменьшение и поворот

    Итак, первый пример, возможно, был довольно простым. Насколько сложно это может быть?

    Иногда нам нужно оценить всех производных значений! Другими словами, учитывая график функции f ( x ), должна быть возможность нарисовать график f ‘( x ).

    При использовании дифференцируемых функций следует помнить о трех вещах.

    • Если f увеличивается в интервале, тогда f ‘> 0 (выше оси x ) в этом интервале.
    • Если f убывает в интервале, тогда f ‘<0 (ниже оси x ) в этом интервале.
    • Если f плавно поворачивается в точке x = a , тогда f ‘( a ) = 0 (пересекает ось x ).

    Пример – оценка графика производной

    Нарисуйте график производной функции, график которой показан ниже.

    Решение

    Сначала определите две точки поворота: x = -2 и 0. Это означает, что f ‘(-2) = f ‘ (0) = 0.

    Затем, определить интервалы, на которых график увеличивается и уменьшается. Когда f увеличивается, мы имеем f ‘> 0.Когда f убывает, мы имеем f ‘<0.

    График функции дает информацию о ее производной… если вы знаете, как ее анализировать.

    На приведенном ниже графике оригинал показан черным цветом, а эскиз его производной – синим.

    Обратите внимание, как синяя кривая соответствует описанию f ‘.

    • Синяя кривая находится выше оси x всякий раз, когда f увеличивается.
    • Синяя кривая находится ниже оси x всякий раз, когда f уменьшается.
    • Синяя кривая пересекает ось x , когда f имеет точку разворота.

    Недифференцируемые точки

    До сих пор в методах оценки производных финансовых инструментов не учитывалась важная проблема. Что происходит, когда функция не имеет значения производной в данной точке?

    Любая точка x = a , в которой f ‘( a ) не существует, называется точкой недифференцируемости.

    Если такой точкой является a , то на графике f ‘будет либо дыра, либо разрыв при x = a .

    Такое поведение может быть вызвано тремя причинами.

    1. Исходная функция не определена или является прерывистой.
    2. На графике исходной функции есть угловая точка.
    3. Касательная прямая вертикальная.

    Давайте рассмотрим три ситуации в следующем примере.

    Пример – оценка производных с недифференцируемыми точками

    Нарисуйте график производной следующей функции.

    Решение

    На этом графике много всего происходит!

    • Вертикальная асимптота x = -5. Поскольку f на данный момент не определено, мы знаем, что значение производной f ‘(-5) не существует.
    • График достигает острого угла при x = 5. Производные не существуют в угловых точках.
    • Имеется куспид в x = 8. Значение производной становится бесконечным в точке возврата.

    Помимо этих важных ориентиров, есть еще одна поворотная точка: x = 0. Давайте проанализируем, что происходит в промежутках между особыми точками.

    Но что именно происходит рядом с x = -5, 5 и 8?

    При x = -5 исходный график следует вертикальной асимптоте. По определению, значения функции приближаются к ∞ или -∞, чем ближе x к -5. В результате функция становится бесконечно крутой: x → -5.Бесконечная крутизна означает бесконечные значения уклона, поэтому f ‘также должно иметь вертикальную асимптоту при x = -5.

    Затем угловая точка x = 5 представляет собой очень внезапное изменение направления. Вместо плавного поворота функция мгновенно меняет курс. Это означает, что произойдет скачок значения производной при пересечении x = 5.

    (Для получения дополнительной информации о разрывах скачка и связанных темах ознакомьтесь с: AP Calculus Review: Discontinuities.)

    Наконец, имеется куспид при x = 8. В точке возврата касательная линия графика становится настолько крутой, что фактически становится вертикальной. Это означает, что наклон бесконечен, и снова будет вертикальная асимптота на графике f ‘.

    Давайте теперь соберем все вместе. Синий график представляет собой всего лишь набросок производной кривой (не на 100% точный, но достаточно близкий для наших целей).

    Обратите внимание не только на странное поведение около каждой точки разрыва, но и на то, что значения производной выше оси x , когда f увеличивается, и ниже оси, когда f уменьшается.

    Эскиз производной сложной функции. Оригинал в черном цвете; производная синим цветом.

    Заключение

    Важно знать, как определить производную функции, основываясь только на ее графике. К счастью, экзамены AP Calculus не потребуют от вас рисования самой производной кривой, но могут попросить вас выбрать, какой вариант ответа лучше всего соответствует ей.

    Используйте плавные поворотные точки в качестве ориентиров. Убедитесь, что вы понимаете странное поведение в недифференцируемых точках.И заполните детали, проанализировав, где f увеличивается и уменьшается.

    Гарантированно повысьте свой результат по SAT или ACT. Начните 1-недельную бесплатную пробную версию Magoosh SAT Prep или 1-недельную бесплатную пробную версию Magoosh ACT Prep уже сегодня!

    • Шон получил докторскую степень по математике в Университете штата Огайо в 2008 году (Go Bucks !!). Он получил степень бакалавра математики и информатику в Оберлинском колледже в 2002 году. Кроме того, Шон получил степень бакалавра наук.Mus. из Консерватории Оберлина в том же году по специальности “музыкальная композиция”. Шон по-прежнему любит музыку – почти так же, как математику! – и он (думает, что) может играть на пианино, гитаре и басу. Шон обучал и обучал студентов математике около десяти лет и надеется, что его опыт поможет вам добиться успеха!

      Просмотреть все сообщения

    Кстати, Magoosh может помочь вам подготовиться к экзаменам SAT и ACT. Нажмите сюда, чтобы узнать больше!

    Функции увеличения / уменьшения

    Функции увеличения / уменьшения

    Производная функции может использоваться для определения того, увеличивается или уменьшается функция на любых интервалах в ее области определения.Если f ′ (x) > 0 в каждой точке интервала I, то функция называется возрастающей на I. f ′ (x) <0 в каждой точке интервала I, тогда функция Говорят, что на меньше, чем на I . Поскольку производная равна нулю или не существует только в критических точках функции, она должна быть положительной или отрицательной во всех других точках, где существует функция.

    При определении интервалов, в которых функция увеличивается или уменьшается, вы сначала находите значения области, в которых будут встречаться все критические точки; затем проверьте все интервалы в области определения функции слева и справа от этих значений, чтобы определить, является ли производная положительной или отрицательной.Если f ′ (x) > 0, то f увеличивается на интервале, а если f ′ (x) <0, то f убывает на интервале. Эта и другая информация может использоваться, чтобы показать достаточно точный набросок графика функции.

    Пример 1: Для f (x) = x 4 – 8 x 2 определить все интервалы, в которых f увеличивается или уменьшается.

    Область f (x) – это все действительные числа, и ее критические точки находятся при x = −2, 0 и 2.Проверяя все интервалы слева и справа от этих значений для f ′ (x) = 4 x 3 – 16 x , вы обнаружите, что

    , следовательно, f увеличивается на (−2,0) и (2, + ∞) и убывает на (−∞, −2) и (0,2).

    Пример 2: Для f (x) = sin x + cos x на [0,2π], определите все интервалы, в которых f увеличивается или уменьшается.

    Область f (x) ограничена закрытым интервалом [0,2π], а ее критические точки находятся на π / 4 и 5π / 4.Проверяя все интервалы слева и справа от этих значений для f ′ (x) = cos x – sin x , вы обнаружите, что

    , следовательно, f увеличивается на [0, π / 4] (5π / 4, 2π) и уменьшается на (π / 4, 5π / 4).

    Заметки по исчислению I, раздел 2-10

    Заметки по исчислению I, разделы 2-10 Примечания, Урок 2.10
    Что значит f ‘ Сказать про f ?

    Первая производная функции – это выражение, которое сообщает нам наклон касательной линия к кривой в любой момент.Из-за этого определения первый производная функции многое говорит нам о функции. Если положительный, то должен увеличиваться. Если отрицательный, то должен уменьшаться. Если равно нулю, то должно быть при относительном максимуме или относительном минимуме. говорит нам похожие вещи о. также дает нам ценную информацию о. В в частности, он сообщает нам, когда функция вогнута вверх, вогнута вниз, или есть точка перегиба. Такой же тип информации указал о по и так далее.

    увеличение +
    уменьшение
    относительный мин. или макс. 0
    вогнуться увеличение +
    вогнуться уменьшение
    точка перегиба относительный мин. или макс. 0
    вогнуться увеличение +
    вогнуться уменьшение
    точка перегиба относительный мин.или макс. 0
    вогнуться увеличение
    вогнуться уменьшение
    точка перегиба относительный мин. или макс.
    вогнуться
    вогнуться
    точка перегиба



    Использование Инструменты для обогащения Calculus CD (пришедший вместе с книгой), загрузите и запустите модуль 2.10 . Этот модуль позволит вам попрактиковаться в использовании графической информации. о f ‘для определения наклона графика f ..

    Определение:

    Первоначальное Первообразная f является функция F такая, что F ‘ = f .

    Здесь у нас есть процесс, обратный тому, что мы изучение.Мы начинаем с производной, и мы хотим найти функцию. Этот тип процесса открытия является общим для научных экспериментов и данных встреча.

    Во-первых, нам нужно знать, что разные функции могут результат в точно такая же производная. Посмотрите на пример ниже:

    Здесь мы видим семейство кривых, построенных с их общая производная.

    Семейство параболических функций:, где c принимает на себя значения: -1, 0, 1, 2, 3 и 4.

    Прямая линия на графике выше. Это
    производная функция для всех шести параболических функций.
    Поскольку дериватив – это прежде всего инструмент для определение формы функции положение графика не влияет на форму. Следовательно совпадающие кривые, которые ориентированы одинаково, но имеют разные позиция имеют такую ​​же производную.

    Проверить концепции
    # 1: положительная производная что насчет функции?

    Выберите одну функцию положительная функция отрицательная функция возрастающая функция убывающая

    # 2: отрицательная секунда производная говорит, что насчет функция?

    Выберите одну функцию уменьшается Функция вогнута вниз Функция отрицательно

    # 3: Верно или неверно.В производная функции также функция.

    Выберите одну истину ложь

    # 4: Вторая производная нуля говорит, что насчет оригинальная функция?

    Выберите там точка перегиба Есть относительный минимум или максимум It должна быть постоянной функцией

    # 5: Верно или неверно.А вторая производная функции дает ценную информацию о функции.

    Выберите одну истину ложь



    Исчисление I – Интерпретация производного инструмента

    На первый взгляд это кажется практически невыполнимой задачей. Однако, если у вас есть некоторые базовые знания об интерпретации производной, вы можете получить ее набросок.По большей части это не будет идеальный набросок, но вы сможете уловить большинство основных функций производного скетча.

    Начнем со следующего наброска функции с парой дополнений.

    Обратите внимание, что в точках \ (x = – 3 \), \ (x = – 1 \), \ (x = 2 \) и \ (x = 4 \) касательная линия к функции горизонтальна. Это означает, что наклон касательной должен быть нулевым. Теперь мы знаем, что наклон касательной в определенной точке также является значением производной функции в этой точке.Таким образом, теперь мы знаем, что

    \ [f ‘\ left ({- 3} \ right) = 0 \ hspace {0,5 дюйма} f’ \ left ({- 1} \ right) = 0 \ hspace {0,5in} f ‘\ left (2 \ справа) = 0 \ hspace {0,5 дюйма} f ‘\ left (4 \ right) = 0 \]

    Это хорошая отправная точка для нас. Это дает нам несколько точек на графике производной. Он также разбивает область определения функции на области, в которых функция увеличивается и уменьшается. Из наших обсуждений выше мы знаем, что если функция возрастает в какой-то точке, тогда производная должна быть положительной в этой точке.Точно так же мы знаем, что если функция убывает в какой-то точке, тогда производная должна быть отрицательной в этой точке.

    Теперь мы можем дать следующую информацию о производной.

    \ [\ begin {align *} x & <- 3 & \ hspace {0,5 дюйма} f '\ left (x \ right) & <0 \\ - 3 0 \\ – 1 4 & \ hspace {0,5in} f’ \ left (x \ right) &> 0 \ end {align *} \]

    Помните, что здесь мы указываем знаки производных, и они являются исключительно функцией от того, увеличивается или уменьшается функция. Знак самой функции здесь совершенно несущественен и никоим образом не влияет на знак производной.

    Может показаться, что у нас недостаточно информации, чтобы получить набросок, но мы можем получить немного больше информации о производной из графика функции.В диапазоне \ (x <- 3 \) мы знаем, что производная должна быть отрицательной, однако мы также можем видеть, что производная должна увеличиваться в этом диапазоне. Здесь она отрицательна, пока мы не достигнем \ (x = - 3 \), и в этой точке производная должна быть равна нулю. Единственный способ, чтобы производная была отрицательной слева от \ (x = - 3 \) и нулем в точке \ (x = - 3 \) означает, что производная увеличивается по мере увеличения \ (x \) в сторону \ (x = - 3 \).

    Теперь в диапазоне \ (- 3

    Далее, для диапазонов \ (- 1

    Наконец, в последней области \ (x> 4 \) мы знаем, что производная равна нулю в точке \ (x = 4 \) и положительна справа от \ (x = 4 \). Еще раз, следуя приведенным выше рассуждениям, производная также должна увеличиваться в этом диапазоне.

    Объединение всего этого материала (и всегда выбор простейших вариантов увеличения и / или уменьшения информации) дает нам следующий набросок производной.

    Обратите внимание, что это было сделано с фактической производной и поэтому на самом деле является точным.Любой набросок, который вы сделаете, вероятно, будет выглядеть не так, как раньше. «Неровности» в каждой из областей могут быть, например, в разных местах и ​​/ или на разной высоте. Также обратите внимание, что мы не использовали вертикальную шкалу, потому что, учитывая информацию, которую мы получили к этому моменту, не было реального способа узнать эту информацию.

    Однако это не означает, что мы не можем получить некоторые представления о конкретных точках производной, кроме тех, где мы знаем, что производная равна нулю. Чтобы убедиться в этом, давайте посмотрим на следующий график функции (не производной, а функции).

    В точках \ (x = – 2 \) и \ (x = 3 \) мы нарисовали пару касательных прямых. Мы можем использовать базовую концепцию подъема / наклона для оценки значения производной в этих точках.

    Начнем с \ (x = 3 \). Здесь на карту поставлено два момента. Мы видим, что каждая из них отходит от линии сетки примерно на четверть расстояния. Итак, принимая во внимание это и тот факт, что мы проходим одну полную сетку, мы можем видеть, что наклон касательной и, следовательно, производной приблизительно равен -1.5.

    При \ (x = – 2 \) похоже (с некоторой тяжелой оценкой), что вторая точка находится примерно на 6,5 сетки выше первой точки, поэтому здесь наклон касательной линии и, следовательно, производной составляет примерно 6,5.

    Вот эскиз производной с включенной вертикальной шкалой, и из этого мы видим, что на самом деле наши оценки довольно близки к реальности.

    Обратите внимание, что эта идея оценки значений производных финансовых инструментов может быть сложным процессом и требует изрядного количества (возможных плохих) приближений, поэтому, хотя ее можно использовать, с ней нужно быть осторожным.{- \ frac {1} {4}}} = \ frac {3} {{4 \ sqrt [4] {x}}}. \]

    См. Другие проблемы на странице 2.

    Производные математической сцены – Урок 4

    Производные математической сцены – Урок 4 – Производные экспоненциальной и триггерной функций

    2009 Rasmus ehf и Джанн Сак

    Производные

    Урок 4

    Производные экспоненциальные и триггерные функции


    Собирались использовать CASIO-калькулятор для нахождения некоторых значений функций вида f (x) = a x где a – постоянная, а x – переменная.
    Мы сделаем это, зафиксировав значение x и посмотрев на значения f (x) и f (x) как меняется с 2 на 3.
    Мы можем выбрать любое значение для x, например x = 2.
    Выберите меню RUN, а затем кнопку с надписью OPTN рядом с кнопкой SHIFT. Затем выберите CALC с помощью F4, а затем d / dx с помощью F2. Наконец-то вставил комму а затем значение x 2.


    Результаты показаны в таблица ниже

    а

    а 2

    f ‘(2)

    2.0

    4,0 2,8

    2,1

    4,4 3,3
    2,2 4,8 3,8
    2,3 5,3 4,4
    2,4 5,8 5,0
    2,5 6,3 5.7
    2,6 6,8 6,5
    2,7 7,3 7,2
    2,8 7,8 8,1
    2,9 8,4 9,0
    3,0 9,0 9,9

    Стоимость а 2 изменяется от 4 при a = 2 до 9 при a = 3.Производная идет от 2,8 до 9,9 (оба числа приблизительные). Оба столбца чисел меняются непрерывно так где-то, недалеко от 2.7, функция и ее производная принять такое же значение.
    Мы увидим, как это происходит в том же самом месте, какое бы значение мы ни выбрали. для.
    Если мы выберем a = 2,718282, мы получим одинаковое значение в обоих столбцах вплоть до шестой знак после запятой (7,38 и 7,38). Вы должны узнать этот номер из урока по натуральным логарифмам.Это число е.

    Число e – иррациональное число, поэтому мы можем дают только приблизительное значение для e, e 2,718282. Функция f (x) = e x остается неизменным, когда мы его дифференцируем, то есть f (x) = f (x) = e x

    .

    Производная функции f (x) = e x равна f (x) = e x

    В уроке 5 вы увидите правило, называемое Правило цепи.Одним из результатов этого правила является то, что если x умножить на постоянное число, тогда дифференцированная функция также умножается на эту константу. Для Например, если мы дифференцируем f (x) = e 2x , мы получим f (x) = 2e 2x .

    В общем, если k – постоянная величина и f (x) = e kx , то f (x) = ke k x .

    Используя этот факт, мы можем найти производную от функция f (x) = a x .Использование правил журнала x = e ln x и ln a x = xln a мы можем переписать f (x) как

    ф (х) = x = xln а

    a – постоянная величина, поэтому ln a также является константой, как k в приведенном выше правило. Таким образом, мы можем дифференцировать функцию, записав ее в виде e xln .

    ф (х) = (e xln a ) = (ln a) e xln a = (ln a) a x

    Производная от f (x) = a x is (ln a) a x

    Пример 1

    Найдите производную от f (x) = e x a x .

    Используя умножение правило (УФ) = uv + uv с u = e x и v = a x дает нам u = e x и v = (ln a) a x . Подставляя эти значения в формулу, получаем

    ф (х) = (УФ) = УФ + УФ

    знак равно e x a x + e x (ln а) х взять e x a x вне кронштейна .

    = e x a x (1 + ln а)

    Теперь рассмотрим правило часто называют сэндвич-правилом. Это метод, который мы можем использовать для решения сложные лимитные задачи. Если мы не можем найти предел функции f (x) в конкретной точке P мы можем попытаться найти функцию u (x), которая имеет то же значение как f (x) в точке P, но больше, чем f (x) в окрестности P. Таким же образом мы находим функцию v (x), которая принимает то же значение, что и f (x) в точке P, но меньше f (x) в окрестности P.Таким образом мы бутерброд f (x) между
    u (x) и v (x). Если эти две функции u (x) и v (x) имеют одинаковый предел в точка P, то f (x) также должна иметь этот предел. Это показано на диаграмме. ниже.

    Теперь воспользуемся правило сэндвича, чтобы найти . Проблема в что если мы введем 0 для x, то мы получим 0/0, что у нас есть проблема оценка.

    На приведенной выше диаграмме показан единичный круг.У нас есть нарисовал угол x. Если x измеряется в радианах, то длина дуги между точкой (1, 0) на оси x и точкой P также является x. В вертикальная красная линия имеет длину sin x и, очевидно, меньше дуги x, которая снова меньше, чем tan x. Запишем следующее неравенство:

    грех х x загар x

    Помните, что tan x определяется как так что получаем

    Делим все на sin x и отмена

    Обращение всех дробей и обратное преобразование символов неравенства дает нам


    Нам удалось сэндвич фракция между 1 и cos x
    которые оба имеют предел 1, когда x стремится к 0.

    Это дает нам правило = cos 0 = 1

    Мы используем это правило в следующих примерах.

    Учитывайте предел .

    В этом случае нам не нужно использовать бутерброд. правило, вместо этого мы используем (a + b) (a b) = a 2 b 2 сначала умножая дробь на (соз х + 1)

    Помните Правило Пифагора для cos и sin, cos 2 x + sin 2 x = 1, который может быть переписать как sin 2 x = cos 2 x 1.

    Продолжаем пример следующим образом:

    Первая дробь имеет предел 1 из вышеуказанного правило, а вторая дробь равна 0, потому что sin 0 = 0. Это дает результат

    Пример 2

    Теперь мы можем приступить к поиску производной sin x.

    (грех х) ‘=

    Используя один из правило сложения для триггерных функций sin (u + v) = sin u cos v + cos u sin v и поместив его в приведенное выше выражение получаем:


    В последней строке доказательства мы использовали результаты из двух предельных правил, которые мы доказали ранее в этом уроке.Мы получаем очень удовлетворительный результат, что производная sin x равна cos x.

    Аналогичный метод дает приводят к тому, что производная от cos x есть sin x.

    sinx = cos x

    cosx = – sin x

    Пример 3

    Найдите производную от е (х) = загар х.

    Помните, что и используйте правило для производной частных .

    В этом случае u = sin x и u = cos x, v = cos x и v = sin x. Помещая эти ценности в правило получаем

    Здесь мы используем правило
    cos 2 x + sin 2 x = 1.


    Попрактикуйтесь в этих методах, а затем пройдите тест 4 по производным.

    л.с. Запомните свой контрольный список.

    .

Оставить комментарий