1 закон ньютона определение и формула – 3 закона Ньютона определения и формулы. Второй закон Ньютона формулировка. Второй закон Ньютона. Формула второго закона Ньютона

Содержание

формула и определение / Блог :: Бингоскул

  • Блог
  • Первый закон Ньютона: формула и определение

Кратко о 1 законе Ньютона: формула, определение и формулировка

 

Помни!!!

  • В основе динамики материальной точки лежат три закона Ньютона.
  • Первый закон Ньютона — закон инерции 
  • Под телом подразумевают материальную точку, движение которой рассматривают в инерциальной системе отсчета.

 

1. Формулировка

«Существуют такие инерциальные системы отсчёта, относительно которых тело, если на него не действуют другие силы (либо действие других сил компенсируется), находится в покое либо движется равномерно и прямолинейно».

 

2. Определение

Первый закон Ньютона — всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние.

 

Первый закон Ньютона — закон инерции (Галилей вывел закон инерции)

 

Закон инерцииЕсли на тело нет внешних воздействий, то данное тело сохраняет состояние покоя или равномерного прямолинейного движения относительно Земли.

 

Инерциальная система отсчёта (ИСО) – система, которая либо покоится, либо движется равномерно и прямолинейно относительно какой-то другой инерциальной системы. Т.е. система отсчета, в которой выполняется 1-й закон Ньютона.

  • Масса тела – количественная мера его инертности. В СИ она измеряется в килограммах.
  • Сила – количественная мера взаимодействия тел. Сила – векторная величина и измеряется в ньютонах (Н). Сила, которая производит на тело такое же действие, как несколько одновременно действующих сил, называется  равнодействующей этих сил.

 

3. Формула

Формулы нет. Формула первого закона Ньютона не существует.

 

Первый закон Ньютона содержится 2 важных утверждения:
  1. все тела обладают свойством инерции;
  2. инерциальные системы отсчета существуют.

 

Это интересно

bingoschool.ru

Первый закон Ньютона, формула и примеры решений

Описание первого закона Ньютона

Например, шарик на нитке висит в покое, потому что сила тяжести компенсируется силой натяжения нити.

Первый закон Ньютона выполняется только в инерциальных системах отсчета. Например, тела, находящиеся в покое в салоне самолета, который движется равномерно, могут прийти в движение без всякого воздействия на них других тел, если самолет начнет маневрировать. В транспорте при резком торможении пассажиры падают, хотя никто их не толкает.

Первый закон Ньютона показывает, что состояние покоя и состояние равномерного прямолинейного движения не требуют для своего поддержания внешних воздействий. Свойство свободного тела сохранять скорость неизменной называется инерцией. Поэтому первый закон Ньютона называют ещё законом инерции. Равномерное прямолинейное движение свободного тела называется движением по инерции.

Первый закон Ньютона содержит два важных утверждения:

  1. все тела обладают свойством инерции;
  2. инерциальные системы отсчета существуют.

Следует помнить, что в первом законе Ньютона речь идет о телах, которые могут быть приняты за материальные точки.

Закон инерции отнюдь не очевиден, как это может показаться на первый взгляд. С его открытием было покончено с одним давним заблуждением. До этого на протяжении веков считалось, что при отсутствии внешних воздействий на тело оно может находиться только в состоянии покоя, что покой – это как бы естественное состояние тела. Для движения же тела с постоянной скоростью необходимо, чтобы на него действовало другое тело. Казалось, что это подтверждал повседневный опыт: для того чтобы повозка двигалась с постоянной скоростью, ее должна все время тянуть лошадь; чтобы стол двигался по полу, его нужно непрерывно тянуть или толкать и т. д. Галилео Галилей был первым, кто указал, что это неверно, что при отсутствии внешнего воздействия тело может не только покоиться, но и двигаться прямолинейно и равномерно. Прямолинейное и равномерное движение является, следовательно, таким же «естественным» состоянием тел, как и покой. Фактически первый закон Ньютона говорит о том, что нет разницы между покоем тела и равномерным прямолинейным движением.

Проверить опытным путем закон инерции невозможно, потому что невозможно создать такие условия, при которых бы тело было свободным от внешних воздействий. Однако, всегда можно проследить обратное. В любом случае. когда тело изменяет скорость или направление своего движения, всегда можно найти причину – силу, которая вызвала это изменение.

Примеры решения задач

ru.solverbook.com

Законы Ньютона — это… Что такое Законы Ньютона?

Зако́ны Ньюто́на — три закона, лежащие в основе классической механики и позволяющие записать уравнения движения для любой механической системы, если известны силовые взаимодействия для составляющих её тел. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии» (1687 год).

Первый закон Ньютона

Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.

Современная формулировка

В современной физике первый закон Ньютона принято формулировать в следующем виде[1]:

Закон верен также в ситуации, когда внешние воздействия присутствуют, но взаимно компенсируются (это следует из 2-го закона Ньютона, так как скомпенсированные силы сообщают телу нулевое суммарное ускорение).

Историческая формулировка

Ньютон в своей книге «Математические начала натуральной философии» сформулировал первый закон механики в следующем виде:

Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

С современной точки зрения, такая формулировка неудовлетворительна. Во-первых, термин «тело» следует заменить термином «материальная точка», так как тело конечных размеров в отсутствие внешних сил может совершать и вращательное движение. Во-вторых, и это главное, Ньютон в своём труде опирался на существование абсолютной неподвижной системы отсчёта, то есть абсолютного пространства и времени, а это представление современная физика отвергает. С другой стороны, в произвольной (скажем, вращающейся) системе отсчёта закон инерции неверен. Поэтому ньютоновская формулировка нуждается в уточнениях.

Второй закон Ньютона

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

Современная формулировка

В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

где  — ускорение материальной точки;
 — сила, приложенная к материальной точке;
 — масса материальной точки.

Или в более известном виде:

В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:

В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней сил.

где  — импульс точки,

где  — скорость точки;

 — время;
 — производная импульса по времени.

Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:

или

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.

Нельзя рассматривать частный случай (при ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.

Историческая формулировка

Исходная формулировка Ньютона:

Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

Интересно, что если добавить требование инерциальной системы отсчёта, то в такой формулировке этот закон справедлив даже в релятивистской механике.

Третий закон Ньютона

Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой , а второе — на первое с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Современная формулировка

Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Закон отражает принцип парного взаимодействия. То есть все силы в природе рождаются парами.

Историческая формулировка

Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга равны и направлены в противоположные стороны.

Для силы Лоренца третий закон Ньютона не выполняется. Лишь переформулировав его как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость[2].

Выводы

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса. Далее, если потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел , то возникает закон сохранения суммарной механической энергии взаимодействующих тел:

Законы Ньютона являются основными законами механики. Из них могут быть выведены уравнения движения механических систем. Однако не все законы механики можно вывести из законов Ньютона. Например, закон всемирного тяготения или закон Гука не являются следствиями трёх законов Ньютона.

Комментарии к законам Ньютона

Сила инерции

Законы Ньютона справедливы только в инерциальных системах отсчета. Если мы честно запишем уравнение движения тела в неинерциальной системе отсчета, то оно будет по виду отличаться от второго закона Ньютона: , где — это ускорение, наблюдаемое в рассматриваемой системе отсчёта, и — ускорение данной точки этой неинерциальной системы отсчёта относительно любой инерциальной системы отсчёта. Однако часто, для упрощения рассмотрения, вводят фиктивную «силу инерции» , и тогда эти уравнения движения переписываются в виде, идентичном второму закону Ньютона. Математически здесь всё корректно (правильно), но с точки зрения физики новую фиктивную силу нельзя рассматривать как нечто реальное, как результат некоторого реального воздействия на тело. Ещё раз подчеркнём: «сила инерции» — это лишь удобная параметризация того, как отличается движение в инерциальной и неинерциальной системах отсчета.

Законы Ньютона и Лагранжева механика

Законы Ньютона — не самый глубокий уровень формулирования классической механики. В рамках Лагранжевой механики имеется одна-единственная формула (запись механического действия) и один-единственный постулат (тела движутся так, чтобы действие было стационарным), и из этого можно вывести все законы Ньютона, правда, только для лагранжевых систем (следует, однако, отметить, что все известные фундаментальные взаимодействия описываются именно лагранжевыми системами). Более того, в рамках Лагранжева формализма можно легко рассмотреть гипотетические ситуации, в которых действие имеет какой-либо другой вид. При этом уравнения движения станут уже непохожими на законы Ньютона, но сама классическая механика будет по-прежнему применима.

Решение уравнений движения

Уравнение является дифференциальным уравнением: ускорение есть вторая производная от координаты по времени. Это значит, что эволюцию(перемещение) механической системы во времени можно однозначно определить, если задать её начальные координаты и начальные скорости.

Заметим, что если бы уравнения, описывающие наш мир, были бы уравнениями первого порядка, то из нашего мира исчезли бы такие явления, как инерция, колебания, волны.

Исторический очерк

Страница «Начал» Ньютона с аксиомами механики

Основные законы механики Ньютон сформулировал в своей книге «Математические начала натуральной философии» в следующем виде.

   1. Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
   2. Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует.
   3. Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.

Оригинальный текст  (лат.)  

   LEX I
Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quantenus a viribus impressis cogitur statum illum mutare.

   LEX II
Mutationem motus proportionalem esse vi motrici impressae et fieri secundum lineam rectam qua vis illa imprimitur.

   LEX III
Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi.

— «Начала», страница 12

Первый закон (закон инерции), в менее чёткой форме, опубликовал ещё Галилей. Надо отметить, что Галилей допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). Галилей также сформулировал важнейший принцип относительности, который Ньютон не включил в свою аксиоматику, потому что для механических процессов этот принцип является прямым следствием уравнений динамики. Кроме того, Ньютон считал пространство и время абсолютными понятиями, едиными для всей Вселенной, и явно указал на это в своих «Началах».

Ньютон также дал строгие определения таких физических понятий, как количество движения (не вполне ясно использованное у Декарта) и сила. Он ввёл в физику понятие массы как меры инерции и, одновременно, гравитационных свойств (ранее физики пользовались понятием вес).

Завершили математизацию механики Эйлер и Лагранж.

См. также

Примечания

Ссылки

Литература

dic.academic.ru

Первый закон Ньютона. Масса. Сила — Мегаобучалка

Динамика является основным разделом механики, в ее основе лежат три закона Ньютона, сформулированные им в 1687 г. Законы Ньютона играют исклю­чительную роль в механике и являются (как и все физические законы) обобщени­ем результатов огромного человеческого опыта. Их рассматривают как систему взаимосвязанных законов и опытной про­верке подвергают не каждый отдельный закон, а всю систему в целом.

Первый закон Ньютона:всякая мате­риальная точка (тело) сохраняет состоя­ние покоя или равномерного прямолиней­ного движения до тех пор, пока воздейст­вие со стороны других тел не заставит ее изменить это состояние.

Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью.По­этому первый закон Ньютона называют также законом инерции.

Механическое движение относительно, и его характер зависит от системы отсче­та. Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называются инерциальными системами от­счета.Инерциальной системой отсчета яв­ляется такая система, которая либо по­коится, либо движется равномерно и прямолинейно относительно какой-то другой инерциальной системы. Первый закон Ньютона утверждает существование инерциальных систем отсчета.

Опытным путем установлено, что инерциальной можно считать гелиоцентрическую (звездную) систему отсчета (начало координат находится в центре Солнца, а оси проведены в направлении определенных звезд). Система отсчета, связанная с Землей, строго говоря, неинерциальна, однако эффекты, обусловлен­ные ее неинерциальностью (Земля враща­ется вокруг собственной оси и вокруг Со­лнца), при решении многих задач прене­брежимо малы, и в этих случаях ее можно считать инерциальной.

Из опыта известно, что при одинако­вых воздействиях различные тела неоди­наково изменяют скорость своего движе­ния, т. е., иными словами, приобретают различные ускорения. Ускорение зависит не только от величины воздействия, но и от свойств самого тела (от его мас­сы).

Масса тела — физическая величина, являющаяся одной из основных характе­ристик материи, определяющая ее инерци­онные (инертная масса) и гравитацион­ные (гравитационная масса)свойства. В настоящее время можно считать дока­занным, что инертная и гравитационная массы равны друг другу (с точностью, не меньшей 10-12 их значения).

Для описания воздействия одного тела на другое вводится понятие силы. Сила – это векторная величина, которая является мерой воздействия на тело других тел или полей, в результате которого тело приобретают ускорения или изменяют форму и размеры (т.е. деформируется). Обозначается сила буквой .

 

2.2. Основной за­кон динамики поступательного движе­ния.

Основной за­кон динамики поступательного движе­ния отвечает на вопрос, как изменяет­ся механическое движение материальной точки (тела) под действием приложен­ных к ней сил.

Если рассмотреть действие различных сил на одно и то же тело, то оказывается, что ускорение, приобретаемое телом, всег­да прямо пропорционально равнодейст­вующей приложенных сил:

a ~ F (m = const). (2.1)

При действии одной и той же силы на тела с разными массами их ускорения оказываются различными, а именно:

a ~ 1/m (F = const). (2.2)

Используя выражения (2.1) и (2.2) и учи­тывая, что сила и ускорение — величины векторные, можем записать

. (2.3)

Соотношение (2.3) выражает второй закон Ньютона:ускорение, приобретаемое материальной точкой (телом), пропорцио­нально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точ­ки (тела).

В СИ коэффициент пропорциональности k = 1. Тогда

,

или

. (2.4)

Учитывая, что масса материальной точки (тела) в классической механике есть величина постоянная, в выражении (2.4) ее можно внести под знак производной:

. (2.5)

При переменной массе из (2.5) имеем

. (2.5′)

Векторная величина

, (2.6)

численно равная произведению массы ма­териальной точки на ее скорость и име­ющая направление скорости, называется импульсом (количеством движения)этой материальной точки.

Подставляя (2.6) в (2.5), получим

. (2.7)

Эта формула выражает основной за­кон динамики поступательного движе­ния:скорость изменения импульса материальной точки равна действующей на нее силе.

Единица силы в СИ — Ньютон (Н):1 Н — сила, которая массе в 1 кг сообща­ет ускорение 1 м/с2 в направлении дейст­вия силы:

1 Н = 1 кг·м/с2.

Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго. Действительно, в случае ра­венства нулю равнодействующей сил (при отсутствии воздействия на тело со стороны других тел) ускорение (см. (2.3)) также равно нулю. Однако первый закон Ньюто­на рассматривается как самостоятельный закон (а не как следствие второго зако­на), так как именно он утверждает существование инерциальных систем отсче­та, в которых только и выполняется урав­нение (2.7).

В механике большое значение имеет принцип независимости действия сил: если на материальную точку действует одно­временно несколько сил, то каждая из этих сил сообщает материальной точке ускорение согласно второму закону Ньютона, как будто других сил не было. Согласно этому принципу, силы и ускоре­ния можно разлагать на составляющие, использование которых приводит к су­щественному упрощению решения задач. Например, на рис. 2.1 действующая сила разложена на два компонента: тангенциальную силу (направлена по касательной к траектории) и нормальную силу (направлена по нормали к центру кривизны). Используя выражения аτ = и an = , а также υ= Rω, можно записать:

Fτ = mаτ = m , (2.8)

Fn = man = 2/R = 2 R. (2.9)

Если на материальную точку действует одновременно несколько сил, то, согласно принципу независимости действия сил, под во втором законе Ньютона понимают результирующую силу: .

Третий закон Ньютона

Взаимодействие между материальными точками (телами) определяется третьим законом Ньютона: всякое действие мате­риальных точек (тел) друг на друга носит характер взаимодействия силы, с которы­ми действуют друг на друга материальные точки, всегда равны по модулю, противо­положно направлены и действуют вдоль прямой, соединяющей эти точки:

, (2.10)

где сила, действующая на первую материальную точку со стороны второй; сила, действующая на вторую мате­риальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы.

Третий закон Ньютона позволяет осу­ществить переход от динамики отдельной материальной точки к динамике системы материальных точек. Это следует из того, что и для системы материальных точек взаимодействие сводится к силам парного взаимодействия между материальными точками.

 

Силы в механике

Обсуждая до сих пор силы, мы не интере­совались их происхождением. Однако в механике мы будем рассматривать раз­личные силы: трения, упругости, тяготе­ния.

а) Силы трения. Из опыта известно, что всякое тело, движущееся по горизонтальной поверхно­сти другого тела, при отсутствии действия на него других сил с течением времени замедляет свое движение и в конце концов останавливается. Это можно объяснить существованием силы трения, которая препятствует скольжению соприкасаю­щихся тел друг относительно друга. Различают внешнее (сухое) и внутрен­нее (жидкое или вязкое) трение. Внешним трением называется трение, возникающее в плоскости касания двух соприкасающих­ся тел при их относительном перемещении. Если соприкасающиеся тела неподвижны друг относительно друга, говорят о трении покоя, если же происходит относительное перемещение этих тел, то в зависимости от характера их относительного движения говорят о трении скольжения, качения или верчения.

Обсудим некоторые закономерности внешнего трения. Это трение обусловлено шероховатостью соприкасающихся повер­хностей; в случае же очень гладких по­верхностей трение обусловлено силами межмолекулярного притяжения.

Рассмотрим лежащее на плоскости те­ло (рис. 2.2), к которому приложена горизонтальная сила . Тело придет в движе­ние лишь тогда, когда приложенная сила будет больше силы трения . Француз­ские физики Г. Амонтон и Ш. Кулон опытным путем установили следующий закон: сила трения скольжения Fтр пропорциональна силе FN нормального давления, с которой одно тело действует на другое:

Fтр = μ FN, (2.11)

где μ — коэффициент трения скольжения, зависящий от свойств соприкасающихся поверхностей.

Для гладких поверхностей определенную роль играет межмолекулярное притяжение. В этом случае закон трения скольжения имеет вид

Fтр = μист(FN +Sp0),

где p0— добавочное давление, обус­ловленное силами межмолекулярного при­тяжения, которые быстро уменьшаются с увеличением расстояния между частица­ми; S — площадь контакта между телами; μист — истинный коэффициент трения скольжения.

Трение играет большую роль в при­роде и технике. Благодаря трению движет­ся транспорт, удерживается забитый в стену гвоздь и т. д.

В некоторых случаях силы трения ока­зывают вредное действие, и поэтому их надо уменьшать. Для этого на трущиеся поверхности наносят смазку (сила трения уменьшается примерно в 10 раз), которая заполняет неровности между этими повер­хностями и располагается тонким слоем между ними так, что поверхности как бы перестают касаться друг друга, а скользят друг относительно друга отдельные слои жидкости. Таким образом, внешнее трение твердых тел заменяется значительно мень­шим внутренним трением жидкости.

Радикальным способом уменьшения силы трения является замена трения скольжения трением качения (шариковые и роликовые подшипники и т.д.).

б) Упругие силы. Под действием внешних сил возникают деформации (т. е. изменения размеров и формы) тел. Если после прекращения действия внешних сил восстанав­ливаются прежние форма и размеры тела, то дефор­мация называется упругой. Деформация имеет упругий характер в случае, если внешняя сила не превосходит определенного значения, которое назы­вается пределом упругости. При превышении этого предела деформация становится пластиче­ской. В этом случае после устранения внешних сил первоначальные форма и размеры тела полностью не восстанавливаются. В дальнейшем мы будем рассматривать только упругие деформации.

В деформированном теле возникают упругие силы, которые уравновешивают внешние силы, вызвавшие деформацию. Поясним это на примере деформации пружины. Под действием внешней силы пружина получает удлинение х, в результате чего в ней возникает упругая сила , уравновешивающая силу .

Упругие силы возникают во всей деформированной пружине. Любая часть пружины действует на другую часть с силой, равной .

Установленный экспериментально закон Гука утверждает, что при упругой деформации удлинение пружины пропорционально внешней силе. Аналитически эту закономерность принято записывать следующим образом:

.

Величина k называется жест­костью пружины. Из этого выражения следует, что чем больше k, тем меньшее удлинение получает пружина под действием данной силы.

Упругая сила отличается от внешней только знаком. Поэтому Fупр,x= — Fвнеш,xи, следовательно,

.

Опустим для краткости индекс «упр» и напишем это соотношение в виде
Fx = — kx , (2.12)

где Fxпроекция упругой силы на ось х, k — жест­кость пружины, х — удлинение пружины.

в) Силы тяжести и всемирного тяготения. И. Ньютон, изучая дви­жение небесных тел, на основании законов Кеплера и основных законов динамики открыл всеобщий закон всемирного тя­готения: между любыми двумя материаль­ными точками действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек (m1 и m2) и обратно пропорциональная квадрату расстояния между ними (r2):

F = G m1m2 /r2. (2.13)

Эта сила называется гравитационной (или силой всемирного тяготения). Силы тяго­тения всегда являются силами притяже­ния и направлены вдоль прямой, проходя­щей через взаимодействующие тела. Ко­эффициент пропорциональности G на­зывается гравитационной постоянной.

Закон всемирного тяготения установ­лен для тел, принимаемых за материальные точки, т. е. для таких тел, размеры кото­рых малы по сравнению с расстоянием между ними. Если же размеры взаимодей­ствующих тел сравнимы с расстоянием между ними, то эти тела надо разбить на точечные элементы, подсчитать силы притяжения между всеми попарно взятыми элементами, а затем гео­метрически их сложить (проинтегрировать), что является довольно сложной ма­тематической задачей.

На любое тело, расположенное вблизи Земли, действует сила тяготения F, под влиянием которой, согласно второму за­кону Ньютона, тело начнет двигаться с ускорением свободного падения g. Та­ким образом, в системе отсчета, связанной с Землей, на всякое тело массой m дей­ствует сила

, (2.14)

называемая силой тяжести.

Согласно фундаментальному физиче­скому закону — обобщенному закону Га­лилея, все тела в одном и том же поле тяготения падают с одинаковым ускорени­ем. Следовательно, в данном месте Земли ускорение свободного падения одинаково для всех тел.

Если пренебречь суточным вращением Земли вокруг своей оси, то сила тяжести и сила гравитационного тяготения равны между собой:

FТ = mg = G mM /R2, (2.15)

где М — масса Земли; R — расстояние между телом и центром Земли. Эта форму­ла дана для случая, когда тело находилось вблизи поверхности Земли.

Если тело расположено на высоте h от поверхности Земли, R0 — радиус Зем­ли, тогда

FТ = G mM /(R0 + h)2, (2.16)

т. е. сила тяжести с удалением от повер­хности Земли уменьшается.

В физике применяется также понятие веса тела. Весом тела называют силу, с которой тело вследствие тяготения к Земле действует на опору (или подвес), удерживающую тело от свободного паде­ния. Вес тела проявляется только в том случае, если тело движется с ускорением, отличным от , т. е. когда на тело кроме силы тяжести действуют другие силы. Со­стояние тела, при котором оно движется только под действием силы тяжести, на­зывается состоянием невесомости.

Таким образом, сила тяжести действует всегда, а вес появляется только в том случае, когда на тело кроме силы тяжести действуют еще другие силы, вследствие чего тело движется с ускорением , отлич­ным от . Если тело движется в поле тяготения Земли с ускорением ,то к этому телу приложена дополнительная сила , удовлетворяющая условию

.

Тогда вес тела
, (2.17)

т. е. если тело покоится или движется прямолинейно и равномерно, то = 0 и . Если тело свободно дви­жется в поле тяготения по любой траекто­рии и в любом направлении, то = и = 0, т. е. тело будет невесомым. Например, невесомыми являются тела, находящиеся в космических кораблях, сво­бодно движущихся в космосе.

 

megaobuchalka.ru

Физика. — Законы Ньютона

Законы Нью́тона — законы классической механики, позволяющие записать уравнения движения для любой механической системы.

Первый закон Ньютона

  • Инерциальной называется та система отсчёта, относительно которой любая, изолированная от внешних воздействий, материальная точка либо покоится, либо сохраняет состояние равномерного прямолинейного движения.
  • Первый закон Ньютона гласит:


Инерциальные системы отсчёта существуют.

По сути, этот закон постулирует инерцию тел, что сегодня кажется очевидным. Но это было далеко не так на заре исследования природы. Аристотель вот утверждал, что причиной всякого движения является сила, т. е. движения по инерции для него не существовало. [источник?]

Второй закон Ньютона

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и её ускорением.

Второй закон Ньютона утверждает, что


в инерциальной системе отсчета (ИСО) ускорение, которое получает
материальная точка, прямо пропорционально приложенной силе и обратно
пропорционально массе.

При подходящем выборе единиц измерения этот закон можно записать в виде формулы:


где  — ускорение тела;

 — сила, приложенная к телу;

m — масса тела.

Или в более известном виде:


Если на тело действуют несколько сил, то второй закон Ньютона записывается:


или


где  — импульс тела.

В случае, когда масса материальной точки меняется со временем,
второй закон Ньютона формулируется в общем виде: скорость изменения
импульса точки равна действующей на неё силе.


где  — импульс (количество движения) точки;

t — время;

 — производная по времени.

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта.

Нельзя рассматривать частный случай (при ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.


Третий закон Ньютона

Этот закон объясняет, что происходит с двумя взаимодействующими
телами. Возьмём для примера замкнутую систему, состоящую из двух тел.
Первое тело может действовать на второе с некоторой силой , а второе — на первое с силой .
Как соотносятся силы? Третий закон Ньютона утверждает: сила действия
равна по модулю и противоположна по направлению силе противодействия.
Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не
компенсируются.

Сам закон:


Тела действуют друг на друга с силами, имеющими одинаковую природу,
направленными вдоль одной и той же прямой, равными по модулю и
противоположными по направлению:


Выводы

Из законов Ньютона сразу же следуют некоторые интересные выводы.
Так, третий закон Ньютона говорит, что, как бы тела ни
взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса. Далее, надо потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел U( | r1r2 | ). Тогда возникает закон сохранения суммарной механической энергии взаимодействующих тел:


Законы Ньютона являются основными законами механики. Из них могут быть выведены все остальные законы механики.


Комментарии к законам Ньютона


Силы инерции

Законы Ньютона, строго говоря, справедливы только в инерциальных системах отсчета. Если мы честно запишем уравнение движения тела в неинерциальной системе отсчета, то оно будет по виду отличаться от второго закона Ньютона. Однако часто, для упрощения рассмотрения, вводят некую фиктивную «силу инерции»,
и тогда эти уравнения движения переписываются в виде, очень похожем на
второй закон Ньютона. Математически здесь всё корректно (правильно), но
с точки зрения физики новую фиктивную силу нельзя рассматривать как
нечто реальное, как результат некоторого реального взаимодействия. Ещё
раз подчеркнём: «сила инерции» — это лишь удобная параметризация того,
как отличаются законы движения в инерциальной и неинерциальной системах
отсчета.


Законы Ньютона и Лагранжева механика

Законы Ньютона — не самый глубокий уровень формулирования классической механики. В рамках Лагранжевой механики имеется одна-единственная формула (запись механического действия) и один-единственный постулат (тела движутся так, чтобы действие было минимальным),
и из этого можно вывести все законы Ньютона. Более того, в рамках
Лагранжева формализма можно легко рассмотреть гипотетические ситуации,
в которых действие имеет какой-либо другой вид. При этом уравнения
движения станут уже непохожими на законы Ньютона, но сама классическая
механика будет

Решение уравнений движения

Уравнение (то есть второй закон Ньютона) является дифференциальным уравнением: ускорение есть вторая производная от координаты по времени.
Это значит, что эволюцию механической системы во времени можно
однозначно определить, если задать её начальные координаты и начальные
скорости.

Заметим, что если бы уравнения, описывающие наш мир, были бы
уравнениями первого порядка, то из нашего мира исчезли бы такие
явления, как инерция, колебания, волны.

fizika.my1.ru

Законы Ньютона — Физика — Справочник — Каталог статей

Формулировка законов Ньютона

Первый закон Ньютона

  • Первый закон Ньютона гласит: существуют системы отсчёта (называемые инерциальными), в которых замкнутая система
    продолжает оставаться в состоянии покоя или прямолинейного равномерного
    движения. По сути, этот закон постулирует инертность тел. Это может
    казаться очевидным сейчас, но это не было очевидно на заре исследований
    природы. Так, например, Аристотель утверждал, что причиной всякого движения является сила, т. е. у него не было движения по инерции.

Инерциальная система отсчёта — это система отсчёта, связанная со
свободным невращающимся телом. Свободное тело — тело, не
взаимодействующее с другими телами.

Второй закон Ньютона

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к телу силой и ускорением этого тела. Один из трех законов Ньютона.

Второй закон Ньютона утверждает, что ускорение, которое получает
тело, прямо пропорционально приложенной к телу силе и обратно
пропорционально массе тела.

Этот закон записывается в виде формулы:

=

где — ускорение тела, — сила, приложенная к телу, а m — масса тела.

Или, в более известном виде:

=

Если на тело действуют несколько сил, то во втором законе Ньютона под подразумевается равнодействующая всех сил.

В случае, если масса тела меняется со временем, то второй закон Ньютона записывается в более общем виде:

где — импульс (количество движения) тела, t — время, а — производная по времени. Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. →

В данном законе как частный случай заключен первый закон Ньютона. Это можно видеть если = 0 (т.е. если на тело не действуют силы или равнодействующая сил равна нулю) при этом соответственно получаем что и = 0, а значит, тело сохраняет состояние покоя или равномерного прямолинейного движения.

Третий закон Ньютона

  • Третий закон Ньютона объясняет, что происходит с двумя
    взаимодействующими телами. Возьмём для примера замкнутую систему,
    состоящую из двух тел. Первое тело может действовать на второе с
    некоторой силой F12, а второе — на первое с силой F21.
    Как соотносятся силы? Третий закон Ньютона утверждает: сила действия
    равна по модулю и противоположна по направлению силе противодействия, F21 = −F12. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Сам закон: Тела действуют друг на друга с силами, направленными
вдоль одной и той же прямой, равными по модулю и противоположными по
направлению.

Выводы

Из законов Ньютона сразу же следуют некоторые интересные выводы.
Так, третий закон Ньютона говорит, что, как бы тела ни
взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса. Далее, надо потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел U(|r1r2|). Тогда возникает закон сохранения суммарной механической энергии взаимодействующих тел:

Законы Ньютона являются основными законами механики. Из них могут быть выведены все остальные законы механики.

Комментарии к законам Ньютона

Силы инерции

Законы Ньютона, строго говоря, справедливы только в инерциальных системах отсчета. Если мы честно запишем уравнение движения тела в неинерциальной системе отсчета,
то оно будет по виду отличаться от второго закона Ньютона. Однако
часто, для упрощения рассмотрения, вводят некую фиктивную «силу
инерции», и тогда эти уравнения движения переписываются в виде, очень
похожем на второй закон Ньютона. Математически здесь все корректно, но
с точки зрения физики новую фиктивную силу нельзя рассматривать как
нечто реальное, как результат некоторого реального взаимодействия. Ещё
раз подчеркнем: «сила инерции» — это лишь удобная параметризация того,
как отличаются законы движения в инерциальной и неинерциальной системах
отсчета.

Законы Ньютона и лагранжева механика

Законы Ньютона — не самый глубокий уровень формулирования классической механики. В рамках лагранжевой механики
имеется одна-единственная формула (запись механического действия) и
один-единственный постулат (тела движутся так, чтобы действие было
минимальным), и из этого можно вывести все законы Ньютона. Более того,
в рамках лагранжева формализма можно легко рассмотреть гипотетические
ситуации, в которых действие имеет какой-либо другой вид. При этом
уравнения движения станут уже непохожими на законы Ньютона, но сама
классическая механика будет по-прежнему применима…

Решение уравнений движения

Уравнение F = ma (то есть второй закон Ньютона)
является дифференциальным уравнением второго порядка, поскольку
ускорение есть вторая производная от координаты по времени. Это значит,
что эволюцию механической системы во времени можно однозначно
определить, если задать её начальные координаты и начальные скорости.
Заметим, что если бы уравнения, описывающие наш мир, были бы
уравнениями первого порядка, то из нашего мира исчезли бы такие
явления, как инерция, колебания, волны.

24-school.3dn.ru

Первый закон ньютона — это… Что такое Первый закон ньютона?



Первый закон ньютона

Зако́н ине́рции (Первый закон Нью́тона): свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае непоступательного движения). Иными словами, телам свойственна ине́рция (от лат. inertia — «бездеятельность», «косность»), то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы.

Первый закон Ньютона с точки зрения современных представлений можно сформулировать так: существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на него внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

Системы отсчёта, в которых выполняется закон инерции, называют инерциальными системами отсчёта (ИСО).

Явлением инерции также является возникновение фиктивных сил инерции в неинерциальных системах отсчета.

Впервые закон инерции был сформулирован Галилео Галилеем, который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю): свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы.

Впоследствии Ньютон сформулировал закон инерции в качестве первого из трёх своих знаменитых законов.

Принцип относительности Галилея: во всех инерциальных системах отсчета все физические процессы протекают одинаково(если условия для всех тел одинаковы). В системе отсчета, приведенной в состояние покоя или равномерного прямолинейного движения относительно инерциальной системы отсчета (условно — «покоящейся») все процессы протекают точно так же, как и в покоящейся системе.

Следует отметить что понятие инерциальной системы отсчета — абстрактная модель (некий идеальный объект рассматриваемый вместо реального объекта. Примерами абстрактной модели служат абсолютно твердое тело или невесомая нить), реальные системы отсчета всегда связаны с каким-либо объектом и соответствие реально наблюдаемого движения тел в таких системах с результатами расчетов будет неполным.

См. также

Литература

Ссылки

Wikimedia Foundation.
2010.

  • Первый закон Ньютона
  • Первый дивизион Футбольной лиги Англии

Смотреть что такое «Первый закон ньютона» в других словарях:

  • Первый Закон Ньютона — Закон инерции (Первый закон Ньютона): свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае… …   Википедия

  • Первый закон Ньютона — Закон инерции (Первый закон Ньютона): свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае… …   Википедия

  • Ньютона первый закон — Закон инерции (Первый закон Ньютона): свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае… …   Википедия

  • Первый закон Кеплера — Законы Кеплера семейство физических законов, открытых Иоганном Кеплером, описывающих движение планет вокруг Солнца. Первый закон Кеплера (Закон эллипсов) Первый закон Кеплера. Каждая планета Солнечной системы обращается по …   Википедия

  • Закон инерции — в физике  первый закон Ньютона. см. статью Инерция Закон инерции в математике  см. раздел «Свойства» в статье «Квадратичная форма» (закон инерции Сильвестра) …   Википедия

  • ЗАКОН ИНЕРЦИИ — см …   Большая политехническая энциклопедия

  • Ньютона законы — Классическая механика Второй закон Ньютона История… Фундаментальные понятия Пространство · Время · …   Википедия

  • НЬЮТОНА ЗАКОНЫ МЕХАНИКИ — три закона, лежащие в основе т. н. классич. механики или механики Ньютона. Сформулированы И. Ньютоном (1687). Первый закон: «Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку… …   Физическая энциклопедия

  • НЬЮТОНА ЗАКОНЫ — механики, три закона, лежащие в основе так называемой классической механики. Сформулированы И. Ньютоном (1687). Первый закон: Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку …   Современная энциклопедия

  • Ньютона законы — механики, три закона, лежащие в основе так называемой классической механики. Сформулированы И. Ньютоном (1687). Первый закон: “Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и… …   Иллюстрированный энциклопедический словарь

dic.academic.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о