Чем отличается эдс от напряжение – В чем разница между электрическим потенциалом, разностью потенциалов (PD), напряжением и электродвижущей силой (ЭДС)?

Эдс и напряжение: что это и в чем разница

Сейчас ЭДС и напряжение, воспринимается многими в качестве идентичных понятий, у которых, если и предусмотрены некоторые отличительные особенности, то они являются столь незначительными, что вряд ли заслуживают вашего к себе внимания.

С одной стороны, такое положение дел имеет место быть, ведь те аспекты, которые отличают между собой два этих понятия являются столь незначительными, что заметить их вряд ли удастся даже более-менее опытным пользователям. Тем не менее, таковые все же предусмотрены и говорить о том, что ЭДС и напряжение являются совершенно одинаковыми — тоже нельзя.

Что собой представляет ЭДС и почему его часто путают с напряжением?

ЭДС, или электродвижущая сила, как ее принято называть во многих учебниках, представляет собой такую физическую величину, которая характеризует работу каких-либо сторонних сил, присутствующих в источниках постоянного, либо-же переменного тока.
Если говорить об замкнутом проводящем контуре, то следовало бы отметить то, что в случае с ним, ЭДС будет равняться работе сил по перемещению единичного положительного заряда вдоль вышеупомянутого контура. Путают электродвижущую силу и напряжение — не просто так. Как известно, два этих понятия, на сегодняшний день,

измеряются в вольтах. При этом, об ЭДС мы можем говорить на любом участке цели, ведь по сути дела — это удельная работа сторонних сил, которые действуют не во всем контуре, а только на каком-то, определенном участке.

Отдельного внимания с вашей стороны, заслуживает то, что у ЭДС гальванического элемента, предусматривается работа сторонних сил, работающих во время перемещения единичного положительного заряда от одного полюса к совершенно другому. Работа этих сторонних сил, напрямую зависит от формы траектории, но не может быть выражена через разность потенциалов. Последнее обуславливается тем, что сторонние силы — не являются потенциальными. Несмотря на то, что напряжение, представляет собой одно из самых незамысловатых понятий, многие потребители до конца не понимают того, что оно собой представляет. Если этого не понимаете и вы, то считаем должным навести для вас некоторые примеры.

Возьмем для наглядности обыкновенный резервуар с водой. Из такого резервуара, должна будет выходить обыкновенная труба. Так вот, высота водяного столба или давление, простыми словами и будет представлять собой напряжение, в то время, как скоростью потока вода, будет являться электрический ток. Ввиду вышесказанного, чем больше будет предусматривается воды в баке, тем большим будет его давление и напряжение, соответственно.

Главные отличия ЭДС от напряжения

Электродвижущей силой, называют напряжение, которое согласно своему определению, является отношением работы сторонних сил, касательно перенесению положительного заряда непосредственно к самой величине этого заряда. Напряжением, в свою очередь, считается уже отношение работы электрического поля, касательно перенесения так называемого электрического заряда. Так, к примеру, если в вашем автомобиле предусмотрен аккумулятор, то его ЭДС всегда будет равна 13 Вольтам. Ну а вот если к вышеупомянутому прибору вы при включенных фарах присоедините еще и вольтметр — прибор, предназначающийся для измерения напряжения, то последний показатель окажется гораздо меньшим, чем 13 Вт. Такая, возможно несколько странноватая тенденция, обуславливается тем, что в аккумуляторе, в качестве сторонних сил, воспринимается именно действие химической реакции. При этом, в автомобиле предусмотрен также и генератор, который во время работы двигателя вырабатывает простой электрический ток.


Ввиду вышесказанного, мы и можем говорить об основных отличительных особенностях ЭДС и напряжения:

  1. ЭДС будет зависеть от самого источника. Ну а вот если говорить мы будет об напряжение, то его показатель, напрямую зависит от того, что подключение и какой ток сейчас течет по цепи.
  2. ЭДС — это физическая величина, которая нужна для того, чтобы характеризовать работу некулоновских сил, а напряжение характеризует работа тока, касательно перемещения заряда последним.
  3. Понятия эти являются разными еще и потому что электродвижущая сила, предназначается для магнитной индукции, в то время, как напряжение, чаще всего используется по отношению к постоянному току.

vchemraznica.ru

Чем различаются ЭДС и напряжение источника питания

 

 

Чем отличается ЭДС (электродвижущая сила) от напряжения? Рассмотрим сразу на конкретном примере. Берем батарейку, на которой написано 1,5 вольт. Подключаем к ней вольтметр, как показано на рисунке 1, чтобы проверить, действительно ли батарейка исправна.

 

Рисунок 1

 

Вольтметр показывает 1,5 В. Значит, батарейка исправна. Подключаем ее к маленькой лампочке. Лампочка светится. Теперь параллельно лампочке подключаем вольтметр, чтобы проверить: действительно ли на лампочку приходится 1,5 В. Получается схема, показанная на рисунке 2.

 

Рисунок 2

 

И тут оказывается, что вольтметр показывает, например, 1 В. Куда потрачены 0,5 В (которые разность между 1,5 В и 1 В)?

Дело в том, что любой реальный источник питания имеет внутреннее сопротивление (обозначается буквой r). Оно во многих случаях снижает характеристики источников питания, но изготовить источник питания вообще без внутреннего сопротивления невозможно. Поэтому нашу батарейку можно представить как идеальный источник питания и резистор, сопротивление которого соответствует внутреннему сопротивлению батарейки (рисунок 3).

 

Рисунок 3

 

 

Так вот, ЭДС в данном примере – это 1,5 В, Напряжение источника питания – 1 В, а разница 0,5 В была рассеяна на внутреннем сопротивлении источника питания.

ЭДС – это максимальное количество вольт, которое источник питания может выдать в цепь. Это постоянная для исправного источника питания величина. А напряжение источника питания

зависит от того, что к нему подключено. (Здесь мы говорим только о тех типах источников питания, которые изучаются в рамках школьной программы).

В нашем примере лампочка с сопротивлением R и резистор соединены последовательно, поэтому ток в цепи можно найти по формуле

 

 

И тогда напряжение на лампочке равно

 

 

Получается, чем больше сопротивление лампочки, тем больше вольт приходится на нее, и тем меньше вольт бесполезно теряется в батарейке. Это касается не только лампочки и батарейки, но и любой цепи, состоящей из источника питания и нагрузки. Чем больше сопротивление нагрузки, тем меньше разница между

напряжением и ЭДС. Если сопротивление нагрузки очень большое, то напряжение практически равно ЭДС. Сопротивление вольтметра всегда очень большое, поэтому в схеме на рисунке 1 он показал значение 1,5 В.

Пониманию смысла ЭДС мешает то, что в быту мы этот термин практически не употребляем. Мы говорим в магазине: «Дайте мне батарейку с напряжением 1,5 вольта», хотя правильно говорить: «Дайте мне батарейку с ЭДС 1,5 вольта». Но так уж повелось…

Похожая статья: чем отличается напряжение от потенциала.

Понравилась статья? Размести ссылку на сайт в социальных сетях

repetitor-fm.by

разница между эдс и напряжением



разница между эдс и напряжением

В разделе Естественные науки на вопрос в чем отличие между ЭДС и электрическим напряжением заданный автором Danoka YLYKBEKOVA лучший ответ это ЭДС – это напряжение, которое создают сторонние силы внутри источника тока.

Ответ от 22 ответа[гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: в чем отличие между ЭДС и электрическим напряжением

Ответ от Никита Фролов[гуру]

меж ними разница, то в падениии напряжения на сопросивлении источника

Ответ от Ёергей[гуру]
ЭДС – электродвижущая сила. Простыми словами – это та сила, которая перемещает заряд в источнике электрической энергии. Напряжение – разность потенциалов на выходе источника напряжения. ЭДС равна падению напряжения на внутреннем сопротивлении источника напряжения плюс напряжение на выходе источника напряжения.


Ответ от Mikhail Levin[гуру]
напряжение – оно зависит от того, что подключено и какой ток течет по цепи.
ЭДС – зависит только от самого источника.

можно представить, что внутри любого источника (батареи, аккумулятора) есть идеальная батарейка, выдающая всегда однаковое напряжение (оно как раз – ЭДС) и сопротивление.

Если снаружи повесили потребителя – пошел ток, на этом внутреннем сопротивлении появилось падение напряжения dU (по закону Ома) , снаружи без нагрузки было напряжение U, а стало U-dU.

В самом деле ЭДС не меняется – он зависит только от того, из какого материала сделана батарейка. А вот это внутреннее сопротивление зависит и от ее размеров, и от ее мощности и от того, насколько она свежая. Батарейка садится – увеличивается сопротивление, снаружи кажется. что напряжение стало меньше.


Ответ от 2 ответа[гуру]

Привет! Вот еще темы с нужными ответами:

Общероссийский классификатор видов экономической деятельности на Википедии
Посмотрите статью на википедии про Общероссийский классификатор видов экономической деятельности

Эмотикон на Википедии
Посмотрите статью на википедии про Эмотикон

 

Ответить на вопрос:

22oa.ru

ЭДС и напряжение

Дата публикации: .

Чтобы электрический ток проходил по цепи продолжительное время, нужно непрерывно поддерживать на полюсах источника напряжения разность потенциалов. Аналогично этому, если соединить трубкой два сосуда с различными уровнями воды, то вода будет переходить из одного сосуда в другой до тех пор, пока уровни в сосудах не сравняются. Доливая воду в один сосуд и отводя ее из другого, можно добиться того, что движение воды по трубке между сосудами будет продолжаться непрерывно.

При работе источника электрической энергии электроны с анода переходят на катод.

Отсюда можно заключить, что внутри источника электрической энергии действует сила, которая должна непрерывно поддерживать ток в цепи, то есть иначе говоря, должна обеспечивать работу этого источника.

Причина, которая устанавливает и поддерживает разность потенциалов, вызывает ток в цепи, преодолевая ее внешнее и внутреннее сопротивление, называется электродвижущей силой (сокращенно э. д. с.) и обозначается буквой E.

Электродвижущая сила источников электрической энергии возникает под влиянием причин, специфических для каждого из них.

В химических источниках электрической энергии (гальванических элементах, аккумуляторах) э. д. с. получается в результате химических реакций, в генераторах э. д. с. возникает вследствие электромагнитной индукции, в термоэлементах – за счет тепловой энергии.

Рисунок 1. Внешний вид вольтметра

Разность потенциалов, вызывающее прохождение тока через сопротивление участка электрической цепи, называется напряжением между концами этого участка. Электродвижущая сила и напряжение измеряются в вольтах. Для измерения э. д. с. и напряжения служат приборы – вольтметры (рисунок 1).

Тысячные доли вольта – милливольты – измеряются милливольтметрами, тысячи вольт – киловольты – киловольтметрами.

Чтобы измерить э. д. с. источника электрической энергии необходимо вольтметр включить к зажимам этого источника при разомкнутой внешней цепи (рисунок 2). Для измерения напряжения на каком-либо участке электрической цепи вольтметр нужно включить к концам этого участка (рисунок 3).

Рисунок 2. Измерение вольтметром электродвижущей силы элементаРисунок 3. Измерение вольтметром напряжений на различных участках электрической цепи

 

Видео 1. Что такое электродвижущая сила (э. д. с.)

Источник: Кузнецов М. И., “Основы электротехники” – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

www.electromechanics.ru

Напряжение и ЭДС

Господа, сегодня речь пойдет про напряжение. Все не раз слышали это слово. Все что-то про него знают. 

Но что же именно такое это самое напряжение? Что представляет собой физически? Откуда оно берется? На все эти вопросы мы попытаемся сегодня дать ответ.

Для начала определимся с тем, что же такое это самое напряжение? Классическая физика дает достаточно сложное для быстрого понимания формальное определение. Оно завязано на формальном определении потенциальной энергии зарядов в поле, собственно, потенциале и их разности. Вся сия ботва подкреплена целым каскадом формул. На мой взгляд сие положение дел сильно усложняет понимание именно физики процесса возникновения напряжения и замечательная лишь с точки зрения решения академических задач, мало имеющих отношения к действительности. Сейчас мы постараемся разобраться с напряжением, что называется, на пальцах, понять физику протекающих процессов. Многим этого уже будет достаточно. Если же нет – надеюсь, после сего объяснения формулы из школьного учебника физики будут пониматься чуточку проще и быстрее.

Возьмем два электрода. Например, клеммы источника питания, или клеммы батарейки. Теперь, если мы каким-нибудь образом создадим такие условия, что на «минусовой» клемме будет избыток электронов по сравнению с «плюсовой» клеммой, то можно говорить, что между этими двумя клеммами существует напряжение. Суть возникновения напряжения заключается в том, что часть электронов с одной клеммы («плюсовой») переносится на другую («минусовую»). Чем больше мы электронов перенесем, тем больше будет созданное напряжение. Теперь, если мы замкнем между собой эти клеммы, то электроны начнут возвращаться с минусовой клеммы обратно на плюсовую, откуда они были взяты – потечет электрический ток. То есть напряжение порождает электрический ток при определенных условиях.

Напряжение, как, думаю, все из вас знают, измеряется в вольтах. Однако вольт не входит в основные единицы системы СИ. Вольт – это 1 Джоуль (единица измерения энергии)/1 Кулон (единица измерения заряда). Почему это так? Формальный вывод вы можете глянуть в учебнике физики. А если объяснять на пальцах – то все достаточно просто. Заряды одного знака (в частности, электроны) как мы с вами помним – отталкиваются друг от друга. Поэтому что бы перетащить электрон с плюсовой клеммы на минусовую – где и так уже куча электронов – надо совершить определенную работу. Минусовая клемма отталкивает от себя электроны, а мы их силой на нее запихиваем. Это как пытаться еще больше сжать уже наполовину сжатую пружину. Трудно довольно-таки. Напряжение в один вольт между клеммам возникает, когда мы совершаем работу в 1 Джоуль при переносе с одной клеммы на другую заряда в 1 кулон.

Не следует думать, что эта работа совершается впустую. Нет и еще раз нет! Эта энергия запасается. После, когда мы замкнем цепь и электрончики побегут с минуса обратно на плюс – они от радости, что возвращаются домой, они уже сами могут совершить некоторую работу – например, нагреть сопротивление или повращать электродвигатель или еще что-нибудь. Так что напряжение – это такая штука, что всегда готова вырваться наружу с энергией.

Возникает резонный вопрос – а как же перенести электроны с плюсовой клеммы на минусовую? Как создать это самое напряжение? Способов довольно много. Например, в батарейках – этот перенос возникает благодаря химической реакции. В фотоэлементах – благодаря действию энергии света на полупроводниковые материалы. В генераторах – благодаря действию магнитного поля на перемещающиеся в нем проводники. Возможно, позднее мы коснемся природы этих вещей более подробно.

Эти силы, которые участвуют в переносе электронов с плюса на минус – называют сторонними силами. А работа, которая ими совершается, очевидно, будет называться работой сторонних сил. И тут сам собой возникает термин ЭДС – электродвижущая сила.

ЭДС – это отношение работы сторонних сил по перемещению некоторого заряда, к этому самому заряду. По сути же получается то же самое напряжение, только, если можно так выразиться – с другой стороны. Напряжение все-таки возникает у нас между клеммами и открыто для потребителя. А ЭДС – это то, что скрыто от потребителя и характеризует процессы внутри источника. Эти процессы, эта работа протекает все время, пока источник функционирует и поддерживает напряжение, которое он выдает.

Рассмотрим чуть подробнее внутреннее устройство источника напряжения на примере простой модели. Эта модель представляет собой последовательное сопротивление ядра источника – устройства, в котором происходят различные процессы формирования напряжения и внутреннего сопротивления источника. Безусловно, в реальных устройствах они неотделимы друг от друга. Однако для облегчения понимания происходящих процессов их можно разделить, суть от этого не изменится. Итак, господа, так называемое ядро источника и выдает нам напряжение, точно равное ЭДС. А вот на клеммах источника питания – снаружи – мы может намерить напряжение, как равное ЭДС, так и меньше его.

Рассмотрим три разных случая (Рисунок 1, Рисунок 2, Рисунок 3). Во всех этих рисунках кружок с плюсом и минусом – это ядро источника, то, что непосредственно формирует напряжение. В нем как раз и работают сторонние силы и формируется ЭДС. Это самое ядро выдает нам напряжение точно равное значению ЭДС. Сопротивление R1 здесь – это внутреннее сопротивление источника. Обычно на практике оно составляет от долей Ома до единиц Ом. Заметьте, господа, и ядро E1  и сопротивление R1 обведены пунктиром – они находятся внутри батарейки! А вот сопротивление R2 находится за пределами батарейки – это наша полезная нагрузка. Например, лампочка. Или плеер. Или еще что.

Случай 1 – у нас идеальная батарейка. Этот случай соответствует рисунку 1. Она не имеет внутреннего сопротивления. В жизни, увы, такое не встретишь, но для понимания физики процессов рассмотреть будет полезно. В этом случае даже при подключенной нагрузке мы будем иметь на выходных клеммах батарейки напряжение, равное ЭДС.

 

 

Рисунок 1 – Идеальный источник напряжения

Случай 2 – у нас не идеальная батарейка. У нее есть свое внутреннее сопротивление R1. Но мы не нагружаем батарейку, ничего к ней не подключаем. Этот случай соответствует рисунку 2. Тогда на выходных клеммах батарейки мы так же будем наблюдать напряжение U3, равное ЭДС.

 

 Рисунок 2 – Реальный источник напряжения без нагрузки (холостой ход)

Случай 3 – у нас не идеальная батарейка и мы ее нагружаем сопротивлением R2. По цепи течет ток I. Этот случай соответствует рисунку 3. И вот в этом случае напряжение на клеммах, которое мы наблюдаем, не будет равно ЭДС! Оно будет меньше. Да, источник Е1 где-то в недрах батарейки все так же формирует напряжение U1, равное ЭДС. Но это напряжение делится между внутренним сопротивлением батарейки R1 и нашей нагрузкой R2. А сопротивление R1, как мы помним, так же находится в недрах батарейки и нам, юзерам, оно недоступно. Поэтому на клеммах батареи мы будем наблюдать напряжение, меньшее, чем ЭДС батареи. Этот случай чаще всего встречается в жизни. И именно он хорошо иллюстрирует, чем же отличается ЭДС источника и напряжение, формируемое источником.

 

 

Рисунок 3 – Реальный источник напряжения с нагрузкой

Итак, господа, краткий итог таков: напряжение, выдаваемое источником напряжения равно ЭДС тогда, когда мы можем пренебречь внутренним сопротивлением источника, а точнее падением напряжения на нем. Если же на внутреннем напряжении источника падает какое-либо напряжение, очевидно, выходное напряжение, формируемое источником, будем меньше ЭДС. Да, грань между понятиями ЭДС и напряжение довольно размытая, часто бывает путаница, но, господа, теперь ее будет меньше.

Коснемся теперь такого момента, как знак напряжения. Да, напряжение может быть как положительным, так и отрицательным. Физики процесса это нисколько не поменяет. Все остается в силе – на «отрицательной» клемме у нас электронов по прежнему больше, чем на «положительной».  Все зависит от того, какой электрод мы примем за начальную точку отсчета, то есть за ноль. А что считать нулем, вообще говоря? Принято считать, что ноль в данном случае – это наша земля-матушка. То есть что происходит. Мы берем наш изначально отвязанный (не соединенный никакими проводами) от земли источник. И дальше одну его клемму – на выбор – соединяем с землей. Если мы соединили с землей отрицательную клемму – значит, на свободной от земли клемме электронов меньше, чем на той, которую мы заземлили и у нас положительный источник. Если наоборот – соединили с землей положительную клемму – у нас источник выдает отрицательное напряжение. Только и всего.  Если у нас никакая клемма источника не соединена с землей, либо с какой-либо другой общей точкой, принятой в данной установке за ноль, то про такой источник питания бессмысленно говорить – положительный он или отрицательный. Можно лишь сказать, что на «отрицательной» клемме электронов больше, чем на положительной или то, что она имеет меньший потенциал.

Если у нас изначально источник питания сконструирован таким образом, что одна из его клемм подключена к земле – тут вообще все очевидно.

Спешу предупредить опасное заблуждение. Поскольку мы рассматриваем изначально отвязанные от земли источники питания, то соединение одной его клеммы с землей не вызовет протекание никакого тока! Часто можно встретить утверждение, что какие-то там токи потекут на землю, если подсоединить к ней одну из клемм источника. Нет, господа, нет и еще раз нет. Ничего там не потечет. Вы можете сами в этом убедиться. Возьмите вольтметр и измерьте напряжение между клеммами вашего отвязанного от земли источника и землей. Он покажет 0 Вольт, напряжения нет. Нет напряжения – не будет и тока. Однако если источник питания подключен одной из клемм к земле – тогда совсем другое дело, замыкание другой клеммы на землю приведет к короткому замыканию источника.

Вообще же тема земли и заземления совсем не такая простая, как кажется на первый взгляд. Там много хитрых моментов и подводных камней, особенно, когда речь заходит о заземлении высокочастотных цепей, либо цепей, в которых протекает очень большой ток. Однако это тема уже совсем другой статьи.

А пока мы заканчиваем. Всем удачи и до новых встреч!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.


myelectronix.ru

ЭДС и напряжение источника электрической энергии

 

Для того чтобы разобраться что такое электродвижущая сила источника электрической энергии, необходимо вспомнить, что представляет собой электрический ток и за счёт чего происходит его движение в электрической цепи.

Известно, электрический ток движется в цепи за счёт разницы потенциалов. Для того чтобы движение тока не прекращалось, нужно непрерывно обеспечивать эту разницу потенциалов между полюсами источника напряжения, к которому подключена цепь.

Подобное явление можно сравнить с трубкой, которая соединена с двумя резервуарами с водой. Если в этих резервуарах будет разный уровень воды, то она непременно начнёт перетекать через трубку из одного сосуда в другой и наоборот; так если разница в уровне воды между сосудами будет постоянной, то и движение воды не прекратиться.

Данный пример помогает понять, что происходит в электрической цепи. Электрическая энергия, действующая внутри источника, постоянно поддерживает электрический ток. Таким образом, обеспечивается непрерывная работа.

Понятие «Электродвижущая сила»

В данном случае, электродвижущая сила (ЭДС) – это сила, которая поддерживает разницу потенциалов на разных полюсах источника энергии, она вызывает и поддерживает движение тока, а также преодолевает внутренне сопротивление проводника и т. д.

Ток может протекать по проводнику столь же долго, сколь существует разница потенциалов. Свободные электроны приходят в постоянное движение между телами, которые соединены в электрическую цепь.

Электродвижущая сила – величина физическая, т. е., её можно измерить и использовать как одну из характеристик электрической цепи. В источниках постоянного, либо переменного тока ЭДС характеризует работу непотенциальных сил. Это работа сторонних или непотенциальных сил в замкнутом контуре, когда они перемещают одиночный электрический заряд вдоль всего контура.

Возникновение электродвижущей силы

Существует различные виды источников электрической энергии. Каждый из них можно охарактеризовать по-разному, у каждого вида свои принципиальные особенности. Эти особенности влияют на возникновение электродвижущей силы, причины данного явления весьма специфичны, т. е. зависят от вида источника.

В чём же главная суть различий? К примеру, если мы берём химические источники электрической энергии, такие как аккумуляторы, другие гальванические элементы, то электродвижущая сила становится результатом химической реакции. Если рассмотреть генераторы, то здесь причиной является электромагнитная индукция, а в различных термических элементах основой является тепловая энергия. От этого возникает электрический ток.

Измерение электродвижущей силы

Электродвижущая сила измеряется в вольтах, также как и напряжение. Эти величины связаны между собой. Однако ЭДС можно измерять на отдельном участке электрической цепи, тогда будут измеряться работы не всех сил, действующих на этом контуре, а только те, которые есть на отдельно взятом участке цепи.

Разность потенциалов, являющуюся причиной возникновения и прохождения тока по цепи, также можно назвать напряжением. Однако, если ЭДС – работа сторонних сил, которая совершается при перемещении единичного заряда, то она не может быть охарактеризована с помощью разницы потенциалов, т. е., напряжения, так как работа зависит от траектории движения заряда, эти силы непотенциальны. В этом различие таких понятий как напряжение и электродвижущая сила.

Данная особенность учитывается при измерении ЭДС и напряжения. В обоих случаях используют вольтметры. Для того чтобы измерить ЭДС нужно при разомкнутой внешней цепи подключить вольтметр к концам источника энергии. Если требуется измерить напряжение на выбранном участке электрической цепи, то вольтметр должен быть подключён параллельно к концам конкретного участка.

ЭДС и напряжение источника электрической энергии могут быть независимо от величины электрического тока в цепи; в разомкнутой цепи ток равен нулю. Однако если генератор или аккумулятор будут работать, то они возбуждают ЭДС, а значит, между концами возникает напряжение.

volt220.ru

Помогите решить / разобраться (Ф)

Эти слова не мои, а из справочника по физике. (Х. Кухлинг, Справочник по физике, с. 312, изд. 1980 г.)

В предисловии к этому справочнику написано:

Цитата:

было бы ошибочно думать, что по этой книге можно изучать физику.

Следовательно, Вы ошиблись.
В данном справочнике отсутствует системное изложение, необходимое при изучении.

В учебниках вначале даётся определение напряжения электрического поля:

Цитата:

Разность потенциалов между двумя точками электрического поля называется напряжением (U). Напряжение численно равно работе, которую производят электрические силы при перемещении единичного положительного заряда между двумя точками.

Запомните это определение на всю оставшуюся жизнь!
Работа в электростатическом поле при перемещении заряда рассчитывается по формуле

Напряжение выражается в вольтах (В). 1 В — это такая разность потенциалов между двумя точками, когда при перемещении между ними положительного заряда в 1 Кл совершается работа в 1 Дж.

Далее в учебниках рассматривается падение напряжения в цепях постоянного тока.

где — ток,
— время,
есть заряд.
Мощность тока, т.е. работа в единицу времени, равна

Эту формулу используют в системе СИ для определения единицы напряжения. Единица напряжения вольт (В) есть

Вольт — электрическое напряжение, вызывающее в электрической цепи постоянный ток силой 1 А при мощности 1 Вт.
Здесь заряд заменён током, а работа — мощностью.

Затем рассматривается ЭДС.
Для получения тока в проводнике необходимо на его концах поддерживать разность потенциалов. Устройства, которые позволяют поддерживать разность потенциалов, называются источниками (или генераторами) тока. В источниках тока различные формы энергии, не связанные с электрическим полем, преобразуются в электрическую энергию. На полюсах разомкнутого источника тока поддерживается разность потенциалов за счёт работы таких сил, которые по своей природе отличаются от электрических. Такие силы называются сторонними. Сторонние силы, действующие внутри источника, переносят заряды против направления действия электрических сил.
Электродвижущей силой источника (эдс) называется величина, численно равная работе сторонних сил при перемещении единицы положительного заряда.

Размерность электродвижущей силы совпадает с размерностью напряжения , и поэтому ЭДС выражают в тех же единицах (В), что и напряжение.

Таким образом, напряжение характеризует работу сил электрического поля при перемещении зарядов, а ЭДС характеризует работу неэлектрических сил при перемещении зарядов.

dxdy.ru

Оставить комментарий