Что называется ветвью электрической цепи – Ветвь электрической цепи

Содержание

Ответы@Mail.Ru: что называется электрической цепью

Электри́ческая цепь — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитных процессов, в которых могут быть описаны с помощью понятий сила тока и напряжение.

Неразветвленные и разветвленные электрические цепи

Рисунок 2 — Разветвленная цепь
Электрические цепи подразделяют на неразветвленные и разветвленные. На рисунке 1 представлена схема простейшей неразветвленной цепи. Во всех ее элементах течет один и тот же ток. Простейшая разветвленная цепь изображена на рисунке 2. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 2), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом.

Линейные и нелинейные электрические цепи
Линейной электрической цепью называют такую цепь, все компоненты которой линейны. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы (подчиняющиеся закону Ома) , и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и индуктивности. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной.
Изображение электрической цепи с помощью условных обозначений называют электрической схемой. Функция зависимости тока, протекающего по двухполюсному компоненту от напряжения на этом компоненте называют вольт-амперной характеристикой (ВАХ) . Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток.
В частности, омические резисторы, ВАХ которых описывается линейной функцией и на графике ВАХ являются прямыми линиями, называют линейными.
Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности без ферромагнитных сердечников.
Некоторые нелинейные цепи можно приближенно описывать как линейные, если изменение приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей точке) . Этот подход называют «линеаризацией». При этом к цепи может быть применён мощный математический аппарат анализа линейных цепей. Примерами таких нелинейных цепей, анализируемых как линейные относятся практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.) .
Законы, действующие в электрических цепях

Закон Ома
Теорема Тевинина
Правило токов Кирхгофа
Правило напряжений Кирхгофа

otvet.mail.ru

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ | Энциклопедия Кругосвет

Содержание статьи

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ, совокупности соединенных определенным образом элементов и устройств, образующих путь для прохождения электрического тока. Теория цепей – раздел теоретической электротехники, в котором рассматриваются математические методы вычисления электрических величин. Многие из этих электрических величин определяются параметрами компонентов, составляющих цепи, – сопротивлениями резисторов, емкостями конденсаторов, индуктивностями катушек индуктивности, токами и напряжениями источников электрической энергии. Электрические цепи подразделяются на цепи постоянного тока и цепи переменного тока.

ОСНОВНЫЕ ПОНЯТИЯ

Ток.

Сила электрического тока в проводе определяется как электрический заряд, проходящий через поперечное сечение провода за единицу времени. Заряд измеряется в кулонах; один кулон в секунду равен одному амперу.

Направлением тока далее будем считать направление, в котором двигались бы положительные заряды. На самом деле ток в большинстве случаев создается движением электронов, которые, будучи заряжены отрицательно, движутся в направлении, противоположном принятому за направление тока. Ток неизменяющейся силы обозначается через I, а мгновенное значение изменяющегося тока – через i.

Потенциал.

Если для перемещения заряда между двумя точками необходимо затратить энергию или если при перемещении заряда между двумя точками заряд приобретает энергию, то говорят, что в этих точках имеется разность потенциалов. Энергия необходима для перемещения заряда от более низкого потенциала к более высокому. На схемах рядом с точкой более высокого потенциала ставится знак +, а рядом с точкой более низкого – знак -.

Батарея или генератор электрического тока – это устройство, которое сообщает энергию зарядам. Источник тока перемещает положительные заряды от меньшего потенциала к большему за счет химической энергии. Неизменяющаяся разность потенциалов обозначается через V, а мгновенное значение изменяющейся разности потенциалов – через e.

Разность потенциалов на зажимах батареи или генератора называется электродвижущей силой (ЭДС) и обозначается через Eg, если она не изменяется, и через eg, если она переменна. Разность потенциалов в двух точках a и b обозначается через Vab. Разность потенциалов и ЭДС измеряются в вольтах.

ТЕОРИЯ ЦЕПЕЙ

Цепь может представлять собой любую комбинацию батарей и генераторов, а также резистивных и реактивных элементов. Батареи и генераторы в теории цепей рассматриваются либо как источники напряжения (ЭДС) с определенным внутренним сопротивлением, либо как источники тока с определенной внутренней проводимостью. Цепь, не содержащая источников тока и напряжения, называется пассивной, а цепь с источниками тока или напряжения – активной. Целью анализа цепи является определение полного сопротивления (импеданса) между любыми двумя точками цепи и нахождение математического выражения для тока через любой элемент цепи или для напряжения на любом элементе цепи при любых заданных ЭДС источников напряжения и любых токах источников тока. Всякий замкнутый путь тока в цепи называется контуром. Узлом цепи называется всякая ее точка, в которой соединяются три или большее число ветвей цепи.

На рис. 1 представлена цепь с двумя контурами. Стрелками I1, I2 и I3 показано предполагаемое направление токов в импедансах этих контуров. От токов не требуется, чтобы они были в фазе; но в простейшем случае, когда импедансы – сопротивления, решение уравнений относительно любого тока I будет отрицательным, если принято неправильное направление тока. Поэтому предполагаемое направление токов может быть любым. Принятые положительные и отрицательные потенциалы, соответствующие ЭДС источников напряжения, указаны знаками + и -. Следует иметь в виду, что напряжение на импедансе понижается в направлении тока и повышается в противоположном направлении. Это тоже указано знаками + и -.

Законы Кирхгофа.

Зависимости между токами и напряжениями в электрической цепи устанавливаются на основании двух законов, сформулированных Г.Кирхгофом (1847): 1) алгебраическая сумма ЭДС источников напряжения и напряжений на элементах контура равна нулю и 2) алгебраическая сумма токов в каждом узле равна нулю.

В первом законе Кирхгофа находит выражение то очевидное обстоятельство, что при полном обходе контура мы возвращаемся в исходную точку с тем же самым потенциалом. Второй закон Кирхгофа есть констатация того, что в узловой точке ток не может ни исчезать, ни возникать. Ток к узлу считается положительным, а ток от узла – отрицательным.

Применив закон Кирхгофа для напряжений к двум контурам цепи, представленной на рис. 1 (и воспользовавшись законом Ома – выражением VZ = IZ для напряжения на импедансе Z, создаваемого током I), мы получим для контура 1 уравнение

а для контура 2 – уравнение

Применив закон Кирхгофа для токов к любому из узлов, получаем

Если ЭДС (Eg)1 и (Eg)2, а также импедансы известны, то из уравнений (1)–(3) можно вычислить все три тока.

Контурные токи.

В случае цепей с большим числом контуров метод контурных токов позволяет не записывать уравнения для токов, следующие из второго закона Кирхгофа. Для этого в той же цепи, что и раньше, представленной на рис. 2, принимают один ток для каждого контура. Как и прежде, направление токов выбирается произвольно. Закон Кирхгофа для напряжений дает для контура 1

а для контура 2

В напряжение на импедансе Z3, рассматриваемом как элемент одного контура, входит напряжение, обусловленное током другого контура: в уравнении (4) имеется слагаемое (–Z3I2), а в уравнении (5) – слагаемое (–Z3I1). Уравнения (4) и (5) можно было бы получить из уравнений (1)–(3), подставив в первые два ток I2 из третьего, но метод контурных токов приводит к тому же результату всего за два шага.

Принцип суперпозиции.

Предположим, что в активной цепи в разных ее точках имеется несколько источников напряжения или тока. Согласно принципу суперпозиции, ток, создаваемый любым источником в любом элементе цепи, не зависит от других источников. Следовательно, полный ток в любом элементе равен сумме токов, создаваемых всеми источниками по отдельности. При вычислении тока, создаваемого каждым из источников напряжения или тока, другие источники напряжения заменяются их внутренними импедансами, а другие источники тока – их внутренними проводимостями.

Теорема Тевенена.

Эта теорема, называемая также теоремой об эквивалентном источнике, утверждает, что любую активную цепь с двумя полюсами (зажимами) в установившемся режиме можно заменить источником напряжения с некоторым внутренним импедансом. ЭДС эквивалентного источника напряжения равна напряжению на полюсах ненагруженного заменяемого двухполюсника, а внутренний импеданс источника равен импедансу этого двухполюсника при ЭДС источников напряжения в нем, равных нулю.

Рассмотрим, например, цепь, представленную на рис. 3. Эта активная цепь заменяется источником напряжения, ЭДС Egў и внутренний импеданс Zgў которого таковы:

ЭДС Egў есть напряжение на разомкнутых полюсах a и b, равное напряжению на Z1. Внутренний импеданс Zgў равен импедансу между точками a и b исходного двухполюсника, т.е. импедансу последовательного соединения Z2 с параллельно соединенными Z1 и Zg. Для любого элемента, присоединенного к полюсам a и b обоих двухполюсников, токи и напряжения будут одинаковы.

Теорема Нортона.

Эта теорема, аналогичная теореме Тевенена, утверждает, что любой активный двухполюсник можно заменить эквивалентным источником тока с некоторой внутренней проводимостью. Ток эквивалентного источника равен току короткого замыкания между полюсами a и b исходного двухполюсника. Внутренняя проводимость эквивалентного источника тока определяется тем же, что и в теореме Тевенена, импедансом между полюсами двухполюсника, присоединенным параллельно источнику. На рис. 4

а импеданс Zgў дается выражением (7). Если полюса a и b исходного двухполюсника замкнуть накоротко, то источник напряжения с ЭДС Eg будет нагружен импедансом Zg и параллельным соединением импедансов Z1 и Z2, откуда и следует выражение (8).

Преобразование Т-П.

Часто требуется заменить Т-образный четырехполюсник П-образным или наоборот. Чтобы два таких четырехполюсника (рис. 5) были эквивалентны, должны быть одинаковы токи и напряжения между их полюсами при прочих равных условиях за пределами полюсов. Параметры цепи для преобразования Т ® П таковы:

Формулы для преобразования ПТ имеют вид

Переходные процессы.

Переходным называется процесс изменения электрических величин в цепи при ее переходе из одного установившегося режима в другой. При анализе переходных процессов ток, напряжение или заряд в некоторой точке цепи обычно представляют в виде функции времени.

Рассмотрим цепь с источником напряжения (батареей с ЭДС Eg), представленную на рис. 6. После замыкания ключа сумма мгновенных значений напряжения на резисторе и конденсаторе должна быть равна Eg:

или, иначе,

Поскольку i = dq/dt, уравнение (10) можно переписать в виде дифференциального уравнения

решение которого таково:

Соответствующий ток равен:

где e – основание натуральных логарифмов.

На рис. 7 представлены графики изменения заряда конденсатора q и тока i во времени. В начальный момент (t = 0), когда ключ только замкнут, заряд конденсатора равен нулю, а ток равен Eg /R, как если бы конденсатора в цепи не было. Затем заряд конденсатора нарастает по экспоненте. Обусловленное зарядом напряжение на конденсаторе направлено навстречу ЭДС источника, и ток по экспоненте убывает до нуля. В момент замыкания ключа конденсатор эквивалентен короткому замыканию, а по истечении достаточно длительного времени (при t = Ґ) – разрыву цепи.

Постоянная времени RC-цепи определяется как время, за которое заряд достигает значения, на 1/e (36,8%) отличающегося от конечного значения. Она дается выражением

Аналогичные рассуждения можно провести для RL-цепи, представленной на рис. 8. Сумма мгновенных напряжений eR и eL должна быть равна Eg. Это условие записывается в виде дифференциального уравнения

решение которого таково:

На рис. 9 решение (11) представлено в графической форме. Сразу же после замыкания ключа (при t = 0) ток начинает быстро увеличиваться, наводя большое напряжение на катушке индуктивности. Наведенное напряжение противодействует изменению тока. По мере того как нарастание тока замедляется, наведенное напряжение уменьшается. При t = Ґ ток не меняется, и наведенное напряжение равно нулю. Таким образом, в конце концов ток принимает значение, которое он имел бы, если бы в цепи не было катушки индуктивности. (При t = 0 катушка индуктивности эквивалентна разрыву цепи, а по истечении достаточно длительного времени – короткому замыканию.)

Постоянная времени RL-цепи определяется как время, за которое ток достигает значения, на 1/e отличающегося от конечного значения. Она дается выражением

ПРИМЕНЕНИЕ ТЕОРИИ ЦЕПЕЙ

Мост Уитстона.

Мост Уитстона – это схема электрической цепи для точного измерения сопротивлений на постоянном токе. Соответствующая принципиальная схема представлена на рис. 10, где измеряемое сопротивление обозначено через Rx. Остальные сопротивления известны, и их можно изменять. Если известные сопротивления подобрать так, чтобы высокочувствительный амперметр A показывал отсутствие тока, это означало бы, что потенциал точек b и c одинаков. В таком случае, обозначив ток через резисторы R1 и R3 символом I1, а ток через R2 и Rx – символом I2, можно записать

Поделив равенство (13) на (12) и решив полученное уравнение относительно Rx, находим

Схемой моста Уитстона можно пользоваться и для измерения полных сопротивлений (импедансов) на переменном токе. Для этого нужно вместо батареи взять источник напряжения переменного тока, а амперметр A заменить детектором переменного тока. Анализ схемы проводится аналогично, но в комплексных обозначениях.

Интегрирующая и дифференцирующая цепи.

Дифференцирующей будет при некоторых приближенно выполняющихся условиях цепь рис. 6, если в ней источником напряжения является генератор напряжения e(t), зависящего от времени. Тогда уравнение (10) будет иметь вид

При малых R и C слагаемым iR можно пренебречь по сравнению с q/C:

что дает

Это эквивалентно требованию, чтобы постоянная времени RC была мала по сравнению с периодом напряжения e(t). Если такое условие выполняется, то напряжение на резисторе дается выражением

т.е. величина eR пропорциональна производной входного напряжения.

Если постоянная времени велика, а напряжение снимается с конденсатора, то эта цепь будет интегрирующей. В таком случае в уравнении (14) можно пренебречь величиной q/C по сравнению с iR, так что

или

.

Поскольку C = dq/dt, а q = 8 idt, напряжение на конденсаторе можно записать в виде

т.е. напряжение eC пропорционально интегралу входного напряжения.

Фильтры.

Фильтры – это электрические цепи, пропускающие лишь определенные частоты и задерживающие все остальные. Идеальный фильтр верхних частот имеет полосу пропускания выше заданной «частоты среза» и полосу задерживания для более низких частот. Полосовой фильтр имеет полосу пропускания, расположенную между двумя заданными частотами среза. Общая схема включения фильтра показана на рис. 11. В качестве примера на рис. 12,a представлен фильтр нижних частот, включенный между генератором и нагрузкой R. На низких частотах импеданс катушек индуктивности мал, а конденсатора – велик, и почти весь ток проходит через нагрузку R. На высоких частотах импеданс катушек индуктивности велик, из-за чего снижается ток, а импеданс конденсатора мал, так что он как бы замыкает накоротко цепь малого тока, проходящего через первую катушку индуктивности. Справа на рис. 12,a представлен график зависимости отношения E2 /(Eg /2) от частоты, деленной на частоту среза. Как нетрудно видеть, в области высоких частот сигнал быстро затухает. Однако реальная частотная характеристика заметно отличается от характеристики (с резким частотным срезом) идеального фильтра нижних частот. На рис. 12,б и в представлены схемы полосового фильтра и фильтра верхних частот с соответствующими частотными характеристиками.

www.krugosvet.ru

Неразветвленные и разветвленные электрические цепи



Поиск Лекций




Электрические цепи подразделяют на неразветвленные и разветвленные. Простейшая разветвленная цепь. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка, то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом

Линейной электрической цепью называют такую цепь, все компоненты которой линейны. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы (подчиняющиеся закону Ома), и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и индуктивности. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной.

Изображение электрической цепи с помощью условных обозначений называют электрической схемой. Функция зависимости тока, протекающего по двухполюсному компоненту от напряжения на этом компоненте называют вольт-амперной характеристикой (ВАХ). Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток.

В частности, омические резисторы, ВАХ которых описывается линейной функцией и на графике ВАХ являются прямыми линиями, называют линейными.

Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности без ферромагнитных сердечников.

Некоторые нелинейные цепи можно приближенно описывать как линейные, если изменение приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей точке). Этот подход называют «линеаризацией». При этом к цепи может быть прменён мощный математический аппарат анализа линейных цепей. Примерами таких нелинейных цепей, анализируемых как линейные относятся практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.).



 

8.Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил висточниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил.

ЭДС так же, как и напряжение, измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами тока вне самого источника равна нулю.

ЭДС индукции :

Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называетсяэлектромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

где — поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).

 

9. Зако́н О́ма — физический закон, определяющий связь электродвижущей силы источника или электрического напряжения с силой тока и сопротивлением проводника. Экспериментально установлен в 1826 году, и назван в честь его первооткрывателя Георга Ома.




В своей оригинальной форме он был записан его автором в виде : ,

Здесь X — показания гальванометра, т.е в современных обозначениях сила тока I, a — величина, характеризующая свойства источника тока, постоянная в широких пределах и не зависящая от величины тока, то есть в современной терминологии электродвижущая сила (ЭДС) , l — величина, определяемая длиной соединяющих проводов, чему в современных представлениях соответствует сопротивление внешней цепи R и, наконец, b параметр, характеризующий свойства всей установки, в котором сейчас можно усмотреть учёт внутреннего сопротивления источника тока r[1].

В таком случае в современных терминах и в соответствии с предложенной автором записи формулировка Ома (1) выражает

Закон Ома для полной цепи:

, (2)

где:

§ — ЭДС источника напряжения(В),

§ — сила тока в цепи (А),

§ — сопротивление всех внешних элементов цепи (Ом),

§ — внутреннее сопротивление источника напряжения (Ом).

Часто [2]выражение:

(3)

(где есть напряжение или падение напряжения, или, что то же, разность потенциалов между началом и концом участка проводника) тоже называют «Законом Ома».

 

11. Параллельное соединение резисторов. При параллельном соединении нескольких приемников они включаются между двумя точками электрической цепи, образуя параллельные ветви (рис. 26, а). Заменяя

Рис. 26. Схемы параллельного соединения приемников

лампы резисторами с сопротивлениями R1, R2, R3,

При параллельном соединении ко всем резисторам приложено одинаковое напряжение U. Поэтому согласно закону Ома:

I1=U/R1; I2=U/R2; I3=U/R3.

Ток в неразветвленной части цепи согласно первому закону Кирхгофа I = I1+I2+I3, или

I = U / R1+ U / R2+ U / R3= U (1/R1+ 1/R2+ 1/R3) = U / Rэк (23)

Следовательно, эквивалентное сопротивление рассматриваемой цепи при параллельном соединении трех резисторов определяется формулой

1/Rэк = 1/R1+ 1/R2+ 1/R3 (24)

Вводя в формулу (24) вместо значений 1/Rэк, 1/R1, 1/R2 и 1/R3 соответствующие проводимости Gэк, G1, G2 и G3, получим: эквивалентная проводимость параллельной цепи равна сумме проводимостей параллельно соединенных резисторов:

Gэк= G1+ G2+G3 (25)

Таким образом, при увеличении числа параллельно включаемых резисторов результирующая проводимость электрической цепи увеличивается, а результирующее сопротивление уменьшается.
Из приведенных формул следует, что токи распределяются между параллельными ветвями обратно пропорционально их электрическим сопротивлениям или прямо пропорционально их проводимостям. Например, при трех ветвях

I1: I2: I3= 1/R1: 1/R2: 1/R3= G1+ G2+ G3 (26)

В этом отношении имеет место полная аналогия между распределением токов по отдельным ветвям и распределением потоков воды по трубам.
Приведенные формулы дают возможность определить эквивалентное сопротивление цепи для различных конкретных случаев. Например, при двух параллельно включенных резисторах результирующее сопротивление цепи

Rэк=R1R2/(R1+R2)

при трех параллельно включенных резисторах

Rэк=R1R2R3/(R1R2+R2R3+R1R3)

При параллельном соединении нескольких, например n, резисторов с одинаковым сопротивлением R1 результирующее сопротивление цепи Rэк будет в n раз меньше сопротивления R1, т.е.

Rэк= R1 / n(27)

Проходящий по каждой ветви ток I1, в этом случае будет в п раз меньше общего тока:

I1 = I / n (28)

При параллельном соединении приемников, все они находятся под одним и тем же напряжением, и режим работы каждого из них не зависит от остальных. Это означает, что ток, проходящий по какому-либо из приемников, не будет оказывать существенного влияния на другие приемники. При всяком выключении или выходе из строя любого приемника остальные приемники остаются вклю-

Рис. 27. Схемы смешанного соединения приемников

ченными. Поэтому параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение. В частности, электрические лампы и двигатели, предназначенные для работы при определенном (номинальном) напряжении, всегда включают параллельно.
12. Правила Кирхгофа — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного, переменного и квазистационарного тока.Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и практических расчётов сложных электрических цепей. Применение правил Кирхгофа к линейной электрической цепи позволяет получить систему линейных уравненийотносительно токов или напряжений, и соответственно, найти значение токов на всех ветвях цепи и все межузловые напряжения. Сформулированы Густавом Кирхгофом в 1845 году. Название «Правила» корректнее потому, что эти правила не являются фундаментальными законами Природы, а вытекают из фундаментальных законов сохранения заряда и безвихревости электростатического поля (3-е уравнение Максвелла при неизменном магнитном поле). Эти правила не следует путать с ещё двумя законами Кирхгофа в химии и физике.

Определения

Для формулировки правил Кирхгофа, вводятся понятия узел, ветвь и контур электрической цепи. Ветвью называют любой двухполюсник, входящий в цепь, например, на рис. отрезок, обозначенный U1, I1 есть ветвь. Узлом называют точку соединения двух и более ветвей (на рис. обозначены жирными точками). Контур — замкнутые циклы из ветвей. Термин замкнутый цикл означает, что начав с некоторого узла цепи и пройдя по нескольким ветвям и узлам однократно можно вернуться в исходный узел. Ветви и узлы, проходимые при таком обходе, принято называть принадлежащими данному контуру. При этом нужно иметь в виду, что каждая ветвь и узел может одновременно принадлежать нескольким контурам.

В терминах данных определений правила Кирхгофа формулируются следующим образом.

Первое правило Кирхгофа

Первое правило Кирхгофа (правило токов Кирхгофа) гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом втекающий в узел ток принято считать положительным, а вытекающий — отрицательным:

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда.

13. Электрический ток нагревает проводник. Это явление нам хорошо известно. Объясняется оно тем, что свободные электроны в металлах, перемещаясь под действием электрического поля, взаимодействуют с ионами или атомами вещества проводника и передают им свою энергию. В результате работы электрического тока увеличивается скорость колебаний ионов и атомов и внутренняя энергия проводника увеличивается. Опыты показывают, что в неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии. Нагретый проводник отдает полученную энергию окружающим телам, но уже путем теплопередачи. Значит, количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока. Мы знаем, что работу тока рассчитывают по формуле:
А=U·I·t.
Обозначим количество теплоты буквой Q. Согласно сказанному выше Q = A, или Q = U·I·t. Пользуясь законом Ома, можно количество теплоты, выделяемое проводником с током, выразить через силу тока, сопротивление участка цепи и время. Зная, что U = IR, получим: Q = I·R·I·t, т. е. Q=I ·R·tКоличество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени. К этому же выводу, но на основании опытов впервые пришли независимо друг от друга английский ученый Джоуль и русский ученый Ленц. Поэтому сформулированный выше вывод называется законом Джоуля – Ленца





Рекомендуемые страницы:



poisk-ru.ru

Электрические цепи — это… Что такое Электрические цепи?



Электрические цепи

Электрической цепью называют совокупность соединенных друг с другом источников электрической энергии и нагрузок, по которым может протекать электрический ток.

Изображение электрической цепи с помощью условных знаков называют электрической схемой (рисунок 1).

Рисунок 1 — Условное обозначение электрической цепи

Рисунок 2 — Разветвленная цепь

Неразветвленные и разветвленные электрические цепи

Электрические цепи подразделяют на неразветвленные и разветвленные. На рисунке 1 представлена схема простейшей неразветвленной цепи. Во всех элементах ее течет один и тот же ток. Простейшая разветвленная цепь изображена на рисунке 2. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 2), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым узлом.

Линейные и нелинейные электрические цепи

Под нелинейными электрическими цепями понимают электрические цепи, содержащие элементы с нелинейными вольт-амперными, вебер-амперными или кулон-вольтными характеристиками. Если цепь содержит хотя бы один такой элемент и изображающаяся точка в процессе работы перемещается по существенно нелинейному участку характеристики этого элемента, то она принадлежит к рассматриваемому классу цепей.

Если же в цепи нет ни одного элемента с нелинейной характеристикой, то такая цепь — линейная.

См. также

Литература

  • Электротехника: Учеб. для вузов/А. С. Касаткин, М. В. Немцов.— 7-е изд., стер.— М.: Высш. шк., 2003.— 542 с.: ил. ISBN 5-06-003595-6
  • Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3

Wikimedia Foundation.
2010.

  • Электрически замкнутая система
  • Электрические угри

Смотреть что такое «Электрические цепи» в других словарях:

  • ЭЛЕКТРИЧЕСКИЕ ЦЕПИ — совокупности соединенных определенным образом элементов и устройств, образующих путь для прохождения электрического тока. Теория цепей раздел теоретической электротехники, в котором рассматриваются математические методы вычисления электрических… …   Энциклопедия Кольера

  • Электрические цепи связанные — электрические цепи, процессы в которых влияют друг на друга посредством общего магнитного поля или общего электрического поля… Источник: ЭЛЕКТРОТЕХНИКА . ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением… …   Официальная терминология

  • связанные электрические цепи — Электрические цепи, процессы в которых влияют друг на друга посредством общего магнитного поля или общего электрического поля. [ГОСТ Р 52002 2003] Тематики электротехника, основные понятия …   Справочник технического переводчика

  • связанные электрические цепи — 139 связанные электрические цепи Электрические цепи, процессы в которых влияют друг на друга посредством общего магнитного поля или общего электрического поля Источник: ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий …   Словарь-справочник терминов нормативно-технической документации

  • оборудование, содержащее электрические цепи с ограниченной энергией «nL» — оборудование, содержащее электрические цепи с ограниченной энергией «nL» Электрооборудование, все цепи и компоненты которого выполнены в соответствии с требованиями к электрическим цепям с ограниченной энергией. [ГОСТ Р МЭК 60050 426… …   Справочник технического переводчика

  • Связанное электрооборудование. Связанные электрические цепи — 17. Связанное электрооборудование. Связанные электрические цепи Электрооборудование или его цепи, которые при нормальном или аварийном режиме работы не отделены гальванически от искробезопасных цепей Источник …   Словарь-справочник терминов нормативно-технической документации

  • Связанные электрические цепи — 1. Электрические цепи, процессы в которых влияют друг на друга посредством общего магнитного поля или общего электрического поля Употребляется в документе: ГОСТ Р 52002 2003 Электротехника. Термины и определения основных понятий …   Телекоммуникационный словарь

  • оборудование, содержащее электрические цепи с ограниченной энергией nL — energy limited apparatus nL Электрооборудование, все цепи и компоненты которого выполнены в соответствии с требованиями к электрическим цепям с ограниченной энергией …   Электротехнический словарь

  • цепи оперативного постоянного тока — электрические цепи, обеспечивающие возможность функционирования систем управления, защиты, контроля и регулирования основного оборудования электростанций, подстанций, устройств сигнализации и связи [Специальный технический регламент «О… …   Справочник технического переводчика

  • ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ — электромагнитные колебания в квазистационарных цепях, размеры к рых малы по сравнению с длиной эл. магн. волны. Это позволяет не учитывать волнового характера процессов и описывать их как колебания электрич. зарядов Q (в ёмкостных элементах цепи) …   Физическая энциклопедия

dic.academic.ru

Что такое электрическая цепь?

Электрическая цепь — основы электротехники

Основа основ в электромонтажных работах, электротехнике, электромеханике присутствует такое понятие — электрическая цепь. Приветствую вас, дорогой читатель. Разговор пойдет о цепи, да еще и электрической. Цепь в моем понимании это что-то взаимосвязанное, скованное, единое.

Электрическая — значит, связь происходит с помощью электрической энергии. Делаем вывод: электрическая цепь представляет собой комплекс механизмов и устройств, образующих путь для электрического тока, подчиненного понятиям об электродвижущей силе, токе и напряжении.

Из чего состоит электрическая цепь?

Давайте вместе разберемся в составе электрической цепи. Как я уже говорил, цепь это что-то взаимосвязанное, причем электричеством. Что можно связать током? Конечно, это источник питания (генератор, аккумулятор), проводник (провода, кабеля, устройства, обеспечивающие уровень и качество напряжения) приемник питания (двигатель). Короче, электрическую цепь, я бы разделил на три группы: первая группа — элементы, предназначенные для выработки электроэнергии; вторая группа — элементы, предназначенные для передачи электричества от источника питания до электроприемника; третья группа — элементы, преобразующие электроэнергию в другие виды энергии (тепловую, световую, механическую).

Участок электрической цепи, вдоль которого протекает один и тот же ток, называется ветвью. Место соединения ветвей электроцепи называется узлом. На электросхемах узел обозначается точкой. Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром электрической цепи. Простейшая электрическая цепь имеет одноконтурную схему, сложные — несколько контуров.

Режимы работы

Элементами электроцепи являются различные электротехнические устройства, которые могут работать в различных режимах. Режимы работы, как отдельных элементов, так и всей электрической цепи характеризуются значениями тока и напряжения. Поскольку ток и напряжение в общем случае могут принимать любые значения, то режимов может быть бесчисленное множество.

Напоследок: самыми распространенными и простыми типами соединений в электрической цепи являются последовательное и параллельное соединение.

Ну вот, в принципе, всё, что сегодня я хотел вам поведать об одном из терминов электротехники — электрическая цепь. Буду рад вас видеть вновь на моем сайте podvi.ru. Много полезного, связанного с электромонтажными работами и электротехникой вы можете найти на карте сайта. Пишите комментарии, всего доброго.

podvi.ru

Электрическая цепь — это… Что такое Электрическая цепь?

Рисунок 1 — Условное обозначение электрической цепи

Электри́ческая цепь  — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение.

Изображение электрической цепи с помощью условных знаков называют электрической схемой (рисунок 1).

Классификация электрических цепей

Неразветвленные и разветвленные электрические цепи

Рисунок 2 — Разветвленная цепь

Электрические цепи подразделяют на неразветвленные и разветвленные. На рисунке 1 представлена схема простейшей неразветвленной цепи. Во всех элементах ее течет один и тот же ток. Простейшая разветвленная цепь изображена на рисунке 2. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 2), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом

Линейные и нелинейные электрические цепи

Линейной электрической цепью называют такую цепь, все компоненты которой линейны. К линейным компонентам относятся зависимые и независимые идеализированные источники токов и напряжений, резисторы (подчиняющиеся закону Ома), и любые другие компоненты, описываемые линейными дифференциальными уравнениями, наиболее известны электрические конденсаторы и индуктивности. Если цепь содержит отличные от перечисленных компоненты, то она называется нелинейной.

Изображение электрической цепи с помощью условных обозначений называют электрической схемой. Функция зависимости тока, протекающего по двухполюсному компоненту от напряжения на этом компоненте называют вольт-амперной характеристикой (ВАХ). Часто ВАХ изображают графически в декартовых координатах. При этом по оси абсцисс на графике обычно откладывают напряжение, а по оси ординат — ток.

В частности, омические резисторы, ВАХ которых описывается линейной функцией и на графике ВАХ являются прямыми линиями, называют линейными.

Примерами линейных (как правило, в очень хорошем приближении) цепей являются цепи, содержащие только резисторы, конденсаторы и катушки индуктивности без ферромагнитных сердечников.

Некоторые нелинейные цепи можно приближенно описывать как линейные, если изменение приращений токов или напряжений на компоненте мало, при этом нелинейная ВАХ такого компонента заменяется линейной (касательной к ВАХ в рабочей точке). Этот подход называют «линеаризацией». При этом к цепи может быть прменён мощный математический аппарат анализа линейных цепей. Примерами таких нелинейных цепей, анализируемых как линейные относятся практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты (усилители, генераторы и др.).

Законы, действующие в электрических цепях

См. также

Литература

  • Электротехника: Учеб. для вузов/А. С. Касаткин, М. В. Немцов.— 7-е изд., стер.— М.: Высш. шк., 2003.— 542 с.: ил. ISBN 5-06-003595-6
  • Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3

Ссылки

biograf.academic.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о