Что такое большой адронный коллайдер – Устройство большого адронного коллайдера, Схема работы адронного коллайдера, Адронный коллайдер 2009, Адронный коллайдер 2010

Содержание

Большой адронный коллайдер. Справка – РИА Новости, 09.10.2009

Большой адронный коллайдер (Large Hadron Collider, LHC) ‑ ускоритель, предназначенный для разгона элементарных частиц (в частности, протонов). Находится на территории Франции и Швейцарии и принадлежит Европейскому совету по ядерным исследованиям (Conseil Europeen pour la Recherche Nucleaire, CERN, ЦЕРН).

Большой адронный коллайдер (Large Hadron Collider, LHC) ‑ ускоритель, предназначенный для разгона элементарных частиц (в частности, протонов). Находится на территории Франции и Швейцарии и принадлежит Европейскому совету по ядерным исследованиям (Conseil Europeen pour la Recherche Nucleaire, CERN, ЦЕРН).

ЦЕРН ‑ крупнейший в мире научный центр в области физики высоких энергий, который был основан близ Женевы в 1954 году для обеспечения сотрудничества среди европейских государств в области ядерных исследований.

В настоящее время ЦЕРН объединяет 20 государств. При этом страны‑наблюдатели, в том числе и Россия, активно участвуют в различных проектах. В научных учреждениях ЦЕРН на постоянной основе или в рамках международного сотрудничества трудятся порядка 10 тысяч физиков и инженеров из различных стран. Около тысячи из них ‑ представители российского научного сообщества. Помимо открытий в области физики, ЦЕРН известен тем, что в его стенах в 1989 году был предложен проект Всемирной паутины (World Wide Web).

Идея сооружения Большого адронного коллайдера появилась в 1984 году, однако официально была одобрена лишь десять лет спустя. Строительство коллайдера началось в 2001 году, после завершения работы другого ускорителя ‑ Большого электрон‑позитронного коллайдера (Large Electron‑Positron Collider, LEPC).

Большой адронный коллайдер располагается в туннеле с длиной окружности 26,7 км (в том же, который прежде занимал Большой электрон‑позитронный коллайдер) на глубине порядка от 0,05 до 0,17 км. В целях удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита, которые будут работать при температуре 1,9 градуса по шкале Кельвина (или же минус 271,3 градуса по шкале Цельсия, что лишь немногим превышает отметку абсолютного нуля). Предполагается, что скорость разогнанных протонов составит 0,999999998 от скорости света, а количество столкновений частиц, происходящих в ускорителе каждую секунду, достигнет 800 млн.

Специалисты надеются, что с помощью ускорителя смогут получить наиболее достоверную информацию о происхождении Вселенной.

Большой адронный коллайдер ‑ самая сложная экспериментальная установка и самый высокоэнергичный ускоритель элементарных частиц в мире. По своим параметрам он превосходит протон‑антипротонный коллайдер Национальной ускорительной лаборатории им. Энрико Ферми (Fermi National Accelerator Laboratory, штат Иллинойс, США) и релятивистский коллайдер тяжелых ионов Брукхейвенской национальной лаборатории (Brookhaven National Laboratory, штат Нью‑Йорк, США). Общая стоимость проекта, осуществляемого при активном содействии российских специалистов из Курчатовского института (Москва), Института теоретической и экспериментальной физики им. А.И.Алиханова (Москва), Института физики высоких энергий (Протвино, Московская обл.), Института ядерной физики им. Г.И.Будкера СО РАН (Новосибирск) и прочих научно‑исследовательских учреждений, превышает 8 млрд долларов.

11 и 24 августа 2008 года на Большом адронном коллайдере прошли успешные предварительные испытания, а на 10 сентября 2008 года был намечен его запуск.

Вместе с тем, ряд ученых выразили свои опасения по поводу безопасности проводимого исследования. По их мнению, при моделировании этих процессов может возникнуть отличная от нуля вероятность выхода экспериментов из‑под контроля и развития цепной реакции, которая теоретически будет способна уничтожить всю нашу планету. При этом  наиболее часто упоминается возможность появления микроскопических черных дыр с последующим захватом ими  окружающей материи.

“Апокалиптические” настроения, связанные с готовящимся запуском Большого адронного коллайдера, оказались настолько сильны, что 21 марта 2008 года жители штата Гавайи (США) Уолтер Вагнер и Луис Санчо обратились в окружной суд штата с иском, содержащим требование временного прекращения всех работ по сооружению ускорителя и проведения дополнительной экспертизы безопасности последнего. В заявлении Вагнера и Санчо в качестве ответчика был обозначен не только Европейский совет по ядерным исследованиям, но и ряд американских организаций, принимающих участие в проекте (в частности, Национальная ускорительная лаборатория им. Энрико Ферми). Иск был отклонен.

26 августа 2008 года группа европейских ученых, утверждающих, что запуск ускорителя представляет угрозу безопасности государств‑участников ЕС и их граждан, подала жалобу в Европейский суд по правам человека. Этот иск также был вскоре отклонен.

Первая попытка провести пучок протонов по всему кольцу коллайдера 10 сентября 2008 года была успешной.

Однако уже на третий день после запуска коллайдера вышел из строя трансформатор в системе охлаждения ускорителя в одном из секторов кольца. Температура там поднялась до 4,4 градуса по Кельвину. Через несколько часов работа коллайдера была восстановлена.

Значительно более серьезный сбой случился 19 сентября. Один из свыше девяти тысяч магнитов вышел из сверхпроводящего состояния с мгновенной потерей тока. Произошло так называемое “гашение тока”. Причиной стало нарушение электрического контакта между двумя магнитами. Возможность подобных происшествий также предусматривалась при строительстве ускорителя. Но все дальнейшие события были уже “внеплановыми”.

Магнит продолжал нагреваться, и температура в секторе тоннеля, где случилась поломка, достигла 100 градусов по Кельвину (‑173С). В результате сбоя в тоннель ускорителя было выброшено около тонны жидкого гелия, который используется для охлаждения магнитов. Кроме того, в нескольких секторах кольца был нарушен вакуум.

Никакой опасности для обслуживающего персонала случившееся не представляло. Однако повторный запуск БАКа было решено отложить.

21 октября 2008 года в Женеве прошла церемония официального открытия Большого адронного коллайдера, которую было решено провести несмотря на происшествие.

Авария 19 сентября 2008 года не только внесла коррективы в расписание работы коллайдера, но и заставила руководство ЦЕРНа серьезно взяться за переоценку технологических рисков, связанных с эксплуатацией БАКа. Ее результатом стал ряд новых мер безопасности, которые уже внедряются. При этом выяснилось, что стоимость ремонтных работ на коллайдере была первоначально недооценена и может в конченом счете составить порядка 30 млн долларов.

Сроки повторного запуска БАКа из‑за выявления на нем новых неполадок уже несколько раз переносились. В частности, в середине июля 2009 года на коллайдере были обнаружены нарушения герметичности и утечки в системе охлаждения в секторах 8‑1 и 2‑3, из‑за чего запуск коллайдера был вновь отложен.

Как объявил ЦЕРН, пучки протонов вновь начнут циркулировать по 27‑километровому кольцу в середине ноября, а столкновения частиц начнутся несколько недель спустя.

Специалисты ЦЕРНа намерены сперва провести столкновения на энергии предыдущей ступени ускорителя ‑ 450 гигаэлектронвольт на пучок, и только затем доведут энергию до половины проектной ‑ до 3,5 тераэлектронвольт на пучок.

Однако физики отмечают, что и на этой энергии цель создания коллайдера ‑ обнаружение бозона Хиггса, частицы, отвечающей за массу всех других элементарных частиц, ‑ может быть достигнута.

БАК будет работать в этом режиме до конца 2010 года, после чего он будет остановлен для подготовки к переходу к энергии в 7 тераэлектронвольт на пучок.

В мае 2009 года в мировой прокат вышел приключенческий фильм “Ангелы и демоны” по мотивам одноименной книги Дэна Брауна.

ЦЕРН играет ключевую роль в сюжете этого произведения, и несколько эпизодов фильма были отсняты на территории ЦЕРНа. Поскольку в фильме присутствуют элементы вымысла, в том числе и при описании того, что и как изучается в ЦЕРНе, руководство ЦЕРНа сочло полезным предупредить те вопросы, которые неизбежно возникнут у многих зрителей фильма. С этой целью был запущен специальный вебсайт Angels and Demons ‑ the science behind the story. На нём в доступной форме рассказывается о тех физических явлениях, которые вплетены в сюжет фильма (прежде всего ‑ это получение, хранение и свойства антиматерии).

Развитие сюжета начинается с двух, казалось бы, не связанных между собой, но, тем не менее, ключевых для фильма событий: смерть действующего Папы Римского, и завершение экспериментов с Большим адронным коллайдером. В результате испытаний ученые получают антивещество, которое по силе действия может сравниться с самым мощным оружием. Тайное общество Иллюминатов решает воспользоваться этим изобретением в собственных целях – уничтожить Ватикан, центр мирового католицизма, который сейчас как раз остался без главы.

Материал подготовлен на основе информации РИА Новости и открытых источников

ria.ru

Большой Адронный Коллайдер – это… Что такое Большой Адронный Коллайдер?

Координаты: 46°14′00″ с. ш. 6°03′00″ в. д. / 46.233333° с. ш. 6.05° в. д. (G)46.233333, 6.05

Детекторы и предускорители БАК. Траектория протонов p (и тяжёлых ионов свинца Pb) начинается в линейных ускорителях (в точках p и Pb, соответственно). Затем частицы попадают в бустер протонного синхротрона (PS), через него — в протонный суперсинхротрон (SPS) и, наконец, непосредственно в туннель БАК.
Детекторы TOTEM и LHCf, отсутствующие на схеме, находятся рядом с детекторами CMS и ATLAS, соответственно.

Большой адро́нный колла́йдер (англ. Large Hadron Collider, LHC; сокр. БАК) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (фр. Conseil Européen pour la Recherche Nucléaire, Женевы. По состоянию на 2008 год БАК является самой крупной экспериментальной установкой в мире.

Большим БАК назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м[1]; адронным — из-за того, что он ускоряет адроны, то есть частицы, состоящие из кварков; коллайдером (англ. collide — сталкиваться) — из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных местах.[2]

Поставленные задачи

Карта с нанесённым на неё расположением Коллайдера

В начале XX века в физике появились две основополагающие теории — общая теория относительности (ОТО) Альберта Эйнштейна, которая описывает Вселенную на макроуровне, и квантовая теория поля, которая описывает Вселенную на микроуровне. Проблема в том, что эти теории несовместимы друг с другом. Например, для адекватного описания происходящего в чёрных дырах нужны обе теории, а они вступают в противоречие.

Эйнштейн многие годы пытался разработать единую теорию поля, но безуспешно, поскольку игнорировал квантовую механику. В конце 1960-х физикам удалось разработать Стандартную модель (СМ), которая объединяет три из четырёх фундаментальных взаимодействий — сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах ОТО. Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: ОТО и СМ. Их объединения пока достичь не удалось из-за трудностей создания теории квантовой гравитации.

Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, получившая своё развитие в М-теории (теории бран), теория супергравитации, петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц.

БАК позволит провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» — например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий.

Изучение топ-кварков

Топ-кварк — самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц. Согласно последним результатам Тэватрона, его масса составляет 173,1 ± 1,3 ГэВ/c² [3]. Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе — Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения хиггсовского бозона. Один из наиболее важных каналов рождения хиггсовского бозона в БАК — ассоциативное рождение вместе с топ-кварк-антикварковой парой. Для того, чтобы надёжно отделять такие события от фона, надо вначале хорошо изучить свойства самих топ-кварков.

Изучение механизма электрослабой симметрии

Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса — частицы, предсказанной шотландским физиком Питером Хиггсом в 1960 году в рамках Стандартной Модели. Бозон Хиггса является квантом так называемого поля Хиггса, при прохождении через которое частицы испытывают сопротивление, представляемое нами как масса. Сам бозон нестабилен и имеет большу́ю массу (более 120 ГэВ/c²). На самом деле, физиков интересует не столько сам хиггсовский бозон, сколько хиггсовский механизм нарушения симметрии электрослабого взаимодействия. Именно изучение этого механизма, возможно, натолкнёт физиков на новую теорию мира, более глубокую, чем СМ.

Изучение кварк-глюонной плазмы

Ожидается, что в ускорителе в режиме ядерных столкновений будут происходить не только протон-протонные столкновения, но и столкновения ядер свинца. При неупругом столкновении двух ядер на ультрарелятивистских скоростях на короткое время образуется и затем распадается плотный и очень горячий комок ядерного вещества. Понимание происходящих при этом явлений (переход вещества в состояние кварк-глюонной плазмы и её остывание) нужно для построения более совершенной теории сильных взаимодействий, которая окажется полезной как для ядерной физики, так и для астрофизики.

Поиск суперсимметрии

Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» — теории, гласящей, что любая элементарная частица имеет гораздо более тяжёлого партнера, или «суперчастицу».

Изучение фотон-адронных и фотон-фотонных столкновений

Протоны электрически заряжены, поэтому ультрарелятивистский протон порождает облако почти реальных фотонов, летящих рядом с протоном. Этот поток фотонов становится ещё сильнее в режиме ядерных столкновений, из-за большого электрического заряда ядра. Эти фотоны могут столкнуться как со встречным протоном, порождая типичные фотон-адронные столкновения, так и друг с другом.

Проверка экзотических теорий

Теоретики в конце XX века выдвинули огромное число необычных идей относительно устройства мира, которые все вместе называются «экзотическими моделями». Сюда относятся теории с сильной гравитацией на масштабе энергий порядка 1 ТэВ, модели с большим количеством пространственных измерений, преонные модели, в которых кварки и лептоны являются составными частицами, модели с новыми типами взаимодействия. Дело в том, что накопленных экспериментальных данных оказывается всё ещё недостаточно для создания одной-единственной теории. А сами все эти теории совместимы с имеющимися экспериментальными данными. Поскольку в этих теориях можно сделать конкретные предсказания для БАК, экспериментаторы планируют проверять предсказания и искать следы тех или иных теорий в своих данных. Ожидается, что результаты, полученные на ускорителе, смогут ограничить фантазию теоретиков, закрыв некоторые из предложенных конструкций.

Другое

Также ожидается обнаружение физических явлений вне рамок Стандартной Модели. Планируется исследование свойств W и Z-бозонов, ядерных взаимодействий при сверхвысоких энергиях, процессов рождения и распадов тяжёлых кварков (b и t).

История строительства

27-километровый подземный туннель, предназначенный для размещения ускорителя LHC

Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера.

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ (5,5·109 электронвольт) на каждую пару сталкивающихся нуклонов. Таким образом, БАК будет самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии своих ближайших конкурентов — протон-антипротонный коллайдер Тэватрон, который в настоящее время работает в Национальной ускорительной лаборатории им. Энрико Ферми (США), и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,7 км проложен на глубине около ста метров под землёй на территории Франции и Швейцарии. Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года. Магниты будут работать при температуре 1,9 K (−271 °C). Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года.

Испытания

2008 год

11 августа успешно завершена первая часть предварительных испытаний.[4] Во время испытаний пучок заряженных частиц прошёл чуть более трёх километров по одному из колец БАК. Таким образом, учёным удалось проверить работу синхронизации предварительного ускорителя, так называемого протонного суперсинхротрона (SPS), и системы правой доставки луча. Эта система передаёт в основное кольцо разогнанные пучки таким образом, что они начинают двигаться по кольцу по часовой стрелке. В результате испытаний удалось оптимизировать работу системы.

24 августа прошёл второй этап испытаний. Была протестирована инжекция протонов в ускорительное кольцо БАК в направлении против часовой стрелки.[5]

10 сентября был произведён официальный запуск коллайдера. В 12:24:30 по московскому времени[6] (по официальной информации, в 12:28 по московскому времени[7]) запущенный пучок протонов успешно прошёл весь периметр коллайдера по часовой стрелке. В 17:02 по московскому времени[8] запущенный против часовой стрелки пучок протонов также успешно прошёл весь периметр коллайдера.

12 сентября, примерно в 00:30 по московскому времени, команде БАК удалось запустить и непрерывно удерживать циркулирующий пучок в течение 10 минут. Чуть позже пучок был запущен вновь и циркулировал уже непрерывно, прерываясь лишь в случае необходимости. На этом задача по установлению циркулирующего пучка завершилась, и физики приступили к подробным тестам магнитной системы.[9]

19 сентября, в 14:05 по московскому времени, в ходе тестов магнитной системы сектора 3-4 (34) произошёл инцидент, в результате которого БАК вышел из строя.[10] Согласно данным предварительного расследования, подтверждённым и детализированным позднее, один из электрических контактов между сверхпроводящими магнитами расплавился под действием возникшей из-за увеличения силы тока электрической дуги, которая пробила изоляцию гелиевой системы охлаждения (криогенной системы), что привело к выбросу около 6 тонн жидкого гелия в туннель и, как следствие, резкому росту температуры. Для восстановления криогенной системы потребуется вернуть этот участок ускорителя к комнатной температуре, а после ремонта — охладить его снова до рабочей температуры.

23 сентября официальный представитель ЦЕРНа сообщил, что БАК возобновит работу не раньше весны 2009 года.[11]

16 октября ЦЕРН распространил пресс-релиз, в котором описываются промежуточные результаты расследования инцидента, произошедшего 19 сентября.[12] Подробная техническая информация представлена в четырёхстраничном отчёте.[13]

21 октября состоялась торжественная церемония официального открытия (инаугурация) БАК.[14]

29 октября, в ходе восьмого заседания Комиссии по работе LHC (LHC Performance Committee), Роберто Сабан (Roberto Saban) озвучил подробности, касающиеся сектора 3-4 ускорительного кольца LHC, который пострадал во время сентябрьской аварии. Докладчик показал схему повреждённого участка ускорительного кольца, на которой было отмечено, насколько сместились те или иные магниты во время аварии. Новый анализ показал, что поднимать на поверхность для ремонта потребуется в 2-3 раза больше магнитов, чем было заявлено первоначально (речь уже идёт как минимум о полусотне магнитов и так называемых коротких прямых участков). Сейчас разрабатывается подробный план действий для того, чтобы к концу декабря 2008 года поднять на поверхность все магниты, требующие ремонта. Кроме того, оказалось, что на внутренних стенках вакуумных труб осели частички металлов (прежде всего, меди и нержавеющей стали) и некоторых других материалов (стекловолокна), выброшенные в вакуумную трубу в момент аварии. Они достаточно крупные, размером в десятки микронов, и от них необходимо избавиться, поскольку они будут мешать движению протонных пучков. Первая пробная чистка уже началась, и сейчас разрабатываются более надёжные крепления к полу и новая сеть клапанов, предотвращающих слишком сильный рост давления внутри криостатов в случае аварийной ситуации. Именно из-за резко возросшего давления в конечном счёте и произошло повреждение магнитов.[15] По последним данным[16] при благоприятном исходе ремонтных работ возобновление работы БАК произойдёт в июле 2009.

На следующем этапе испытаний будут производиться одновременные запуски пучков навстречу друг другу, чтобы наблюдать, что происходит при их «лобовых» столкновениях. Затем частицы будут сталкиваться на более высоких энергиях. Выход на энергию 14 ТэВ протон-протонного столкновения намечен на 2009 год.

2009 год

9 февраля состоялось заседание директората ЦЕРНа, на котором был одобрен план работы БАК в 2009—2010 годах.[17] В соответствии с утверждённым расписанием, коллайдер будет охлаждён до рабочей температуры в августе, пучки начнут циркулировать в конце сентября, столкновения протонов начнутся в октябре. Главный пункт этого плана: БАК будет работать непрерывно вплоть до осени 2010 года, в том числе и в течение зимы (не считая небольшой рождественской паузы). В 2010 году также возможно выделение времени и для экспериментов по столкновению ядер.[18]

Технические характеристики

Подземный зал, в котором смонтирован детектор ATLAS (октябрь 2004 года)

Светимость БАК во время первого пробега составит всего 1029 частиц/см²·с. Это весьма скромная величина. Однако, после запуска БАК для экспериментальных исследований, светимость будет постепенно повышаться от начальной 5·1032 до номинальной 1,7·1034 частиц/см²·с, что по порядку величины соответствует светимостям современных B-фабрик SLAC, США) и Belle (KEK, Япония). Выход на номинальную светимость планируется в 2010 году.

На БАК будут работать шесть детекторов:

  • ALICE (A Large Ion Collider Experiment)
  • ATLAS (A Toroidal LHC ApparatuS)
  • CMS (Compact Muon Solenoid)
  • LHCb (The Large Hadron Collider beauty experiment)
  • TOTEM (TOTal Elastic and diffractive cross section Measurement)
  • LHCf (The Large Hadron Collider forward).

Детекторы ATLAS и CMS предназначены для поиска бозона Хиггса и «нестандартной физики», в частности тёмной материи, ALICE — для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца, LHCb — для исследования физики b-кварков, что позволит лучше понять различия между материей и антиматерией, TOTEM — для изучения несталкивающихся частиц (forward particles), что позволит точнее измерить размер протонов, а также контролировать светимость коллайдера, и, наконец, LHCf — для исследования космических лучей, моделируемых с помощью тех же несталкивающихся частиц.[19]

Россия принимает активное участие как в строительстве БАК, так и в создании всех детекторов, которые должны работать на коллайдере.[20]

Процесс ускорения частиц в коллайдере

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших скоростей достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем пучок направляют в главное 26,7-километровое кольцо и в точках столкновения детекторы фиксируют происходящие события.

Потребление энергии

Во время работы коллайдера расчётное потребление энергии составит 180 МВт. Предположительные энергозатраты всего кантона Женева. Сам CERN не производит энергию, имея лишь резервные дизельные генераторы.

Распределённые вычисления

Для управления, хранения и обработки данных, которые будут поступать с ускорителя БАК и детекторов, создаётся распределённая вычислительная сеть LCG (англ. LHC Computing GRID ), использующая технологию грид. Для определённых вычислительных задач будет задействован проект распределённых вычислений LHC@home.

Неконтролируемые физические процессы

Некоторые специалисты и представители общественности высказывают опасения, что имеется отличная от нуля вероятность выхода проводимых в коллайдере экспериментов из-под контроля и развития цепной реакции, которая при определённых условиях теоретически может уничтожить всю планету. Точка зрения сторонников катастрофических сценариев, связанных с работой БАК, изложена на отдельном сайте.[21] Из-за подобных настроений БАК иногда расшифровывают как Last Hadron Collider (Последний Адронный Коллайдер).

В этой связи наиболее часто упоминается теоретическая возможность появления в коллайдере микроскопических чёрных дыр[22], а также теоретическая возможность образования сгустков антиматерии и магнитных монополей с последующей цепной реакцией захвата окружающей материи.

Указанные теоретические возможности были рассмотрены специальной группой CERN, подготовившей соответствующий доклад, в котором все подобные опасения признаются необоснованными.[23][24] Английский физик-теоретик Эдриан Кент опубликовал научную статью[25] с критикой норм безопасности, принятых CERN, поскольку ожидаемый ущерб, то есть произведение вероятности события на число жертв, является, по его мнению, неприемлемым. Тем не менее, максимальная верхняя оценка вероятности катастрофического сценария на БАК составляет 10-31.[26]

В качестве основных аргументов в пользу необоснованности катастрофических сценариев приводятся ссылки на то, что Земля, Луна и другие планеты постоянно бомбардируются потоками космических частиц с гораздо более высокими энергиями. Упоминается также успешная работа ранее введённых в строй ускорителей, включая релятивистский коллайдер тяжёлых ионов RHIC в Брукхейвене. Возможность образования микроскопических чёрных дыр не отрицается специалистами CERN, однако при этом заявляется, что в нашем трёхмерном пространстве такие объекты могут возникать только при энергиях, на 16 порядков больших энергии пучков в БАК. Гипотетически микроскопические чёрные дыры могут появляться в экспериментах на БАК в предсказаниях теорий с дополнительными пространственными измерениями. Такие теории пока не имеют каких-либо экспериментальных подтверждений. Однако, даже если чёрные дыры будут возникать при столкновении частиц в БАК, предполагается, что они будут чрезвычайно неустойчивыми вследствие излучения Хокинга и будут практически мгновенно испаряться в виде обычных частиц.

21 марта 2008 года в федеральный окружной суд штата Гавайи (США) был подан иск[27][28] Уолтера Вагнера (англ. Walter L. Wagner) и Луиса Санчо (англ. Luis Sancho), в котором они, обвиняя CERN в попытке устроить конец света, требуют запретить запуск коллайдера до тех пор, пока не будет гарантирована его безопасность.

Сравнение с природными скоростями и энергиями

Ускоритель предназначен для сталкивания таких частиц, как адроны и атомарные ядра. Однако, существуют природные источники частиц, скорость и энергия которых значительно выше, чем в коллайдере[29][30][31][32] (см.: Зэватрон). Такие природные частицы обнаруживают в космических лучах. Поверхность планеты Земля частично защищена от этих лучей, но, проходя через атмосферу, частицы космических лучей сталкиваются с атомами и молекулами воздуха. В результате этих природных столкновений в атмосфере Земли рождается множество стабильных и нестабильных частиц. В результате, на планете уже в течение многих миллионов лет присутствует естественный радиационный фон. То же самое (сталкивание элементарных частиц и атомов) будет происходить и в БАК, однако с меньшими скоростями и энергиями, и в гораздо меньшем количестве.

Микроскопические чёрные дыры

Если чёрные дыры могут возникать в ходе столкновения элементарных частиц, они также будут и распадаться на элементарные частицы, в соответствии с принципом CPT-инвариантности, являющимся одним из самых фундаментальных принципов квантовой механики.

Далее, если бы гипотеза существования стабильных чёрных микро-дыр была верна, то они бы образовывались в больших количествах в результате бомбардировки Земли космическими элементарными частицами. Но бо́льшая часть прилетающих из космоса высокоэнергетических элементарных частиц обладают электрическим зарядом, поэтому часть чёрных дыр были бы электрически заряжены. Эти заряженные чёрные дыры захватывались бы магнитным полем Земли и, будь они в самом деле опасны, давно разрушили бы Землю. Механизм Швиммера, делающий чёрные дыры электрически нейтральными, очень похож на эффект Хокинга и не может работать, если эффект Хокинга не работает.

К тому же, любые чёрные дыры, заряженные или электрически нейтральные, захватывались бы белыми карликами и нейтронными звёздами (которые, как и Земля, бомбардируются космическим излучением) и разрушали их. В результате время жизни белых карликов и нейтронных звёзд было бы гораздо короче, чем наблюдаемое в действительности. Кроме того, разрушаемые белые карлики и нейтронные звёзды испускали бы дополнительное излучение, которое в действительности не наблюдается.

Наконец, теории с дополнительными пространственными измерениями, предсказывающие возникновение микроскопических чёрных дыр, не противоречат экспериментальным данным, только если количество дополнительных измерений не меньше трёх. Но при таком количестве дополнительных измерений должны пройти миллиарды лет, прежде чем чёрная дыра причинит Земле сколько-нибудь существенный вред.

Страпельки

Элементарные частицы, состоящие из «верхних», «нижних» и «странных» кварков, и даже более сложные структуры, аналогичные атомным ядрам, обильно производятся в лабораторных условиях, но распадаются за время порядка 10-9 сек. Это обусловлено гораздо большей массой странного кварка по сравнению с верхним и нижним. Вместе с тем существует гипотеза, что достаточно большие «странные ядра», состоящие из примерно равного количества верхних, нижних и странных кварков, могут быть более стабильными. Дело в том, что кварки относятся к фермионам, а принцип Паули запрещает двум одинаковым фермионам находиться в одном и том же квантовом состоянии, вынуждая частицы, «не успевшие» занять низкоэнергетичные состояния, размещаться на более высоких энергетических уровнях. Поэтому если в ядре имеется три разных сорта («аромата») кварков, а не два, как в обычных ядрах, то большее количество кварков может находиться в низкоэнергетических состояниях, не нарушая принципа Паули. Такие гипотетические ядра, состоящие из трёх сортов кварков, и называются страпельками.

Предполагается, что страпельки, в отличие от обычных атомных ядер, могут оказаться устойчивыми по отношению к спонтанному делению даже при больши́х массах.[33][34] Если это верно, то страпельки могут достигать макроскопических и даже астрономических размеров и масс.

Предполагается также, что столкновение страпельки с ядром какого-нибудь атома может вызывать его превращение в странную материю, которое сопровождается выделением энергии. В результате во все стороны разлетаются всё новые страпельки, что теоретически может приводить к цепной реакции.

Однако даже в этой ситуации коллайдер не представляет сколько-нибудь новой по сравнению с предшествующими ускорителями опасности, поскольку энергии столкновения частиц в нём на порядки выше[23][24], чем те, при которых могут эффективно образовываться ядра (будь то обычные или страпельки). Так что если бы страпельки могли возникать в БАК, они бы в ещё больших количествах возникали и в релятивистском ускорителе тяжёлых ионов RHIC (англ.), поскольку количество столкновений там выше, а энергии ниже. Но этого не происходит.

Машина времени

По информации международного издания New Scientist, профессор, доктор физико-математических наук Ирина Арефьева и член-корреспондент РАН, доктор физико-математических наук Игорь Волович[35] полагают, что этот эксперимент может привести к созданию машины времени.[36][37] Они считают, что протонные столкновения могут породить пространственно-временны́е «кротовые норы».

Противоположных взглядов придерживается доктор физико-математических наук из НИИ ядерной физики МГУ Эдуард Боос, отрицающий возникновение на БАК макроскопических чёрных дыр, а следовательно, «кротовых нор» и путешествий во времени.[38]

Интересные факты

  • В филк-группа Les Horribles Cernettes (LHC, та же аббревиатура, что и у БАК). Первая песня этого коллектива «Collider» была посвящена парню, который забыл о своей девушке, будучи увлечённым созданием коллайдера.[39]
  • В научно-фантастическом телесериале Лексс (The Lexx, показ стартовал в апреле 1997 года) в четвёртом сезоне главные герои оказываются на Земле. Обнаруживается, что Земля относится к планетам «типа 13», на последней стадии развития. Планеты типа 13 всегда уничтожают себя сами, в результате неудачного опыта по определению массы бозона Хиггса на сверхмощном ускорителе элементарных частиц, при этом сжимаясь до размеров горошины. В конечном итоге, Земля была уничтожена.
  • В шестой серии тринадцатого сезона мультсериала Южный Парк с помощью магнита из Большого адронного коллайдера была достигнута сверхсветовая скорость на конкурсе Дерби соснового леса (Pinewood Derby)

Примечания

  1. The ultimate guide to the LHC(англ.) P. 30.
  2. LHC: ключевые факты. «Элементы большой науки». Проверено 15 сентября 2008.
  3. Tevatron Electroweak Working Group, Top Subgroup
  4. LHC synchronization test successful(англ.)
  5. Второй тест системы инжекции прошёл с перебоями, но цели достиг. «Элементы большой науки» (24 августа 2008). Проверено 6 сентября 2008.
  6. LHC milestone day gets off to fast start. physicsworld.com. Проверено 12 сентября 2008.
  7. First beam in the LHC — accelerating science. Проверено 12 сентября 2008.
  8. Mission complete for LHC team. physicsworld.com. Проверено 12 сентября 2008.
  9. На LHC запущен стабильно циркулирующий пучок. «Элементы большой науки» (12 сентября 2008). Проверено 12 сентября 2008.
  10. Происшествие на Большом адронном коллайдере задерживает эксперименты на неопределённый срок. «Элементы большой науки» (19 сентября 2008). Проверено 21 сентября 2008.
  11. Большой адронный коллайдер возобновит работу не раньше весны — ЦЕРН. РИА «Новости» (23 сентября 2008). Проверено 25 сентября 2008.
  12. http://press.web.cern.ch/Press/PressReleases/Releases2008/PR14.08E.html
  13. https://edms.cern.ch/file/973073/1/Report_on_080919_incident_at_LHC__2_.pdf
  14. https://lhc2008.web.cern.ch/LHC2008/inauguration/index.html
  15. Ремонт поврежденных магнитов будет более объемным, чем казалось ранее. «Элементы большой науки» (09 ноября 2008). Проверено 12 ноября 2008.
  16. Расписание на 2009 год. «Элементы большой науки» (18 января 2009). Проверено 18 января 2009.
  17. Пресс-релиз ЦЕРН
  18. Утверждён план работы Большого адронного коллайдера на 2009—2010 годы. «Элементы большой науки» (6 февраля 2009). Проверено 5 апреля 2009.
  19. The LHC experiments. Проверено 15 сентября 2008.
  20. «Ящик Пандоры» открывается. Вести.ру (9 сентября 2008). Проверено 12 сентября 2008.
  21. The Potential for Danger in Particle Collider Experiments(англ.)
  22. Dimopoulos S., Landsberg G. Black Holes at the Large Hadron Collider(англ.) Phys. Rev. Lett. 87 (2001)
  23. 1 2 Blaizot J.-P. et al. Study of Potentially Dangerous Events During Heavy-Ion Collisions at the LHC.
  24. 1 2 Review of the Safety of LHC Collisions LHC Safety Assessment Group
  25. Критический обзор рисков ускорителей. Проза.ру (23 мая 2008). Проверено 17 сентября 2008.
  26. Какова вероятность катастрофы на LHC?
  27. Судный день
  28. Asking a Judge to Save the World, and Maybe a Whole Lot More(англ.)
  29. Объяснение того, почему БАК будет безопасным(англ.)
  30. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-es.pdf (исп.)
  31. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-de.pdf (нем.)
  32. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-fr.pdf (фр.)
  33. H. Heiselberg. Screening in quark droplets // The American Physical Society. Physical Review D. — 1993. — Т. 48. — № 3. — С. 1418—1423. DOI:10.1103/PhysRevD.48.1418
  34. M. Alford, K. Rajagopal, S. Reddy, A. Steiner. Stability of strange star crusts and strangelets // The American Physical Society. Physical Review D. — 2006. — Т. 73, 114016. DOI:10.1103/PhysRevD.73.114016 arΧiv:hep-ph/0604134
  35. Наталия Лескова. Червоточина во времени. Газета «Русский курьер» № 631 (18 февраля 2008). Проверено 25 августа 2008.
  36. Учёные создают машину времени. Газета «Взгляд» (7 февраля 2008). Проверено 25 августа 2008.
  37. Time travellers from the future «could be here in weeks» (англ.). Telegraph (2 июня 2008). Проверено 25 августа 2008.
  38. Андрей Меркулов. Катастрофа назначена на май. «Российская газета» № 4598 (27 февраля 2008). — Приближающийся пуск ускорителя в ЦЕРНе порождает даже в научной среде тревожные сценарии. Проверено 25 августа 2008.
  39. http://musiclub.web.cern.ch/MusiClub/bands/cernettes/songs/collider.html

См. также

Ссылки

Публикации и статьи

Прочее

Эксперименты
Структуры
ускорителей
Линейный ускоритель Бустер протонного синхротрона Протонный синхротрон Супер-протонный синхротрон (SPS)
ПрочееLHC@home

Wikimedia Foundation. 2010.

dic.academic.ru

БОЛЬШОЙ АДРОННЫЙ КОЛЛАЙДЕР – это… Что такое БОЛЬШОЙ АДРОННЫЙ КОЛЛАЙДЕР?

БОЛЬШО́Й АДРО́ННЫЙ КОЛЛА́ЙДЕР (БАК; Large Hadron Collider, LHC) — ускоритель для разгона протонов и тяжелых ионов; создан в исследовательском центре Европейского совета ядерных исследований (см. ЕВРОПЕЙСКИЙ ЦЕНТР ЯДЕРНЫХ ИССЛЕДОВАНИЙ) (Conseil Européen pour la Recherche Nucléaire, CERN). Периметр ускорителя составляет около 27 километров. Коллайдер предназначен для ускорения встречных пучков элементарных частиц, участвующих в сильном взаимодействии — адронов.
Идея создания Большого адронного коллайдера появилась в 1984 году и была официально одобрена десятью годами позже. Строительство ускорителя началось в 2001 году, после окончания работ в CERN над Большим электрон-позитронным коллайдером (Large Electron-Positron Collider, LEP). В Большом адронном коллайдере предполагается сталкивать протоны (см. ПРОТОН (элементарная частица)) с суммарной энергией 14 ТэВ (14 тераэлектронвольт или 141012 электронвольт), а также ядра свинца с энергией 5,5 ГэВ на каждую пару сталкивающихся нуклонов.
Большой адронный коллайдер создан в туннеле, который прежде занимал LEP. Туннель с длиной окружности 26,7 км проложен на глубине около ста метров под землей на территории Франции и Швейцарии. Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита (см. МАГНИТ), общая длина которых превышает 22 км. Их монтаж был окончен в ноябре 2006 года. Рабочая температура магнитов — 1,9 K (?271 °C). При такой температуре магниты становятся сверхпроводящими и могут держать сверхсильное магнитное поле. Для охлаждения магнитов создана специальная криогенная линия на жидком гелии. Пуск коллайдера намечен на осень 2008 года. Большой адронный коллайдер должен стать самым высокоэнергичным ускорителем элементарных частиц в мире, почти на порядок превосходя по энергии своих ближайших конкурентов — протон-антипротонный коллайдер Tevatron Национальной ускорительной лаборатории (США) и релятивистский коллайдер тяжелых ионов RHIC Брукхейвенской лаборатории (США). В создании БАК принимали участие ученые из многих стран мира, в том числе и из России.
Для фиксации результатов исследований предназначены четыре детектора: ATLAS (A Toroidal LHC ApparatuS), CMS (Compact Muon Solenoid), LHCb (The Large Hadron Collider beauty experiment) и ALICE (A Large Ion Collider Experiment). Установки ATLAS и CMS предназначены для поиска бозона (см. БОЗОН) Хиггса. Детектор LHCb оптимизирован под исследования физики b-кварков, а детектор ALICE для поиска кварк-глюонной плазмы или кварк-глюонной жидкости в столкновениях ионов свинца. Большой адронный коллайдер рассчитан на потребление около 700 Гвт/ч электроэнергии в год.
Большой адронный коллайдер предназначен для экспериментальной проверки ряда научных идей, связанных с Общей теорией относительности (см. ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ) и Стандартной моделью фундаментальных взаимодействий. БАК позволит изучить свойства топ-кварков, кварк-глюонной плазмы, провести эксперименты по фотон-фотонным и фотон-адронным столкновениям, доказать или опровергнуть существование бозона Хиггса и суперсимметрии, проверить так называемые экзотические теории, выдвинутые физиками в конце 20 века, а также исследовать свойства W- и Z-бозонов, ядерных взаимодействия при сверхвысоких энергиях, процессы рождения и распада тяжелых кварков.

dic.academic.ru

Большой адронный коллайдер Википедия

Large Hadron Collider

Фрагмент LHC, сектор 3-4
Тип Синхротрон
Назначение Коллайдер
Страна Швейцария/ Франция
Лаборатория ЦЕРН
Годы работы 2008 –
Эксперименты
Технические параметры
Частицы p×p, Pb82+×Pb82+
Энергия 6,5 ТэВ
Периметр/длина 26 659 м
Эмиттансы 0,3 нм
Светимость 2•1034 см−2c−1
Прочая информация
Географические координаты 46°14′ с. ш. 6°03′ в. д.HGЯO
Сайт home.cern/topics/large-h…
public.web.cern.ch/publi…
 Large Hadron Collider на Викискладе

Большо́й адро́нный колла́йдер, сокращённо БАК (англ. Large Hadron Collider, сокращённо LHC) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в ЦЕРНе (Европейский совет ядерных исследований), находящемся около Женевы, на границе Швейцарии и Франции. БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 тысяч учёных и инженеров более чем из 100 стран[1].

«Большим» назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м[2]; «адронным» — из-за того, ускоряет адроны: протоны и тяжелые ядра атомов; «коллайдером» (англ. collider — сталкиватель) — из-за того, что два пучка ускоренных частиц сталкиваются во встречных направлениях в специальных местах столкновения — внутри детекторов элементарных частиц[3].

Детекторы элементарных частиц, предускорители БАК, ускорители БАК.
Траектории протонов p и ионов свинца Pb начинаются в линейных ускорителях частиц (в точках p и Pb, соответственно). Далее частицы ускоряются в бустере протонного синхротрона (PS), далее в протонном суперсинхро

ru-wiki.ru

Что же такое Большой Адронный Коллайдер?

    Большой адронный коллайдер или БАК (от английского – Large Hadron Collider, LHC) — самый мощный на Земле ускоритель заряженных субатомных частиц на встречных пучках. БАК предназначен для изучения ускорения движения протонов и тяжёлых ионов (свинцовых ионов) и анализа продуктов их соударений. БАК был построен в European Organization for Nuclear Research (Европейская организация по ядерным исследованиям, CERN), на границе таких стран, как Швейцария и Франция, и находится недалеко от Женевы. По состоянию на 2010 год БАК является крупнейшей опытно-экспериментальной установкой в мире.

    Большим БАК называется из-за своих размеров: 26,7 км составляет длина основного кольца ускорителя; адронным — потому, что он ускоряет адроны (частицы), состоящие из кварков; коллайдером (от английского collider – сталкиваться) — так как пучки заряженных частиц ускоряются на встречных курсах и сталкиваются в специально предназначенных местах.

    Основополагающей целью большого адронного коллайдера на данном этапе является изучение мельчайших заряженных частиц – фундаментальных строительных блоков.

    Суть работы БАК заключается в том, что два луча субатомных частиц, так называемых андронов, будут совершать движение навстречу друг другу, при этом набирая на себя с каждым кругом все большее количество энергии. Для удержания и корректировки субатомных частиц используются 1624 сверхпроводящих магнита, которые работают при температуре -271 °C. Когда энергии будет предостаточно, частицы совершат столкновение и тем самым ученые восоздадут модель Большого взрыва. Частицы, появившиеся после взрыва, будут проанализированы учеными со всего мира.

    Опасения людей по поводу создания большого адронного коллайдера не безосновательны. Так мнения ученых разделились и некоторые из них утверждают, что БАК может быть очень опасен и запускать его ни в коем случае нельзя. Так два не очень известных ученых У.Вагнер и Л.Санчо подали иск в суд на European Organization for Nuclear Research (Европейская организация по ядерным исследованиям, CERN), в котором они просят запретить стартинг коллайдера. Так как они считают: БАК чрезвычайно опасен и в результате испытаний он может привести к возникновению черной дыры, которая поглотит и уничтожит Землю.

    По-мнению ученых России, БАК абсолютно неопасен и не несет угрозы для всего человечества, а появление упоминаемых черных дыр нереально и невозможно. Даже если допустить, что черная дыра возникнет, то она будет ничтожно мала и просуществует не больше секунды.

    Ниже представлено видео, где видно что будет с Землей и какая угроза будет для человечества, если большой андронный коллайдер все-таки образует черную дыру.

    Поверите вы в то, что адронный коллайдер способен на конец света, или нет, но несомненно задумаетесь – что же ТАКОЕ Большой Адронный Коллайдер??!!

Похожие по тематике посты – еще почитать:

energomir.blogspot.com

Большой адронный коллайдер | Virtual Laboratory Wiki

Координаты: 46°14′00″ с. ш. 6°03′00″ в. д. / 46.233333° с. ш. 6.05° в. д. (G)46.233333, 6.05

Файл:LHC.svg

Большой адро́нный колла́йдер (англ. Large Hadron Collider, LHC; сокр. БАК) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (фр. Conseil Européen pour la Recherche Nucléaire, CERN ), на границе Швейцарии и Франции, недалеко от Женевы. По состоянию на 2008 год БАК является самой крупной экспериментальной установкой в мире.

Большим БАК назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м[1]; адронным — из-за того, что он ускоряет адроны, то есть частицы, состоящие из кварков; коллайдером (англ. collide — сталкиваться) — из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных местах.[2]

    Поставленные задачи Править

    В начале XX века в физике появились две основополагающие теории — общая теория относительности (ОТО) Альберта Эйнштейна, которая описывает Вселенную на макроуровне, и квантовая теория поля, которая описывает Вселенную на микроуровне. Проблема в том, что эти теории несовместимы друг с другом. Например, для адекватного описания происходящего в чёрных дырах нужны обе теории, а они вступают в противоречие.

    Эйнштейн многие годы пытался разработать единую теорию поля, но безуспешно, поскольку игнорировал квантовую механику. В конце 1960-х физикам удалось разработать Стандартную модель (СМ), которая объединяет три из четырёх фундаментальных взаимодействий — сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах ОТО. Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: ОТО и СМ. Их объединения пока достичь не удалось из-за трудностей создания теории квантовой гравитации.

    Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, получившая своё развитие в М-теории (теории бран), теория супергравитации, петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц.

    БАК позволит провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» — например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий.

    Изучение топ-кварков Править

    Топ-кварк — самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц. Согласно последним результатам Тэватрона, его масса составляет 171,4 ± 2,1 ГэВ. Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе — Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения хиггсовского бозона. Один из наиболее важных каналов рождения хиггсовского бозона в БАК — ассоциативное рождение вместе с топ-кварк-антикварковой парой. Для того, чтобы надёжно отделять такие события от фона, надо вначале хорошо изучить свойства самих топ-кварков.

    Изучение механизма электрослабой симметрии Править

    Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса — частицы, предсказанной шотландским физиком Питером Хиггсом в 1960 году в рамках Стандартной Модели. Бозон Хиггса является квантом так называемого поля Хиггса, при прохождении через которое частицы испытывают сопротивление, представляемое нами как масса. Сам бозон нестабилен и имеет большу́ю массу (более 120 ГэВ). На самом деле, физиков интересует не столько сам хиггсовский бозон, сколько хиггсовский механизм нарушения электрослабой симметрии. Именно изучение этого механизма, возможно, натолкнёт физиков на новую теорию мира, более глубокую, чем СМ.

    Изучение кварк-глюонной плазмы Править

    Ожидается, что в ускорителе в режиме ядерных столкновений будут происходить не только протон-протонные столкновения, но и столкновения ядер свинца. При неупругом столкновении двух ядер на ультрарелятивистских скоростях на короткое время образуется и затем распадается плотный и очень горячий комок ядерного вещества. Понимание происходящих при этом явлений (переход вещества в состояние кварк-глюонной плазмы и её остывание) нужно для построения более совершенной теории сильных взаимодействий, которая окажется полезной как для ядерной физики, так и для астрофизики.

    Поиск суперсимметрии Править

    Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» — теории, гласящей, что любая элементарная частица имеет гораздо более тяжёлого партнера, или «суперчастицу».

    Изучение фотон-адронных и фотон-фотонных столкновений Править

    Протоны электрически заряжены, поэтому ультрарелятивистский протон порождает облако почти реальных фотонов, летящих рядом с протоном. Этот поток фотонов становится ещё сильнее в режиме ядерных столкновений, из-за большого электрического заряда ядра. Эти фотоны могут столкнуться как со встречным протоном, порождая типичные фотон-адронные столкновения, так и друг с другом.

    Проверка экзотических теорий Править

    Теоретики в конце XX века выдвинули огромное число необычных идей относительно устройства мира, которые все вместе называются «экзотическими моделями». Сюда относятся теории с сильной гравитацией на масштабе энергий порядка 1 ТэВ, модели с большим количеством пространственных измерений, преонные модели, в которых кварки и лептоны являются составными частицами, модели с новыми типами взаимодействия. Дело в том, что накопленных экспериментальных данных оказывается всё ещё недостаточно для создания одной-единственной теории. А сами все эти теории совместимы с имеющимися экспериментальными данными. Поскольку в этих теориях можно сделать конкретные предсказания для БАК, экспериментаторы планируют проверять предсказания и искать следы тех или иных теорий в своих данных. Ожидается, что результаты, полученные на ускорителе, смогут ограничить фантазию теоретиков, закрыв некоторые из предложенных конструкций.

    Другое Править

    Также ожидается обнаружение физических явлений вне рамок Стандартной Модели. Планируется исследование свойств W и Z-бозонов, ядерных взаимодействий при сверхвысоких энергиях, процессов рождения и распадов тяжёлых кварков (b и t).

    История строительства Править

    Файл:Inside the CERN LHC tunnel.jpg

    Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера.

    В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ (5,5·109 электронвольт) на каждую пару сталкивающихся нуклонов. Таким образом, БАК будет самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии своих ближайших конкурентов — протон-антипротонный коллайдер Тэватрон, который в настоящее время работает в Национальной ускорительной лаборатории им. Энрико Ферми (США), и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

    Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,7 км проложен на глубине около ста метров под землёй на территории Франции и Швейцарии. Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года. Магниты будут работать при температуре 1,9 K (−271 °C). Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года.

    Испытания Править

    2008 год Править

    11 августа успешно завершена первая часть предварительных испытаний.[3] Во время испытаний пучок заряженных частиц прошёл чуть более трёх километров по одному из колец БАК. Таким образом, учёным удалось проверить работу синхронизации предварительного ускорителя, так называемого протонного суперсинхротрона (SPS), и системы правой доставки луча. Эта система передаёт в основное кольцо разогнанные пучки таким образом, что они начинают двигаться по кольцу по часовой стрелке. В результате испытаний удалось оптимизировать работу системы.

    24 августа прошёл второй этап испытаний. Была протестирована инжекция протонов в ускорительное кольцо БАК в направлении против часовой стрелки.[4]

    10 сентября был произведён официальный запуск коллайдера. В 12:24:30 по московскому времени[5] (по официальной информации, в 12:28 по московскому времени[6]) запущенный пучок протонов успешно прошёл весь периметр коллайдера по часовой стрелке. В 17:02 по московскому времени[7] запущенный против часовой стрелки пучок протонов также успешно прошёл весь периметр коллайдера.

    12 сентября, примерно в 00:30 по московскому времени, команде БАК удалось запустить и непрерывно удерживать циркулирующий пучок в течение 10 минут. Чуть позже пучок был запущен вновь и циркулировал уже непрерывно, прерываясь лишь в случае необходимости. На этом задача по установлению циркулирующего пучка завершилась, и физики приступили к подробным тестам магнитной системы.[8]

    19 сентября, в 14:05 по московскому времени, в ходе тестов магнитной системы сектора 3-4 (34) произошёл инцидент, в результате которого БАК вышел из строя.[9] Согласно данным предварительного расследования, подтверждённым и детализированным позднее, один из электрических контактов между сверхпроводящими магнитами расплавился под действием возникшей из-за увеличения силы тока электрической дуги, которая пробила изоляцию гелиевой системы охлаждения (криогенной системы), что привело к выбросу около 6 тонн жидкого гелия в туннель и, как следствие, резкому росту температуры. Для восстановления криогенной системы потребуется вернуть этот участок ускорителя к комнатной температуре, а после ремонта — охладить его снова до рабочей температуры.

    23 сентября официальный представитель ЦЕРНа сообщил, что БАК возобновит работу не раньше весны 2009 года. Торжественная церемония его официального открытия, тем не менее, состоится 21 октября, как и планировалось.[10]

    16 октября ЦЕРН распространил пресс-релиз, в котором описываются промежуточные результаты расследования инцидента, произошедшего 19 сентября.[11] Подробная техническая информация представлена в четырёхстраничном отчёте.[12]

    На следующем этапе испытаний будут производиться одновременные запуски пучков навстречу друг другу, чтобы наблюдать, что происходит при их «лобовых» столкновениях. Затем частицы будут сталкиваться на более высоких энергиях. Выход на энергию 14 ТэВ протон-протонного столкновения намечен на начало 2009 года.

    Технические характеристики Править

    Файл:CERN Atlas Caverne.jpg Файл:CERN-20060225-13.jpg

    Светимость БАК во время первого пробега составит всего 1029 частиц/см²·с. Это весьма скромная величина. Однако, после запуска БАК для экспериментальных исследований, светимость будет постепенно повышаться от начальной 5·1032 до номинальной 1,7·1034 частиц/см²·с, что по порядку величины соответствует светимостям современных B-фабрик BaBar (SLAC, США) и Belle (KEK, Япония). Выход на номинальную светимость планируется в 2010 году.

    На БАК будут работать шесть детекторов: ALICE (A Large Ion Collider Experiment), ATLAS (A Toroidal LHC ApparatuS), CMS (Compact Muon Solenoid), LHCb (The Large Hadron Collider beauty experiment), TOTEM (TOTal Elastic and diffractive cross section Measurement) и LHCf (The Large Hadron Collider forward). Детекторы ATLAS и CMS предназначены для поиска бозона Хиггса и «нестандартной физики», в частности тёмной материи, ALICE — для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца, LHCb — для исследования физики b-кварков, что позволит лучше понять различия между материей и антиматерией, TOTEM — для изучения несталкивающихся частиц (forward particles), что позволит точнее измерить размер протонов, а также контролировать светимость коллайдера, и, наконец, LHCf — для исследования космических лучей, моделируемых с помощью тех же несталкивающихся частиц.[13]

    Россия принимает активное участие как в строительстве БАК, так и в создании всех детекторов, которые должны работать на коллайдере.[14]

    Процесс ускорения частиц в коллайдере Править

    Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших скоростей достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем пучок направляют в главное 26,7-километровое кольцо и в точках столкновения детекторы фиксируют происходящие события.

    Потребление энергии Править

    Во время работы коллайдера расчётное потребление энергии составит 180 МВт. Предположительные энергозатраты всего CERNа на 2009 год с учётом работающего коллайдера — 1000 ГВт·ч, из которых 700 ГВт·ч придётся на долю ускорителя. Эти энергозатраты — около 10 % от суммарного годового энергопотребления кантона Женева. Сам CERN не производит энергию, имея лишь резервные дизельные генераторы.

    Распределённые вычисления Править


    Для управления, хранения и обработки данных, которые будут поступать с ускорителя БАК и детекторов, создаётся распределённая вычислительная сеть LCG (англ. LHC Computing GRID ), использующая технологию грид. Для определённых вычислительных задач будет задействован проект распределённых вычислений LHC@home.

    Неконтролируемые физические процессы Править

    Некоторые специалисты и представители общественности высказывают опасения, что имеется отличная от нуля вероятность выхода проводимых в коллайдере экспериментов из-под контроля и развития цепной реакции, которая при определённых условиях теоретически может уничтожить всю планету. Точка зрения сторонников катастрофических сценариев, связанных с работой БАК, изложена на отдельном сайте.[15] Из-за подобных настроений БАК иногда расшифровывают как Last Hadron Collider (Последний Адронный Коллайдер).

    В этой связи наиболее часто упоминается теоретическая возможность появления в коллайдере микроскопических чёрных дыр[16], а также теоретическая возможность образования сгустков антиматерии и магнитных монополей с последующей цепной реакцией захвата окружающей материи.

    Указанные теоретические возможности были рассмотрены специальной группой CERN, подготовившей соответствующий доклад, в котором все подобные опасения признаются необоснованными.[17][18] Английский физик-теоретик Эдриан Кент опубликовал научную статью[19] с критикой норм безопасности, принятых CERN, поскольку ожидаемый ущерб, то есть произведение вероятности события на число жертв, является, по его мнению, неприемлемым. Тем не менее, максимальная верхняя оценка вероятности катастрофического сценария на БАК составляет 10-31.[20]

    В качестве основных аргументов в пользу необоснованности катастрофических сценариев приводятся ссылки на то, что Земля, Луна и другие планеты постоянно бомбардируются потоками космических частиц с гораздо более высокими энергиями. Упоминается также успешная работа ранее введённых в строй ускорителей, включая релятивистский коллайдер тяжёлых ионов RHIC в Брукхейвене. Возможность образования микроскопических чёрных дыр не отрицается специалистами CERN, однако при этом заявляется, что в нашем трёхмерном пространстве такие объекты могут возникать только при энергиях, на 16 порядков больших энергии пучков в БАК. Гипотетически микроскопические чёрные дыры могут появляться в экспериментах на БАК в предсказаниях теорий с дополнительными пространственными измерениями. Такие теории пока не имеют каких-либо экспериментальных подтверждений. Однако, даже если чёрные дыры будут возникать при столкновении частиц в БАК, предполагается, что они будут чрезвычайно неустойчивыми вследствие излучения Хокинга и будут практически мгновенно испаряться в виде обычных частиц.

    21 марта 2008 года в федеральный окружной суд штата Гавайи был подан иск[21][22] Уолтера Вагнера (англ. Walter L. Wagner) и Луиса Санчо (англ. Luis Sancho), в котором они, обвиняя CERN в попытке устроить конец света, требуют запретить запуск коллайдера до тех пор, пока не будет гарантирована его безопасность.

    Аргументы в пользу катастрофического сценария Править

    По мнению сторонников катастрофического сценария, существует принципиальная разница между бомбардировкой Земли космическими частицами и экспериментами на ускорителе. В первом случае сталкиваются прилетающие из космоса ультрарелятивистские (летящие со скоростью, близкой к скорости света) элементарные частицы с элементарными частицами на Земле, скорость которых мала. Образующиеся частицы также являются ультрарелятивистскими и улетают в космическое пространство, не успев причинить Земле никакого вреда. В коллайдере же сталкиваются пучки элементарных частиц, летящие с ультрарелятивистскими скоростями в противоположных направлениях. Образующиеся микроскопические чёрные дыры и другие опасные частицы могут вылетать с любыми скоростями. Некоторые из них будут настолько медленными, что не смогут покинуть Землю.

    Общая теория относительности в виде, предложенном Эйнштейном, не допускает возникновения микроскопических чёрных дыр в коллайдере. Однако они будут возникать, если верны теории с дополнительными пространственными измерениями. По мнению сторонников катастрофического сценария, хотя такие теории и умозрительны, вероятность того, что они верны, составляет десятки процентов. Излучение Хокинга, приводящее к испарению чёрных дыр, также является гипотетическим — оно никогда не было экспериментально подтверждено. Поэтому есть достаточно большая вероятность того, что оно не действует.

    Кроме того, высока вероятность образования страпелек.

    Аргументы противников катастрофического сценария Править

    Сравнение с природными скоростями и энергиями Править

    Ускоритель предназначен для сталкивания таких частиц, как адроны и атомарные ядра. Однако, существуют природные источники частиц, скорость и энергия которых значительно выше, чем в коллайдере[23] (см.: Зэватрон). Такие природные частицы обнаруживают в космических лучах. Поверхность планеты Земля частично защищена от этих лучей, но, проходя через атмосферу, частицы космических лучей сталкиваются с атомами и молекулами воздуха. В результате этих природных столкновений в атмосфере Земли рождается множество стабильных и нестабильных частиц. В результате, на планете уже в течение многих миллионов лет присутствует естественный радиационный фон. То же самое (сталкивание элементарных частиц и атомов) будет происходить и в БАК, однако с меньшими скоростями и энергиями, и в гораздо меньшем количестве.

    Микроскопические чёрные дыры Править

    Если чёрные дыры могут возникать в ходе столкновения элементарных частиц, они также будут и распадаться на элементарные частицы, в соответствии с принципом CPT-инвариантности, являющимся одним из самых фундаментальных принципов квантовой механики.

    Далее, если бы гипотеза существования стабильных чёрных микро-дыр была верна, то они бы образовывались в больших количествах в результате бомбардировки Земли космическими элементарными частицами. Но бо́льшая часть прилетающих из космоса высокоэнергетических элементарных частиц обладают электрическим зарядом, поэтому часть чёрных дыр были бы электрически заряжены. Эти заряженные чёрные дыры захватывались бы магнитным полем Земли и, будь они в самом деле опасны, давно разрушили бы Землю. Механизм Швиммера, делающий чёрные дыры электрически нейтральными, очень похож на эффект Хокинга и не может работать, если эффект Хокинга не работает.

    К тому же, любые чёрные дыры, заряженные или электрически нейтральные, захватывались бы белыми карликами и нейтронными звёздами (которые, как и Земля, бомбардируются космическим излучением) и разрушали их. В результате время жизни белых карликов и нейтронных звёзд было бы гораздо короче, чем наблюдаемое в действительности. Кроме того, разрушаемые белые карлики и нейтронные звёзды испускали бы дополнительное излучение, которое в действительности не наблюдается.

    Наконец, теории с дополнительными пространственными измерениями, предсказывающие возникновение микроскопических чёрных дыр, не противоречат экспериментальным данным, только если количество дополнительных измерений не меньше трёх. Но при таком количестве дополнительных измерений должны пройти миллиарды лет, прежде чем чёрная дыра причинит Земле сколько-нибудь существенный вред.

    Страпельки Править


    Элементарные частицы, состоящие из «верхних», «нижних» и «странных» кварков, и даже более сложные структуры, аналогичные атомным ядрам, обильно производятся в лабораторных условиях, но распадаются за время порядка 10-9 сек. Это обусловлено гораздо большей массой странного кварка по сравнению с верхним и нижним. Вместе с тем существует гипотеза, что достаточно большие «странные ядра», состоящие из примерно равного количества верхних, нижних и странных кварков, могут быть более стабильными. Дело в том, что кварки относятся к фермионам, а принцип Паули запрещает двум одинаковым фермионам находиться в одном и том же квантовом состоянии, вынуждая частицы, «не успевшие» занять низкоэнергетичные состояния, размещаться на более высоких энергетических уровнях. Поэтому если в ядре имеется три разных сорта («аромата») кварков, а не два, как в обычных ядрах, то большее количество кварков может находиться в низкоэнергетических состояниях, не нарушая принципа Паули. Такие гипотетические ядра, состоящие из трёх сортов кварков, и называются страпельками.

    Предполагается, что страпельки, в отличие от обычных атомных ядер, могут оказаться устойчивыми по отношению к спонтанному делению даже при больши́х массах.[24][25] Если это верно, то страпельки могут достигать макроскопических и даже астрономических размеров и масс.

    Предполагается также, что столкновение страпельки с ядром какого-нибудь атома может вызывать его превращение в странную материю, которое сопровождается выделением энергии. В результате во все стороны разлетаются всё новые страпельки, что теоретически может приводить к цепной реакции.

    Однако даже в этой ситуации коллайдер не представляет сколько-нибудь новой по сравнению с предшествующими ускорителями опасности, поскольку энергии столкновения частиц в нём на порядки выше[17][18], чем те, при которых могут эффективно образовываться ядра (будь то обычные или страпельки). Так что если бы страпельки могли возникать в БАК, они бы в ещё больших количествах возникали и в релятивистском ускорителе тяжёлых ионов RHIC (англ.), поскольку количество столкновений там выше, а энергии ниже. Но этого не происходит.

    Машина времени Править

    По информации международного издания New Scientist (англ.), профессор, доктор физико-математических наук Ирина Арефьева и член-корреспондент РАН, доктор физико-математических наук Игорь Волович[26] полагают, что этот эксперимент может привести к созданию машины времени.[27][28] Они считают, что протонные столкновения могут породить пространственно-временны́е «кротовые норы».

    Противоположных взглядов придерживается доктор физико-математических наук из НИИ ядерной физики МГУ Эдуард Боос, отрицающий возникновение на БАК чёрных дыр, а следовательно, «кротовых нор» и путешествий во времени.[29]

    1. ↑ The ultimate guide to the LHC(англ.), p. 30.
    2. ↑ LHC: ключевые факты. «Элементы большой науки». Проверено 15 сентября 2008.
    3. ↑ LHC synchronization test successful(англ.)
    4. ↑ Второй тест системы инжекции прошёл с перебоями, но цели достиг. «Элементы большой науки» (24 августа 2008). Проверено 6 сентября 2008.
    5. ↑ LHC milestone day gets off to fast start. physicsworld.com. Проверено 12 сентября 2008.
    6. ↑ First beam in the LHC — accelerating science. CERN. Проверено 12 сентября 2008.
    7. ↑ Mission complete for LHC team. physicsworld.com. Проверено 12 сентября 2008.
    8. ↑ На LHC запущен стабильно циркулирующий пучок. «Элементы большой науки» (12 сентября 2008). Проверено 12 сентября 2008.
    9. ↑ Происшествие на Большом адронном коллайдере задерживает эксперименты на неопределённый срок. «Элементы большой науки» (19 сентября 2008). Проверено 21 сентября 2008.
    10. ↑ Большой адронный коллайдер возобновит работу не раньше весны — ЦЕРН. РИА «Новости» (23 сентября 2008). Проверено 25 сентября 2008.
    11. ↑ http://press.web.cern.ch/Press/PressReleases/Releases2008/PR14.08E.html
    12. ↑ https://edms.cern.ch/file/973073/1/Report_on_080919_incident_at_LHC__2_.pdf
    13. ↑ The LHC experiments. CERN. Проверено 15 сентября 2008.
    14. ↑ «Ящик Пандоры» открывается. Вести.ру (9 сентября 2008). Проверено 12 сентября 2008.
    15. ↑ The Potential for Danger in Particle Collider Experiments(англ.)
    16. ↑ Dimopoulos, S. and Landsberg, G. Black Holes at the Large Hadron Collider. Phys. Rev. Lett. 87 (2001).(англ.)
    17. 17,017,1Blaizot J.-P. et al. Study of Potentially Dangerous Events During Heavy-Ion Collisions at the LHC.
    18. 18,018,1Review of the Safety of LHC Collisions. LHC Safety Assessment Group
    19. ↑ Критический обзор рисков ускорителей. Проза.ру (23 мая 2008). Проверено 17 сентября 2008.
    20. ↑ Какова вероятность катастрофы на LHC?
    21. ↑ Судный день
    22. ↑ Asking a Judge to Save the World, and Maybe a Whole Lot More(англ.)
    23. ↑ Объяснение того, почему БАК будет безопасным(англ.); [1](исп.); [2](нем.)
      [3](фр.)
    24. H. Heiselberg. Screening in quark droplets // The American Physical Society. Physical Review D. — 1993. — Т. 48. — № 3. — С. 1418—1423. doi:10.1103/PhysRevD.48.1418
    25. M. Alford, K. Rajagopal, S. Reddy, A. Steiner. Stability of strange star crusts and strangelets // The American Physical Society. Physical Review D. — 2006. — Т. 73, 114016. doi:10.1103/PhysRevD.73.114016 arXiv:hep-ph/0604134
    26. Наталия Лескова. Червоточина во времени. Газета «Русский курьер» № 631 (18 февраля 2008). Проверено 25 августа 2008.
    27. ↑ Учёные создают машину времени. Газета «Взгляд» (7 февраля 2008). Проверено 25 августа 2008.
    28. ↑ Time travellers from the future «could be here in weeks» (англ.). Telegraph (2 июня 2008). Проверено 25 августа 2008.
    29. Андрей Меркулов. Катастрофа назначена на май. «Российская газета» № 4598 (27 февраля 2008). — Приближающийся пуск ускорителя в ЦЕРНе порождает даже в научной среде тревожные сценарии. Проверено 25 августа 2008.

    Публикации и статьи Править

    Прочее Править


    Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Большой адронный коллайдер. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


    ru.vlab.wikia.com

    Большой адронный коллайдер

    Большой адронный коллайдер базируется в Европейском центре ядерных исследований. Усилия и идеи физиков со всех стран мира приложены к тому, чтобы разогнать тяжелые ионы и протоны. Но зачем?

    Целью этого проекта является поиск и открытие бозона Хиггса — важнейшей из частиц Стандартной Модели (СМ), не найденной экспериментальным путем до сих пор. Кроме того, огромное внимание уделено частицам W и Z-бозонов, процессам распадов и рождения тяжёлых кварков и ядерным реакциям при сверхвысоких энергиях.

    Идея создать коллайдер появилась в 1984 году. Десятью годами позже эта идея была одобрена. В 2001 году началось строительство LHC.
    Сейчас большой адронный коллайдер располагается в туннеле, в котором прежде располагался LEP. Периметр этого туннеля равен 26,7 км, сам тоннель находится на глубине 100 метров на территории двух стран ЕС — Швейцарии и Франции.

    По гипотезам некоторых экспертов Большой адронный коллайдер представляет опасность для планеты, так как контроль над цепными реакциями осуществляется не полностью. Довольно распространена теория о возникновении в нем микроскопических черных дыр. Объединяясь, сгустки антиматерии и магнитных монополей могут захватывать окружающую их материю, т. е. землю.
    Этот теоретический потенциал был рассмотрен группой CERN, которая подготовила доклад, где указывается, что адронный коллайдер угрозы не представляет.

    В качестве основного аргумента в пользу безвредности адронного коллайдера выдвигается тот факт, что Луна, Земля и другие тела Солнечной системы постоянно подвергаются воздействию электронных частиц с более сильными энергиями. В ряде случае упоминается опыт работы других колайдеров, таких как Релятивистский ионный коллайдер, строившийся в Брукхейвене. Специалисты CERN не отрицают возможность возникновения черных дыр, однако они убеждены, что такие антиматерии не могут возникать в условиях LHC и в земном четырёхмерном пространстве, так как черные дыры требуют более сильных энергий, в 16 раз больше по сравнению с энергией пучков LHC. Гипотетически черные дыры могут зарождаться в Большом адроном коллайдере, но они будут очень непостоянными, испаряясь в считанные секунды.

    Согласно теории черные дыры имеют определенную продолжительность жизни, по окончании которой они испаряются. Согласно работам ученых-создателей в новом коллайдере, если черные дыры и возникнут, они просуществуют сотые доли секунд и исчезнут (оставив за собой характерный след, по которому специалисты определят, что это была именно черная дыра). Однако, ряд знаменитых ученых, включая академика Сахаров, настаивают на другой точке зрения, согласно которой, возникнув однажды в Большом адронном коллайдере, черная дыра уже никогда не исчезнет. В таком случае черная дыра поглотит не только нашу планету, но и всю Солнечную систему.

    Если вспоминать дилеммы, возникавшие вокруг ядерных испытаний, то на тот момент многие ученые предполагали, ядерный взрыв приведет к полному выгоранию земной атмосферы. Однако этого не случилось, а математические выкладки так и не сумели отсрочить взрыв. Похожие записи

    interest-planet.ru

Оставить комментарий