Для чего нужен большой адронный коллайдер – Что такое адронный коллайдер и для чего он создавался? — Пермский информационный портал

Содержание

Большой адронный коллайдер: зачем он вообще?

На этой неделе, спустя два года ожиданий, Большой адронный коллайдер — ускоритель заряженных частиц, благодаря которому в 2012 году открыли бозон Хиггса — могут снова запустить.

Гигантский коллайдер (частью которого является подземный туннель на границе Франции и Швейцарии длиною в 27 километров) был отключен в феврале 2013 года, чтобы учёные могли внести изменения в его конструкцию. Теперь же учёные вновь включают его, чтобы при помощи серии экспериментов совершить скачок в изучении физики.

1. Постойте-постойте, а что такое Большой адронный коллайдер?


Туннель Большого адронного коллайдера
БАК был построен в 2008 году организацией CERN (Европейский совет ядерных исследований). Создание самого большого в мире адронного коллайдера обошлось в девять миллиардов долларов. Невероятная длина его подземных туннелей позволяет физикам проводить невероятные эксперименты.

Грубо говоря, чаще всего эксперименты включают в себя разгон заряженных частиц до 99.9999% от скорости света (заставляя их перемещаться по кругу 11000 раз в секунду) и последующее их столкновение при помощи гигантских магнитов. Сложные сенсоры считывают всевозможную информацию, полученную после столкновения этих частиц.

2. Зачем учёным сталкивать частицы?


Информация, полученная одним из сенсоров, в БАК
Огромное количество энергии, которое выделяется после столкновения, заставляет частицы распадаться и в последствии собираться в довольно-таки необычные конструкции. Подобные эксперименты помогают найти недостатки в стандартной модели физики — на данный момент это лучший способ предсказать поведение частиц.

Физикам интересны такие эксперименты потому, что, хоть стандартная модель и считается довольно-таки точной, она всё же неполная. «Она эффективна для предположений, но физики не так уж их любят», — прокомментировал Патрик Коппенбург, ученый, работающий с БАК.

Сильнейший недостаток модели — это то, что она не учитывает силу гравитации (она описывает только три других фундаментальных взаимодействия) и такие понятия, как тёмная материя и тёмная энергия. Она также не очень-то хорошо работает с нынешними теориями о происхождении Вселенной.

Другими словами, стандартная модель физики — это лучшее описание того, как работают вещи вокруг нас. Однако, по словам Коппенбурга, эта теория «точно в каком-то месте ошибочна». Сталкивая частицы в БАК, он и другие учёные пытается найти отклонения от этой модели.

3. Что эти учёные уже обнаружили

Диаграмма 17-ти фундаментальных частиц стандартной модели, включая бозон Хиггса
Наиболее важным событием за всю историю Большого адронного коллайдера стало открытие бозона Хиггса.

Еще с 1960-х годов считалось, что бозон Хиггса — часть поля Хиггса, невидимого поля, проходящего сквозь пространство и влияющего на все частицы. Согласно предположениям физиков, именно благодаря этому полю у частиц есть масса (или же сопротивление при передвижении).
Физик Брайн Грин писал в своей статье:

«Представьте, что шарик для пинг-понга погрузили под воду. Когда вы пытаетесь погрузить его глубже, то он кажется в разы более тяжелым, чем он был вне воды. Его взаимодействие с водой приводит к увеличению его массы. То же случается с частицами, погруженными в поле Хиггса»

В принципе, никого не удивило открытие бозона и поля Хиггса, ведь все законы стандартной модели указывали на их существование. Загвоздка заключалась в том, что не было прямых доказательств. «Когда мы строили БАК, то надеялись либо обнаружить бозон Хиггса, либо доказать, что его не существует», — комментирует Коппенбург.

В 2012 году, спустя три года экспериментов, физики доказали существование бозона Хиггса. Было высчитано, что сразу после столкновения бозон Хиггса разлагался на другие частицы, следуя определенным закономерностям. Данные, собранные после столкновения протонов, помогли понять и предсказать эти закономерности.

Это открытие невероятно важно: поле Хиггса — краеугольный камень стандартной модели. Благодаря ему, все другие уравнения становятся в разы понятней. Мы смогли обнаружить его спустя 50 лет после того, как его существование было предсказано на бумаге, а это значит, что мы на верном пути в изучении устройства нашей вселенной.

4. Почему БАК снова включают?


Туннели Большого адронного коллайдера
Все эксперименты, что проводились в прошлом, были лишь началом. Спустя несколько лет работы над улучшением магнитов (они ускоряют и контролируют движение частиц) и сенсоров, начнется новая эра: теперь серия экспериментов включает в себя разгон и столкновение частиц, заряд которых будет в два раза больше предыдущего.

Новые столкновения частиц позволят учёным открыть новые (и, возможно, даже большие) частицы, а также изучить бозон Хиггса и его поведение в разных условиях.

«Мы надеемся открыть элементы, не предсказанные стандартной моделью. К примеру, частицы настолько тяжелые, что они не были еще открыты, или же другие типы отклонений», — делится надеждами Коппенбург.

Возможно, к примеру, что бозон Хиггса — это лишь одна из нескольких частиц из механизма Хиггса.

Достаточное количество новой информации, по словам Коппенбурга и других учёных, поможет нам открыть новые частицы и улучшить нынешнюю стандартную модель, позволив ей точно взаимодействовать с тёмной материей, рождением вселенной и другими плохо изученными темами.

5. Собираются ли в будущем создавать ускорители частиц еще больших размеров?


Схема международного линейного коллайдера
Да. Физики надеются со временем построить ускорители гораздо больших размеров, которые позволят разгонять частицы с большой энергией, чем БАК. Это, в свою очередь, позволит открыть новые частицы и даст более чёткое понимание тёмной материи. Длина международного линейного коллайдера, к примеру, будет составлять 32 километра. В отличие от БАК, где частицы разгоняются по кругу, в этом проекте они будут сталкиваться друг с другом напрямую. Проект всё еще рассматривается, но учёные надеются, что такой ускоритель получится построить в Японии, и он начнёт свою работу к 2026 году.

Когда-то всем казалось, что гигантский ускоритель частиц построят и в США. В 1989 году Конгресс даже согласился потратить шесть миллиардов долларов на постройку сверхпроводящего супер-коллайдера. Строить его собирались в Ваксахэчи, штат Техас, длина его туннелей должна была достигать 86 километров. Сила, с которой в нём сталкивались бы частицы, была бы в четыре раза сильней, чем у Большого адронного коллайдера. Но к сожалению, в 1993 году стоимость проекта выросла до одиннадцати миллиардов долларов, и Конгресс решил прикрыть его, несмотря на то, что два миллиарда уже были потрачены на строительство 25 километров туннеля.

Оригинал: Vox
Перевел: Kirill Chernyakov для Newочём
Редактировал: Evgeny Uryvaev

newochem.ru

Адронный коллайдер. Факты о большом адронном коллайдере.

Декабрь 19th, 2013 bauer86

Немного фактов о Большом адронном коллайдере, как и для чего он создан, какой с него прок и какие потенциальные опасности для человечества он таит.

1. Строительство БАК’а, или Большого адронного коллайдера, задумали еще в 1984 году, а начали только в 2001. Спустя 5 лет, в 2006 году, благодаря усилиям более чем 10-ти тысяч инженеров и ученых из разных государств, строительство Большого адронного коллайдера было завершено.

2. БАК — это самая большая экспериментальная установка в мире.

3. Так почему же Большой адронный коллайдер?
Большим его назвали благодаря его солидным размерам: длина основного кольца, по которому гоняют частицы, составляет порядка 27 км.
Адронным — так как установка ускоряет адроны (частицы, которые состоят из кварков).
Коллайдером — из-за ускоряющихся в противоположном направлении пучков частиц, которые сталкиваются друг с другом в специальных точках.

4. Для чего нужен Большой адронный коллайдер? БАК представляет из себя суперсовременный исследовательский центр, где ученые проводят опыты с атомами, сталкивая между собой на огромной скорости ионы и протоны. Ученые надеются с помощью исследований приоткрыть завесу над тайнами появления Вселенной.

5. Проект обошелся научному сообществу в астрономическую сумму — 6 млрд. долларов. Кстати, Россия делегировала на БАК 700 специалистов, которые работают и по сей день. Заказы для БАК принесли российским предприятиям порядка 120 млн долларов.

6. Без сомнений, главное открытие, сделанное в БАК — открытие в 2012 г. бозона Хиггса, или как его еще называют «частицы Бога». Бозон Хигса — это последнее звено в Стандартной модели. Еще одно значительное событие в Бак’е — достижение рекордного значения энергии столкновений в 2,36 тераэлектронвольта.

7. Некоторые ученые, в том числе и в России, считают, что благодаря масштабным экспериментам в ЦЕРН’е (Европейской организации по ядерным исследованиям, где, собственно, и расположен коллайдер), ученым удастся построить первую в мире машину времени. Однако большинство ученых не разделяют оптимизма коллег.

8. Главные опасения человечества по поводу самого мощного на планете ускорителя основаны на опасности, которая грозит человечеству, в результате образования микроскопических черных дыр, способных к захвату окружающей материи. Есть еще одна потенциальная и крайне опасная угроза — возникновения страпелек (произв. от Странная капелька), которые, гипотетически, способны при столкновении с ядром какого-либо атома, образовывать все новые страпельки,  преобразуя материю всей Вселенной. Однако большинство самых авторитетных ученых заявляют, что такой исход маловероятен. Но теоретически возможен

9. В 2008 году на ЦЕРН подали в суд двое жителей штата Гавайи. Они обвинили ЦЕРН в попытке положить конец человечеству из-за халатности, требуя от ученых гарантий на безопасность.

10. Большой адронный коллайдер расположен в Швейцарии недалеко от Женевы. В ЦЕРНе функционирует музей, где посетителям наглядно объясняют о принципах работы коллайдера и для чего он был построен.

11. Ну и напоследок немного забавный факт. Судя по запросам в Яндексе, многие люди, которые ищут информацию о Большом адронном коллайдере, не знают как правильно пишется название ускорителя. Например, пишут «аНдронный» (и не только пишут, чего стоят репортажи НТВ с их аНдронным коллайдером), порой пишут «андроидный» (Империя наносит ответный удар). В буржуйском нете тоже не отстают и вместо «hadron» вбивают в поисковик «hardon» (на православном английском hard-on — стояк). Интересен вариант написания на белорусском — «Вялікі гадронны паскаральнік», что переводится как «Большой гадронный ускоритель».

Адронный коллайдер. Фото

 

VN:F [1.9.22_1171]

Rating: 10.0/10 (3 votes cast)

VN:F [1.9.22_1171]

11 фактов о Большом адронном коллайдере., 10.0 out of 10 based on 3 ratings

на Ваш сайт.

worldme.ru

Что такое адронный коллайдер и для чего он создавался? — Пермский информационный портал

Несколько лет назад умы многих будоражила мысль об опасности большого адронного коллайдера. Но многие до сих пор не знают что это за устройство и для чего было создано. Довольно много шума надело сообщение журналистов о том, что в устройстве может произойти взрыв, который может создать черную дыру и привести к гибели всего человечества. По другим слухам, планировалось создание антиматерии, которая была бы очень нестабильной и также могла бы привести к взрыву.  Так зачем нужен адронный коллайдер и что он из себя представляет читайте ниже.

БАК или большой адронный коллайдер — это ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжелых ионов и изучения продуктов их соударения. Устройство представляет собой кольцеобразный тоннель на подобие трубы для разгона частиц, только намного большего размера. Построили его в ЦЕРНе, европейском совете ядерных исследований, на территории Франции и Швейцарии. БАК находится на глубине более 100 метров. В его разработке и создании участвуют ученые со всего мира. На данный момент БАК — не единственный ускоритель частиц в мире. Подобные механизмы уже построены во многих странах, правда не такого внушительного размера.

Большой адронный коллайдер позволяет сталкивать пучки частиц на огромных скоростях и наблюдать их дальнейшее поведение и взаимодействие, которые фиксируются с помощью специальных устройств. Для того, чтобы удержать частицы внутри, используются сильнейшие магниты.

Изначально устройство предназначалось для того, чтобы найти бозон Хиггса- частицы, которые наделяют другие частицы массой.  Второй целью было изучение кварков, частиц из которых состоят адроны.

Если ученым вполне хватало такого объяснения, то после того, как СМИ начали описывать этот проект огромное количество людей начали задумываться о дороговизне и опасности прибора. Все же ради нахождения кварка таких средств вкладывать бы не стали. Ученые заверяют, что открытие бозона Хиггса полностью окупит постройку коллайдера, так как это станет возможностью внести в технический прогресс уйму новшеств.

Но все таки зачем создавать адронный коллайдер? Бозон Хиггса, как одно из последующих открытий должен привести человечество к удивительному прогрессу. Всем известно, что масса- это энергия в состоянии покоя. А если при помощи новых открытий появится возможность преобразовывать массу в энергию, то энергетические проблемы канут в Лету, а следовательно начнется возможное освоение новых планет и таких уголков космоса, представления о которых мы ранее не имели.

Изучение же кварков позволило бы человечеству познать законы гравитации и подчинить их себе. Но это ожидается позднее, так как изучение гравитонов еще очень плохо развито. Ну а контролировать устройство изменяющее гравитацию пока еще невозможно.

Однако, есть еще и третья теория, согласно которой адронный коллайдер был создан для подробного изучения М-теории или “теории всего”. Она заключается в том, что мир состоит из 11 измерений. А поняв ее, возможно человечество сможет путешествовать между измерениями.

В целом, ученые сами не могут ответить на вопрос для чего еще нужен коллайдер. Хоть он и  был создан не только для изучения уже упомянутых аспектов, но и для подтверждения или опровержения прочих экзотических теорий. Хотя неизвестно еще, чем все это грозит цивилизации.

Согласно новостям от 4 июля 2012 года, ученым удалось обнаружить бозон Хиггса. Хотя, его свойства несколько отличаются от теорий ученых. Но по крайней мере, теперь это не миф. В настоящее время коллайдер выключен и находится на модернизации. Но к концу этого года планируется очередной запуск уже обновленного устройства.

59i.ru

Большой Адронный Коллайдер (БАК или LHC)

Большой Адронный Коллайдер (БАК или LHC)

Словосочетание «Большой адронный коллайдер» настолько глубоко осело в массмедиа, что о данной установке знает подавляющее количество людей, в числе которых и те, чья деятельность никоим образом не связано с физикой элементарных частиц, и с наукой вообще.

Действительно, столь масштабный и дорогой проект не мог обойти стороной СМИ – кольцевая установка длиной почти в 27 километров, ценою в десяток миллиардов долларов, с которой работает несколько тысяч научных сотрудников со всего мира. Немалую лепту в популярность коллайдера внесла так называемая «частица Бога» или бозон Хиггса, который был успешно разрекламирован, и за который Питер Хиггс получил нобелевскую премию по физике в 2013-м году.

Большой адронный коллайдер под землей комплекса ЦЕРНа

Далее разберемся подробнее в задачах и работе Большого адронного коллайдера.

Предыстория

Прежде всего следует отметить, что Большой адронный коллаейдер не строился с нуля, а возник на месте своего предшественника — Большого электрон-позитронного коллайдера (Large Electron-Positron collider или LEP). Работа над 27-микилометровом тоннелем началась в 1983-м году, где в дальнейшем планировалось расположить ускоритель, который будет осуществлять столкновение электроном и позитронов. В 1988-м году кольцевой тоннель сомкнулся, при этом рабочие подошли к проведению тоннеля столь тщательно, что расхождение между двумя концами тоннеля составило всего 1 сантиметр.

Инфографика Большого адронного коллайдера

Ускоритель проработал до конца 2000-го года, когда достиг своего пика – энергии в 209 ГэВ. После этого начался его демонтаж. За одиннадцать лет своей работы LEP принес физике ряд открытий, в числе которых – открытие W и Z бозонов и их дальнейшие исследования. На основе результатов этих исследований был сделан вывод о сходстве механизмов электромагнитного и слабого взаимодействий, вследствие чего начались теоретические работы по объединению этих взаимодействий в электрослабое.

В 2001-м году на месте электрон-позитронного ускорителя началась постройка Большого адронного коллайдера. Строительство нового ускорителя завершилось в конце 2007-го года. Он располагался на месте LEP – на границе между Францией и Швейцарией, в долине Женевского озера (в 15 км от Женевы), на глубине ста метров. В августе 2008-го года начались испытания коллайдера, а 10-го сентября произошел официальный запуск БАКа. Как и в случае с предыдущим ускорителем, строительство и работа с установкой возглавляется Европейской организацией по ядерным исследованиям – ЦЕРН.

Сотрудники ЦЕРНа в тоннеле коллайдера

ЦЕРН

Логотип CERN

Вкратце стоит сказать об организации CERN (Conseil Européenne pour la Recherche Nucléaire). Данная организация выступает в роли крупнейшей мировой лаборатории в области физики высоких энергий. Включает три тысячи постоянных сотрудников, и еще несколько тысяч исследователей и ученых из 80 стран принимают участие в проектах ЦЕРНа.

На данный момент участниками проекта является 22 страны: Бельгия, Дания, Франция, Германия, Греция, Италия, Нидерланды, Норвегия, Швеция, Швейцария, Великобритания – учредители, Австрия, Испания, Португалия, Финляндия, Польша, Венгрия, Чехия, Словакия, Болгария и Румыния – присоединившиеся. Однако, как уже было сказано выше – еще несколько десятков стран так или иначе принимают участие в работе организации, и в частности – на Большом адронном коллайдере.

Как работает Большой адронный коллайдер?

Что такое Большой адронный коллайдер и как он работает – основные вопросы, интересующие общественность. Рассмотрим эти вопросы далее.

Коллайдер (collider) – в переводе с английского означает «тот, кто сталкивает». Задача такой установки состоит в столкновении частиц. В случае с адроннмы коллайдером, в роли частиц выступают адроны – частицы, участвующие в сильном взаимодействии. Таковыми являются протоны.

Получение протонов

Долгий путь протонов берет свое начало в дуоплазматроне – первой ступени ускорителя, куда поступает водород в виде газа. Дуоплазматрон представляет собой разрядную камеру, где через газ проводится электрический разряд. Так водород, состоящий всего из одного электрона и одного протона, теряет свой электрон. Таким образом образуется плазма – вещество, состоящее из заряженных частиц – протонов. Конечно, получить чистую протонную плазму сложно, поэтому далее образованная плазма, включающая также облако молекулярных ионов и электронов, проходит фильтрацию для выделения облака протонов. Под действием магнитов протонная плазма сбивается в пучок.

Физик Детлеф Кюхлер измеряет положение печи внутри источника ионов

Предварительный разгон частиц

Новообразованный пучок протонов начинает свой путь в линейном ускорителе LINAC 2, который представляет собой 30-тиметровое кольцо, последовательно увешенное несколькими полыми цилиндрическими электродами (проводниками). Создаваемое внутри ускорителя электростатическое поле градуировано таким образом, что частицы между полыми цилиндрами всегда испытывают ускоряющую силу в направлении следующего электрода. Не углубляясь целиком в механизм разгона протонов на данном этапе, отметим лишь, что на выходе с LINAC 2 физики получают пучок протонов с энергией 50 МэВ, которые уже достигают 31% скорости света. Примечательно, что при этом масса частиц возрастает на 5%.

Линейный ускоритель LINAC 2

К 2019-2020-му году планируется замена LINAC 2 на LINAC 4, который будет разгонять протоны до 160 МэВ.

Стоит отметить, что на коллайдере также разгоняют ионы свинца, которые позволят изучить кварк-глюонную плазму. Их разгоняют в кольце LINAC 3, аналогичном LINAC 2. В дальнейшем также планируются эксперименты с аргоном и ксеноном.

Далее пакеты протонов поступают в протон-синхронный бустер (PSB). Он состоит из четырех наложенных колец диаметром 50 метров, в которых располагаются электромагнитные резонаторы. Создаваемое ими электромагнитное поле имеет высокую напряженность, и проходящая через него частица получает ускорение в результате разности потенциалов поля. Так спустя всего 1,2 секунды частицы разгоняются в PSB до 91% скорости света и достигают энергии в 1,4 ГэВ, после чего поступают в протонный-синхротрон (PS). Диаметр PS составляет 628 метров и оснащен 27 магнитами, направляющими пучок частиц по круговой орбите. Здесь частиц протоны достигают 26 ГэВ.

Протонный-синхротрон (PS)

Предпоследним кольцом для разгона протонов служит Суперпротонный-синхротрон (SPS), длина окружности которого достигает 7 километров. Будучи оснащенным 1317-ю магнитами SPS разгоняет частицы до энергии в 450 ГэВ. Спустя примерно 20 минут пучок протонов попадает в основное кольцо – Большой адронный коллайдер (LHC).

Суперпротонный-синхротрон (SPS)

Разгон и столкновение частиц в LHC

Переходы между кольцами ускорителей происходят посредством электромагнитных полей, создаваемых мощными магнитами. Основное кольцо коллайдеро состоит из двух параллельных линий, в которых частицы движутся по кольцевой орбите в противоположном направлении. За сохранение круговой траектории частиц и направление их в точки столкновения отвечают около 10 000 магнитов, масса некоторых из них достигает 27 тонн. Во избежание перегрева магнитов используется контур гелия-4, по которому протекает примерно 96 тонн вещества при температуре -271,25 ° С (1,9 К). Протоны достигают энергии в 6,5 ТэВ (то есть энергия столкновения – 13 ТэВ), при этом их скорость на 11 км/ч меньше скорости света. Таким образом за секунду пучок протонов проходит большое кольцо коллайдера 11 000 раз. Прежде, чем произойдет столкновение частиц, они будут циркулировать по кольцу от 5 до 24 часов.

Схема ускорителей LHC

Столкновение частиц происходит в четырех точках основного кольца LHC, в которых располагаются четыре детектора: ATLAS, CMS, ALICE и LHCb.

Детекторы Большого адронного коллайдера

ATLAS (A Toroidal LHC ApparatuS)

Логотип эксперимента ATLAS

— является одним из двух детекторов общего назначения на Большом адронном коллайдере (LHC). Он исследует широкий спектр физики: от поиска бозона Хиггса до частиц, которые могут составлять темную материю. Хотя он имеет те же научные цели, что и эксперимент CMS, ATLAS использует иные технические решения и другую конструкцию магнитной системы.

Детектор ATLAS и некоторые его сотрудники

Пучки частиц из LHC сталкиваются в центре детектора ATLAS, образуя встречные обломки в виде новых частиц, которые вылетают из точки столкновения во всех направлениях. Шесть различных детектирующих подсистем, расположенных в слоях вокруг точки столкновения, записывают пути, импульс и энергию частиц, позволяя их индивидуально идентифицировать. Огромная система магнитов искривляет пути заряженных частиц, так что их импульсы можно измерить.

Взаимодействия в детекторе ATLAS создают огромный поток данных. Чтобы обработать эти данные, ATLAS использует расширенную «триггерную» систему, позволяющую сообщать детектору, какие события записывать, а какие игнорировать. Затем для анализа зарегистрированных событий столкновения используются сложные системы сбора данных и вычисления.

Детектор ATLAS и его компоненты

Детектор имеет высоту 46 метров и ширину – 25 метров, при этом его масса составляет 7 000 тонн. Эти параметры делает ATLAS самым большим детектором частиц, когда-либо созданным. Он находится в тоннеле на глубине в 100 м вблизи главного объекта ЦЕРН, недалеко от деревни Мейрин в Швейцарии. Установка состоит из 4 основных компонентов:

  • Внутренний детектор имеет цилиндрическую форму, внутреннее кольцо находится всего в нескольких сантиметрах от оси проходящего пучка частиц, а внешнее кольцо имеет диаметр в 2,1 метра и длину 6,2 метра. Он состоит из трех различных систем датчиков, погруженных в магнитное поле. Внутренний детектор измеряет направление, импульс и заряд электрически заряженных частиц, образующихся при каждом протон-протонном столкновении. Основные элементы внутреннего детектора: пиксельный детектор (Pixel Detector), полупроводниковая система слежения (Semi-Conductor Tracker, SCT) и трековый детектор переходного излучения (Transition radiation tracker, TRT).

Внутренний детектор ATLAS

  • Калориметры измеряют энергию, которую частица теряет, когда проходит через детектор. Он поглощает частицы, возникающие при столкновении, тем самым фиксирую их энергию. Калориметры состоят из слоев «поглощающего» материала с высокой плотностью — свинца, чередующегося со слоями «активной среды» — жидкого аргона. Электромагнитные калориметры измеряют энергию электронов и фотонов при взаимодействии с веществом. Адронные калориметры измеряют энергию адронов при взаимодействии с атомными ядрами. Калориметры могут останавливать большинство известных частиц, кроме мюонов и нейтрино.

spacegid.com

Большой адронный коллайдер — что вы знаете о нем?

Десятилетиями ученые придумывают и изобретают приспособления для более качественного исследования различных физических, природных, космических явлений. С этой целью был создан и Большой адронный коллайдер – проект довольно успешный и абсолютно уникальный.

По своей сути БАК является ускорителем заряженных частиц на своеобразных встречных пучках, и осуществляет разгон ионов свинца и протонов с целью изучения результатов их соударений.

Создание Большого Адронного Коллайдера

Разработка и создание Большого адронного коллайдера велись достаточно долго. В итоге были сооружены 4 экспериментальные установки для проведения научных наблюдений за взаимодействием определенных заряженных частиц при сверхвысоких материях. Стоимость каждой установки составляет сумму более полумиллиарда долларов, а в работе только двух самых крупных установок задействованы более двух тысяч человек из 35 институтов.

Учитывая то, что известных науке частиц-составляющих Вселенной существует лишь 4%, то для человечества крайне важным можно считать изучение остальных 96% компонентов, образующих различные объекты. И на большую часть существующих вопросов, по мнению ученых, ответы помогут найти исследования на Большом адронном коллайдере.

БАК в действии – от создания до наших дней

В августе 2008 года были проведены первые предварительные испытания Большого адронного коллайдера, во время которых по одному из его колец пучок заряженных частиц прошел расстояние в три километра. И уже в сентябре этого же года коллайдер был официально запущен. Затем произошла небольшая авария, остановившая коллайдер на ремонт сроком почти на год, и 20 ноября 2009 года провели первые после ремонтных работ испытания проекта.

Все последующие годы непрерывно проводились исследования самых разных направлений и уровней, в ходе которых БАК переводился в различные режимы. Данные испытания позволили ученым пользоваться многочисленными результатами для продвижения науки в самых разных отраслях.

В 2013 году провели очередную серию протон-ионных столкновений, а летом работа БАКа была официально приостановлена для проведения плановых технических работ. Ремонт и модернизацию планируется проводить до конца 2014 года, значительно повысив при этом мощность и КПД уникального коллайдера.

Риск против стремления заглянуть глубже

Результаты, к которым пришли специалисты при помощи Большого адронного коллайдера, не могут не радовать как ученых, так и мировую общественность. Среди наиболее важных итогов можно выделить:

  • Открытие Бозона Хиггса и вычисление его массы;
  • Доказательства отсутствия ассиметрии антипротонов и протонов;
  • Изучение основных статистических свойств протонных столкновений;
  • Получение новых, предсказанных и впервые обнаруженных, частиц;
  • Исследование событий рождения адронных струй;
  • Получение признаков возникновения в ядерных столкновениях кварк-глюонной плазмы;
  • Обнаружение нестандартных корреляций протонов, которые вылетают в противоположных друг от друга направлениях.

Большой адронный коллайдер является известным и популярным во всем мире научным проектом, который к тому же зачастую обыгрывается и описывается в различных художественных книгах, фильмах, мультипликации. Однако при всей его популярности и приносимой научной пользе существует немало мнений о том, что грандиозная установка не может считаться абсолютно безопасной.

Уже много лет представители СМИ и общественные деятели обсуждают потенциальные катастрофы, которые могут произойти вследствие выхода из строя БАК. Некоторые специалисты прогнозируют самые разные исходы любого из проводимых в проекте экспериментов – от возникновения губительных для нашей планеты черных дыр до возможности термоядерного взрыва.

Но специально созданная рабочая группа CERN приводит качественные обоснования того, что все доводы об опасности коллайдера нельзя считать реальными и убедительными. И хотя споры ведутся и сегодня, эксперименты на БАК будут продолжаться до тех пор, пока какие-либо угрозы со стороны подобного рода исследований не будут официально доказаны и представлены мировой общественности.

www.sciencedebate2008.com

Для чего нужен большой адронный коллайдер?

Ну, вообще, надо сказать, что цель этого проекта – Большой адронный коллайдер – это цель чисто фундаментальная, получение фундаментальных знаний. Специально никаких целей для прикладных исследований или, тем более, коммерческих целей в этот проект не вкладывается. Хотя, надо сказать, что, безусловно, создание таких установок экспериментальных — и ускорителей, и детекторов, — ведет к появлению новых высоких технологий, безусловно, в промышленности. Поскольку требования к этим установкам очень высокие, то, следовательно, и материалы, и электроника, и другие компоненты этих установок должны быть высокого уровня – очень высокого, небывалого, скажем так. И это влечет за собой развитие технологий, которые могут быть использованы и в других областях. Это вот такой аспект. Да, есть даже такое выражение, что физика высоких энергий является локомотивом развития высоких технологий. То есть требования вот именно в этой области таковы к материалам и ко всем другим компонентам, что они приводят, вынуждают создавать, изобретать новые технологии, которые, безусловно, будут использованы и других, так сказать, отраслях. Ну вот, пример уже такой расхожий, я бы сказал, это всемирная сеть, всемирная паутина, как мы говорим – www, — которая была создана в ЦЕРНе и именно по запросу физики высоких энергий. Можно много примеров привести, когда вот такой процесс происходит. С другой стороны, действительно, куда надо вкладывать деньги и какой может быть выход уже как бы в народное хозяйство или в какие-то новые технологии, и на каких масштабах времен. Надо сказать, вот сейчас особенно, в последние годы, бурно развиваются так называемые нанотенологии – везде, во всем мире. И прогресс там колоссальный, и изобретается и в биологии, и в химии, и новые материалы, в общем, охвачены многие отрасли хозяйства и жизнедеятельности человека. Но, надо сказать, что фундаментальные основы вот этих нанотехнологий были заложены 100 лет назад, когда была создана квантовая теория, на основе ее. И тогда никто не помышлял и не думал о том, что мы придем вот к такому развитию нанотехнологий. Действительно, именно на основе квантовой теории была атомная физика, молекулярная физика развита. И вот сейчас, через 100 лет, мы достигли уровень, технологический уровень общества всех стран развитых достиг такого уровня, когда мы можем эти фундаментальные знания уже воплощать в какие-то практические изделия, там лакокрасочные покрытия, ну, знаете, что такое нанотехнологии, там биодобавки и так далее. Поэтому мы не исключаем – ну, это пока фантазии, но фантазии, основанные на истории развития науки, — что те знания, которые мы получаем сейчас в микромире, они будут каким-то образом использованы для какого-то вот практического применения. Через сколько лет – не знаю. Ну, через 50 или через 100, а, может быть, и через 200. И поэтому на этой шкале, если мы сейчас достигли уровня технологического в нанотехнологиях, то те знания, которые мы получаем из физики высоких энергий, физики элементарных частиц, могут и, скорее всего, будут основой для пикотехнологий и фентотехнологий. Это вот по той же шкале: нано – от слова 10 в минус 9-й, потом 10 в минус 12-й, 10 в минус 15-й. И, действительно, те процессы, которые мы будем изучать на коллайдере, это уже на уровне 10 в минус 15-й сантиметра, 10 в минус 17-й даже, может быть. Поэтому не исключено, что когда-то эти фентотехнологии придут на помощь человеку, чтобы создавать какие-то совершенно небывалые свойства материалов и других предметов, необходимых в жизни. Я бы хотел еще по поводу ГРИДа сказать, как в продолжение. ГРИД – это такая система распределенных вычислений. И вот Александр Михайлович совершенно правильно сказал, что, когда начнется обработка данных, то, в общем-то, ученые будут сидеть у себя дома и обрабатывать эти данные. Вот на это нацелена эта система. То есть, огромный поток информации, который пойдет с детекторов, а с одного детектора будет поток информации, равный примерно всей информации, которая сейчас находится в Интернете в мире, это колоссальный поток, поэтому нужна быстрая электроника, которая снимает эту информацию, нужны специальные хранилища этой информации и так далее. А дальше ее надо обрабатывать. Так вот, оказывается, в этой области, в отличие, может быть, от других, никакой суперкомпьютер вам не поможет, нужна распределенная система проведения этих вычислений – только она может обеспечить сбор и обработку вот таких потоков информации. То есть, опять же, хотя и ГРИД как глобальная система мыслится в будущем использоваться везде и всюду, ну, так же, как интернет – физики его изобрели (я имею в виду всемирную паутину), а сейчас им пользуются все – и домохозяйки, и все школьники и так далее, в детском саду уже. Так и это то же самое. Мыслится, что в целом будет глобальная такая система. Но локомотивом, повторяю, развития именно этой системы является проект – Большой адронный коллайдер, — именно здесь сделан колоссальный прогресс, и эта система уже существует и работает, хотя еще не начался сбор данных, она уже подготовлена к этому. Смысл ее состоит в том, что физик, имея какую-то задачу, и он должен ее решить, по обработке данных и изучению того полезного сигнала, который интересен физикам. Он у себя – я немножко упрощаю, — у себя на персональном компьютере на рабочем месте, а может быть и дома, запускает эту задачу. И дальше система построена так, что он не знает и не узнает, куда эта задача пошла, я имею в виду весь земной шар. То есть, по всему земному шару во всех странах будет установлены специальные вычислительные центры распределенные, которые предоставлены любому физику, участвующему в эксперименте вот через персональный компьютер. И дальше эта система сама ищет, где есть свободный ресурс, во-первых, во-вторых, где есть соответствующее программное обеспечение, которое может конкретно эту задачу решить. Находит – посылает туда. Это может быть, вы сидите в Москве, это может быть в Японии, в Соединенных Штатах, где-то в Европе. Дальше, когда эта задача решена, ну, конкретная частная задача, она возвращается к нему обратно, к этому физику, и он получает решение. Вот такая вот система. Поэтому нет необходимости всем физикам, которые будут заниматься обработкой, скажем, сидеть в ЦЕРНе у какого-то, так сказать, дисплея или монитора, или большого компьютера, а вот так вот все работают распределенным образом, и потом все это сводится вместе и получается уже конкретный результат. Отсюда это название и появилось. ГРИД – это вообще сеть, сетка. Это название пришло из Америки, где таким словом называют энергетическую систему – ну, так же, как у нас единая энергетическая система есть. Вы же, включая, скажем, утюг в розетку, не знаете, откуда эта электроэнергия пришла туда – с Красноярской ГЭС или еще откуда-то. Вот она откуда-то пришла, потому что все это в единой системе. Точно так же и вычислениями. Так что вот это очень интересная технология.

pressmia.ru

Большой адронный коллайдер — это… Что такое Большой адронный коллайдер?

Координаты: 46°14′00″ с. ш. 6°03′00″ в. д. / 46.233333° с. ш. 6.05° в. д. (G) (O)46.233333, 6.05

Большой адро́нный колла́йдер, сокращённо БАК (англ. Large Hadron Collider, сокращённо LHC) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (ЦЕРН), на границе Швейцарии и Франции, недалеко от Женевы. БАК является самой крупной экспериментальной установкой в мире. Руководитель проекта — Линдон Эванс. В строительстве и исследованиях участвовали и участвуют более 10 тыс. учёных и инженеров из более чем 100 стран[1].

Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м[2]; адронным — из-за того, что он ускоряет адроны, то есть тяжёлые частицы, состоящие из кварков; коллайдером (англ. collider — сталкиватель) — из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения[3].

Детекторы и предускорители БАК
Траектория протонов p (и тяжёлых ионов свинца Pb) начинается в линейных ускорителях (в точках p и Pb, соответственно). Затем частицы попадают в бустер протонного синхротрона (PS), через него — в протонный суперсинхротрон (SPS) и, наконец, непосредственно в туннель БАК. Детекторы TOTEM и LHCf, отсутствующие на схеме, находятся рядом с детекторами CMS и ATLAS соответственно

Поставленные задачи[4][5]

Современное состояние в физике элементарных частиц

Карта с нанесённым на неё расположением Коллайдера

В конце 1960-х годов физикам удалось разработать Стандартную модель (СМ), которая объединяет три из четырёх фундаментальных взаимодействий — сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах ОТО. Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: ОТО и СМ. Их объединения пока достичь не удалось из-за трудностей создания теории квантовой гравитации.

Поиск Новой физики

Как сказано выше, СМ не может считаться окончательной теорией элементарных частиц. Она должна быть частью некоторой более глубокой теории строения микромира, той частью, которая видна в экспериментах на коллайдерах при энергиях ниже примерно 1 ТэВ. Такие теории коллективно называют «Новая физика» или «За пределами Стандартной модели». Главная задача Большого адронного коллайдера — получить хотя бы первые намеки на то, что это за более глубокая теория[6].

Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, получившая своё развитие в М-теории (теории бран), теория супергравитации, петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц.

БАК позволит провести эксперименты, которые ранее были невозможны и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» — например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий.

Изучение топ-кварков

Топ-кварк — самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц. Согласно последним результатам Тэватрона[7], его масса составляет 173,1 ± 1,3 ГэВ/c². Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе — Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения бозона Хиггса. Один из наиболее важных каналов рождения бозона Хиггса в БАК — ассоциативное рождение вместе с топ-кварк-антикварковой парой. Для того, чтобы надёжно отделять такие события от фона, предварительно необходимо изучение свойств самих топ-кварков.

Изучение механизма электрослабой симметрии

Диаграммы Фейнмана, показывающие возможные варианты рождения W- и Z-бозонов, которые в совокупности образуют нейтральный бозон Хиггса

Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса — частицы, предсказанной шотландским физиком Питером Хиггсом в 1964 году в рамках Стандартной модели. Бозон Хиггса является квантом так называемого поля Хиггса, при прохождении через которое частицы испытывают сопротивление, представляемое нами как поправки к массе[8]. Сам бозон нестабилен и имеет большу́ю массу (более 120 ГэВ/c²). На самом деле, физиков интересует не столько сам бозон Хиггса, сколько хиггсовский механизм нарушения симметрии электрослабого взаимодействия.

Изучение кварк-глюонной плазмы

Ожидается, что примерно один месяц в год будет проходить в ускорителе в режиме ядерных столкновений. В течение этого месяца коллайдер будет разгонять и сталкивать в детекторах не протоны, а ядра свинца. При неупругом столкновении двух ядер на ультрарелятивистских скоростях на короткое время образуется и затем распадается плотный и очень горячий комок ядерного вещества. Понимание происходящих при этом явлений (переход вещества в состояние кварк-глюонной плазмы и её остывание) нужно для построения более совершенной теории сильных взаимодействий, которая окажется полезной как для ядерной физики, так и для астрофизики.

Поиск суперсимметрии

Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» — теории, гласящей, что любая элементарная частица имеет гораздо более тяжёлого партнера, или «суперчастицу».

Изучение фотон-адронных и фотон-фотонных столкновений

Электромагнитное взаимодействие частиц описывается как обмен (в ряде случаев виртуальными) фотонами. Другими словами, фотоны являются переносчиками электромагнитного поля. Протоны электрически заряжены и окружены электростатическим полем, соответственно это поле можно рассматривать как облако виртуальных фотонов. Всякий протон, особенно релятивистский протон, включает в себя облако виртуальных частиц как составную часть. При столкновении протонов между собой взаимодействуют и виртуальные частицы, окружающие каждый из протонов. Математически процесс взаимодействия частиц описывается длинным рядом поправок, каждая из которых описывает взаимодействие посредством виртуальных частиц определённого типа (см.: диаграммы Фейнмана). Таким образом, при исследовании столкновения протонов косвенно изучается и взаимодействие вещества с фотонами высоких энергий, представляющее большой интерес для теоретической физики[9]. Также рассматривается особый класс реакций — непосредственное взаимодействие двух фотонов, которые могут столкнуться как со встречным протоном, порождая типичные фотон-адронные столкновения, так и друг с другом.

В режиме ядерных столкновений, из-за большого электрического заряда ядра, влияние электромагнитных процессов имеет ещё большее значение.

Проверка экзотических теорий

Теоретики в конце XX века выдвинули огромное число необычных идей относительно устройства мира, которые все вместе называются «экзотическими моделями». Сюда относятся теории с сильной гравитацией на масштабе энергий порядка 1 ТэВ, модели с большим количеством пространственных измерений, преонные модели, в которых кварки и лептоны сами состоят из частиц, модели с новыми типами взаимодействия. Дело в том, что накопленных экспериментальных данных оказывается всё ещё недостаточно для создания одной-единственной теории. А сами все эти теории совместимы с имеющимися экспериментальными данными. Поскольку в этих теориях можно сделать конкретные предсказания для БАК, экспериментаторы планируют проверять предсказания и искать следы тех или иных теорий в своих данных. Ожидается, что результаты, полученные на ускорителе, смогут ограничить фантазию теоретиков, закрыв некоторые из предложенных построений.

Другое

Также ожидается обнаружение физических явлений вне рамок Стандартной Модели. Планируется исследование свойств W и Z-бозонов, ядерных взаимодействий при сверхвысоких энергиях, процессов рождения и распадов тяжёлых кварков (b и t).

Технические характеристики

Подземный зал, в котором смонтирован детектор ATLAS (октябрь 2004 года)

Регистрация частиц, образовавшихся после столкновения в детекторе CMS

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5·109 электронвольт) на каждую пару сталкивающихся нуклонов. На начало 2010 года БАК уже несколько превзошел по энергии протонов предыдущего рекордсмена — протон-антипротонный коллайдер Тэватрон, который до конца 2011 года работал в Национальной ускорительной лаборатории им. Энрико Ферми (США). Несмотря на то, что наладка оборудования растягивается на годы и ещё не завершена, БАК уже стал самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии остальные коллайдеры, в том числе и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Светимость БАК во время первых недель работы пробега была не более 1029 частиц/см²·с, тем не менее она продолжает постоянно повышаться. Целью является достижение номинальной светимости в 1,7·1034 частиц/см²·с, что по порядку величины соответствует светимостям BaBar (SLAC, США) и Belle (англ.) (KEK, Япония).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,7 км проложен под землёй на территории Франции и Швейцарии. Глубина залегания туннеля — от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (−271 °C), что немного ниже температуры перехода гелия в сверхтекучее состояние.

Российские учёные принимали активное участие как в строительстве самого БАК, так и в создании всех работающих на нём детекторов[10].

Детекторы

На БАК работают 4 основных и 3 вспомогательных детектора:

  • ALICE (A Large Ion Collider Experiment)
  • ATLAS (A Toroidal LHC ApparatuS)
  • CMS (Compact Muon Solenoid)
  • LHCb (The Large Hadron Collider beauty experiment)
  • TOTEM (TOTal Elastic and diffractive cross section Measurement)
  • LHCf (The Large Hadron Collider forward)
  • MoEDAL (Monopole and Exotics Detector At the LHC).

ATLAS, CMS, ALICE, LHCb — большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf — вспомогательные, находятся на удалении в несколько десятков метров от точек пересечения пучков, занимаемых детекторами CMS и ATLAS соответственно, и будут использоваться попутно с основными.

Детектор CMS

Детекторы ATLAS и CMS — детекторы общего назначения, предназначены для поиска бозона Хиггса и «нестандартной физики», в частности тёмной материи, ALICE — для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца, LHCb — для исследования физики b-кварков, что позволит лучше понять различия между материей и антиматерией, TOTEM — предназначен для изучения рассеяния частиц на малые углы, таких что происходит при близких пролётах без столкновений (так называемые несталкивающиеся частицы, forward particles), что позволяет точнее измерить размер протонов, а также контролировать светимость коллайдера, и, наконец, LHCf — для исследования космических лучей, моделируемых с помощью тех же несталкивающихся частиц[11].

С работой БАК связан также седьмой, совсем незначительный в плане бюджета и сложности, детектор (эксперимент) MoEDAL[12], предназначенный для поиска медленно движущихся тяжёлых частиц.

Во время работы коллайдера столкновения проводятся одновременно во всех четырёх точках пересечения пучков, независимо от типа ускоряемых частиц (протоны или ядра). При этом все детекторы одновременно набирают статистику.

Процесс ускорения частиц в коллайдере

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгон частиц до таких больших энергий достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. При этой энергии они уже движутся со скоростью близкой к световой. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем сгусток протонов[13] направляют в главное 26,7-километровое кольцо, доводя энергию протонов до максимальных 7 ТэВ, и в точках столкновения детекторы фиксируют происходящие события. Два встречных пучка протонов при полном заполнении могут содержать 2808 сгустков каждый. На начальных этапах отладки процесса ускорения циркулируют лишь по одному сгустку в пучке длиной несколько сантиметров и небольшого поперечного размера. Затем начинают увеличивать количество сгустков. Сгустки располагаются в фиксированных позициях относительно друг друга, которые синхронно движутся вдоль кольца. Сгустки в определённой последовательности могут сталкиваться в четырёх точках кольца, где расположены детекторы частиц[14].

Кинетическая энергия всех сгустков адронов в БАКе при полном его заполнении сравнима с кинетической энергией реактивного самолета, хотя масса всех частиц не превышает нанограмма и их даже нельзя увидеть невооружённым глазом. Такая энергия достигается за счёт скорости частиц, близкой к скорости света[15].

Сгустки проходят полный круг ускорителя быстрее, чем за 0,0001 сек, совершая, таким образом, свыше 10 тыс. оборотов в секунду[16].

Потребление энергии

Во время работы коллайдера расчётное потребление энергии составит 180 МВт. Предположительные энергозатраты всего ЦЕРН на 2009 год с учётом работающего коллайдера — 1000 ГВт·ч, из которых 700 ГВт·ч придётся на долю ускорителя. Эти энергозатраты — около 10 % от суммарного годового энергопотребления кантона Женева. Сам ЦЕРН не производит энергию, имея лишь резервные дизельные генераторы.

Вопросы безопасности

Значительная доля внимания со стороны представителей общественности и СМИ связана с обсуждением катастроф, которые могут произойти в связи с функционированием БАК. Наиболее часто обсуждается опасность возникновения микроскопических чёрных дыр с последующей цепной реакцией захвата окружающей материи, а также угроза возникновения страпелек, гипотетически способных преобразовать в страпельки всю материю Вселенной[17].

Строительство и эксплуатация

27-километровый подземный тоннель, предназначенный для размещения ускорителя БАК

Строительство

Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера.

  • 19 ноября 2006 года закончено строительство специальной криогенной линии для охлаждения магнитов.
  • 27 ноября 2006 года в туннеле был установлен последний сверхпроводящий магнит.

Испытания и эксплуатация

2008 год

Детектор ATLAS, ноябрь 2006 года

  • 11 августа успешно завершена первая часть предварительных испытаний[18]. Во время испытаний пучок заряженных частиц прошёл чуть более трёх километров по одному из колец БАК.
  • 10 сентября был произведён официальный запуск коллайдера[19][20]. Запущенные пучки протонов успешно прошли весь периметр коллайдера по и против часовой стрелки[21].
  • 12 сентября команде БАК удалось запустить и непрерывно удерживать циркулирующий пучок. На этом задача по установлению циркулирующего пучка завершилась, и физики приступили к подробным тестам магнитной системы[22].
  • 19 сентября в ходе тестов магнитной системы сектора 3-4 (34) произошла авария, в результате которого БАК вышел из строя[23]. Один из электрических контактов между сверхпроводящими магнитами расплавился под действием возникшей из-за увеличения силы тока электрической дуги, которая пробила изоляцию гелиевой системы охлаждения (криогенной системы), что привело к деформации конструкций, загрязнению внутренней поверхности вакуумной трубы частичками металла, а также выбросу около 6 тонн жидкого гелия в туннель. Ремонт коллайдера занял остаток 2008 и б́ольшую часть 2009 годов.
  • 21 октября состоялась торжественная церемония официального открытия (инаугурация) БАК[24].
2009 год
  • 20 ноября, впервые после аварии 19 сентября 2008 года, пучок протонов успешно прошёл по всему кольцу коллайдера[25].
  • 29-30 ноября учёные довели энергию каждого из пучков протонов до значения 1180 ГэВ. Таким образом, БАК стал самым мощным ускорителем протонов в мире[26].
  • 9 декабря состоялись столкновения пучков протонов на достигнутой в конце ноября рекордной энергии — 2,36 ТэВ (= 2 × 1180 ГэВ)[27].
2010 год
  • 30 марта энергия пучка протонов доведена до 3,5 ТэВ, состоялись столкновения протонов с суммарной энергией 7 ТэВ[28]. Начался первый длительный сеанс научной работы БАК.
  • 4 ноября закончились эксперименты в 2010 году в режиме протон-протонных столкновений[29]. Коллайдер переведен в режим столкновения тяжёлых ионов (ионов свинца)[30][31]. Первые тестовые запуски ионных сгустков начались во второй половине дня[32].
  • 7 ноября начались и продолжались один месяц столкновения ядер с полной энергией 5,74 ТэВ[32].
2011 год
  • 22 апреля на БАК установлен мировой рекорд пиковой светимости для адронных коллайдеров — 4,67·1032 см−2·сек−1. Предыдущий рекорд был установлен ускорителем Тэватрон в 2010 году, тогда светимость составила 4,02·1032см−2·сек−1[33].
  • 17 июня светимость, набранная ATLAS и CMS за 2010—2011 годы, превысила 1 фбн−1[34][35].
  • В результате обработки данных эксперимента OPERA сообщается о возможном превышении мюонными нейтрино скорости света[36] (впоследствии выяснилось, что причиной ошибочного предположения о сверхсветовой скорости стал технический дефект)[37].
  • 15 ноября начата трёхнедельная программа столкновений ионов свинца.
2012 год
  • 16 марта протоны впервые разогнаны до энергии 4 ТэВ[38].
  • 4 июля коллаборации ATLAS и CMS объявили о нахождении бозона массой 125,3 ± 0,6 ГэВ. Характеристики этой частицы довольно точно соответствуют предсказанному ранее бозону Хиггса. Является ли эта частица бозоном Хиггса, остаётся под вопросом[39].
  • В сентябре были проведены пробные протон-ионные столкновения[40].
  • 15 ноября коллаборацией CMS было объявлено о наблюдении частицы Y(4140) с массой 4148,2 ± 2.0 (стат) ± 4,6 (сист) МэВ/c2 (статистическая значимость более 5σ), ранее наблюдавшейся лишь на Тэватроне в 2009 г. Наблюдения сделаны в ходе обработки статистики 5,2 фб−1 столкновений протонов на энергии 7 ТэВ. Наблюдаемый распад данной частицы на J/ψ-мезон и Фи-мезон не описывается в рамках Стандартной модели[41][42].
  • 17 декабря успешно завершён первый этап протонных столкновений[43][44].
Планы

В начале 2013 года планируется проведение серии протон-ионных столкновений[43][40].

В феврале 2013 года коллайдер будет остановлен для модернизации до конца 2014 года. Планируется увеличить энергию столкновения протонов с нынешних 7 ТэВ до 13 ТэВ и установить дополнительное оборудование на детекторах ALICE, ATLAS, CMS, LHCb. В 2015 году эксперименты будут продолжены. [43][45]

Планы развития

После того, как БАК выйдет на проектную энергию и светимость, планируется провести модернизацию каскада предварительных ускорителей, в первую очередь SPS, что позволит заметно повысить светимость коллайдера (проект Super-LHC)[46].

Также обсуждается возможность проведения столкновений протонов и электронов (проект LHeC)[47]. Для этого потребуется пристроить линию ускорения электронов. Обсуждаются два варианта: пристройка линейного ускорителя электронов и размещение кольцевого ускорителя в том же тоннеле, что и LHC. Ближайшим из реализованных аналогов LHeC является немецкий электрон-протонный коллайдер HERA. Отмечается, что в отличие от протон-протонных столкновений, рассеяние электрона на протоне — это очень «чистый» процесс, позволяющий изучать партонную структуру протона намного внимательнее и аккуратнее.

В планах на очень отдалённую перспективу обсуждается демонтаж БАК и использование освободившегося тоннеля и инфраструктуры для коллайдера нового поколения. Это могло бы повысить энергию на пучок протонов до 16ТэВ[48].

Распределённые вычисления

Для управления, хранения и обработки данных, которые будут поступать с ускорителя БАК и детекторов, создаётся распределённая вычислительная сеть LCG (англ. LHC Computing GRID), использующая технологию грид. Для определённых вычислительных задач (расчет и корректировка параметров магнитов путем моделирования движения протонов в магнитном поле) задействован проект распределённых вычислений [email protected] Также рассматривалась возможность использования проекта [email protected] для обработки полученных экспериментальных данных, однако основные сложности связаны с большим объёмом информации, необходимым для передачи на удаленные компьютеры (сотни гигабайт). В рамках проекта распределенных вычислений [email protected] 2.0 (Test4Theory) производится моделирование столкновений пучков протонов с целью сопоставления полученных модельных и экспериментальных данных.

Научные результаты

Благодаря большей энергии по сравнению с предшествовавшими коллайдерами, БАК позволил «заглянуть» в недоступную ранее область энергий и получить научные результаты, накладывающие ограничения на ряд теоретических моделей.

Краткий перечень научных результатов, полученных на коллайдере[49]:

  • открыт новый бозон с массой 125,3 ± 0,6 ГэВ, скорее всего являющийся бозоном Хиггса[50][51];
  • при энергиях до 8 ТэВ изучены основные статистические характеристики протонных столкновений — количество рождённых адронов, их распределение по быстроте, бозе-эйнштейновские корреляции мезонов, дальние угловые корреляции, вероятность остановки протона;
  • показано отсутствие асимметрии протонов и антипротонов[52];
  • обнаружены необычные корреляции протонов, вылетающих в существенно разных направлениях[53];
  • получены ограничения на возможные контактные взаимодействия кварков[54];
  • получены более веские, по сравнению с предыдущими экспериментами[55], признаки возникновения кварк-глюонной плазмы в ядерных столкновениях[56];
  • исследованы события рождения адронных струй;
  • подтверждено существование топ-кварка, ранее наблюдавшегося только на Тэватроне;
  • обнаружено два новых канала распада Bs-мезонов[57][58], получены оценки вероятностей сверхредких распадов B- и Bs-мезонов на мюон-антимюонные пары[59][60][61];
  • открыты новые, теоретически предсказанные частицы [62], [63], и [64];
  • получены первые данные протон-ионных столкновений на рекордной энергии[40], обнаружены угловые корреляции, ранее наблюдавшиеся в протон-протонных столкновениях[65][66];
  • объявлено о наблюдении частицы Y(4140), ранее наблюдавшейся лишь на Тэватроне в 2009 г[41].

Также, были предприняты попытки обнаружить следующие гипотетические объекты[67]:

Несмотря на безуспешный итог поиска указанных объектов, были получены более строгие ограничения на минимально возможную массу каждого из них. По мере накопления статистики, ограничения на минимальную массу перечисленных объектов становятся жестче.

Прочие результаты
  • Результаты работы эксперимента LHCf, работавшего в первые недели после запуска БАК, показали, что энергетическое распределение фотонов в области от нуля до 3,5 ТэВ плохо описывается программами, моделирующими данный процесс, приводя к расхождениям между реальными и модельными данными в 2-3 раза (для самой высокой энергии фотонов, от 3 до 3,5 ТэВ, все модели дают предсказания, почти на порядок превышающие реальные данные)[73].

Финансирование проекта

В 2001 году ожидалось, что общая стоимость проекта составит около 4,6 млрд швейцарских франков (3 млрд евро) за сам ускоритель (без детекторов) и 1,1 млрд швейцарских франков (700 млн евро) составит доля ЦЕРН в проведении экспериментов (то есть в строительстве и обслуживании детекторов)[74].

Строительство БАК было одобрено в 1995 году с бюджетом 2,6 млрд швейцарских франков (1,6 млрд евро) и дополнительными 210 млн швейцарских франков (140 млн евро) на эксперименты. В 2001 году эти расходы были увеличены на 480 млн франков (300 млн евро) в части ускорителя и 50 млн франков (30 млн евро) в части экспериментов (расходы, относящиеся непосредственно к ЦЕРН), что вследствие сокращения бюджета ЦЕРН привело к сдвигу планируемых сроков введения с 2005 года на апрель 2007 года[75].

Бюджет проекта по состоянию на ноябрь 2009 года составил 6 млрд долл. — столько было инвестировано в строительство установки, которое продолжалось семь лет. Ускоритель частиц создавался под руководством ЦЕРН. В проекте задействовано 700 специалистов из России. Общая стоимость заказов, которые получили российские предприятия, по некоторым оценкам достигает 120 млн долл.[76]

Официальная стоимость проекта БАК не включает стоимость ранее существовавших в ЦЕРН инфраструктуры и наработок. Так, основное оборудование БАК смонтировано в тоннеле ранее существовавшего коллайдера LEP, при этом использовалось многокилометровое кольцо SPS в качестве предварительного ускорителя. Если бы БАК пришлось строить с нуля, его стоимость оказалась бы заметно выше.

В искусстве

В этом разделе не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 18 ноября 2012.
  • В книге фантаста Макса Острогина «Большая Красная Кнопка» рассказывается о наступлении апокалипсиса после включения на полную мощность Коллайдера
  • В ЦЕРН есть филк-группа Les Horribles Cernettes, аббревиатура которой совпадает с аббревиатурой БАК (LHC). Первая песня этого коллектива «Collider» была посвящена парню, который забыл о своей девушке, будучи увлечён созданием коллайдера.[77]
  • В в четвёртом сезоне научно-фантастического телесериала «Лексс» главные герои оказываются на Земле. Обнаруживается, что Земля относится к планетам «типа 13» на последней стадии развития. Планеты типа 13 всегда уничтожают себя сами, в результате войн или неудачного опыта по определению массы бозона Хиггса на сверхмощном ускорителе элементарных частиц.
  • В шестой серии тринадцатого сезона мультсериала «Южный парк» с помощью магнита из Большого адронного коллайдера была достигнута сверхсветовая скорость на конкурсе Дерби соснового леса (Pinewood Derby).
  • В фильме «Ангелы и демоны» антивещество из Большого адронного коллайдера было украдено, и похитители хотели взорвать с помощью него Ватикан.
  • В фильме «Конец света» (производство Би-би-си) последним из четырёх наиболее вероятных сценариев апокалипсиса являлся взрыв при запуске новейшего ускорителя элементарных частиц, повлекший за собой образование чёрной дыры.
  • В 13 серии 1 сезона научно-фантастического сериала «Одиссея 5» главные герои попадают в ЦЕРН, где местные учёные и сотрудники уверяют, что БАК полностью безопасен, основываясь на предварительных расчётах. Однако, как выяснилось позже, одна из форм киберразума взломала и проникла в главный компьютер ЦЕРН и подделала общие расчёты. Выяснив это, основываясь на новых верных расчетах, учёные выясняют, что появляется большая вероятность появления страпелек в коллайдере, что неизбежно приведёт к концу света.
  • В научно-популярном сериале «Жизнь после людей» через 5-10 лет после исчезновения людей коллайдер будет затоплен грунтовыми водами, а через 125 лет окончательно разрушится из-за коррозии. Остатки коллайдера станут кольцевым озером. Никакой опасности от коллайдера не будет, поскольку уже в первые дни после исчезновения людей отключится электроснабжение.[источник не указан 496 дней]
  • В фильме «Бросок кобры» с помощью БАКа заряжают боеголовки.[источник не указан 467 дней]
  • В сериале «Корабль» показываются катастрофические события после взрыва.
  • В визуальной новелле и аниме «Steins;Gate» несколько раз упоминался БАК.
  • В мультсериале «Футурама» профессор Фарнсворт покупает коллайдер в «Икее». Через некоторое время он заявляет: «Суперколлайдер супервзорвался».
  • В книге Джо Холдемана «Бесконечный мир» описывается в том числе процесс создания гигантского ускорителя, запуск которого должен привести к большому взрыву, который породит новую вселенную, уничтожив при этом существующую.
  • В компьютерной игре «Эврика!» одной из целей является возвращение БАКа на Землю.
  • В 2009 году Николай Полисский вместе с Никола-Ленивецкими промыслами сделал в центральном пространстве Музея современного искусства Люксембурга MUDAM инсталляцию из дерева и лозы, названную им «Большой адронный коллайдер»[78].
  • Адронный коллайдер можно построить в игре «Rise of Nations».
  • БАК упоминался в первой серии пятого сезона сериала Во все тяжкие.
Научно-популярные фильмы
  • «BBC: Машина Большого Взрыва» (англ. The Big Bang Machine) — научно-популярный фильм, Би-би-си, 2008 год.
  • «BBC. Horizon: Охота за бозоном Хиггса — спецвыпуск» / (англ. The Hunt for the Higgs — A Horizon Special) — научно-популярный фильм, 2012 год.
  • «Наука 2.0. Точка взаимодействия. ЦЕРН» — научно-популярный фильм, ВГТРК, 2012 год.

См. также

Примечания

Ссылки

Публикации и статьи
  Европейская организация по ядерным исследованиям (ЦЕРН)
Большой адронный коллайдер
Большой электрон-позитронный коллайдер
LEPСписок экспериментов на LEP · Aleph  · Delphi  · L3  · Opal  · LEP5  · LEP6
Протонный суперсинхротрон
SPSСписок экспериментов на SPS  · CNGS  · NA48  · NA49  · NA58/COMPASS · NA60  · NA61/SHINE  · NA62  · UA1  · UA2
Протонный синхротрон
PSAD  · Бустер протонного синхротрона  · AIDA  · DIRAC  · ELENA  · ISOLDE  · ISOLTRAP  · MISTRAL  · WITCH
Линейные ускорителиCTF3  · LINAC  · LINAC 2  · LINAC 3  · LINAC 4
Другие ускорители и экспериментыBEBC  · CAST  · CLOUD  · ISR  · LEAR  · LEIR  · n-TOF  · OSQAR  · PS210
Related[email protected]  · Вопросы безопасности Большого адронного коллайдера

dic.academic.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о