Допплеровский эффект – Эффект Доплера — Википедия

Содержание

Эффект Допплера – это… Что такое Эффект Допплера?

Источник волн перемещается налево. Тогда слева частота волн становится выше (больше), а справа — ниже (меньше).

Эффе́кт До́плера — изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника. Его легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится (а длина уменьшится), и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, тот услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты (и, соответственно, большей длины) звуковых волн.

Для волн, распространяющихся в какой-либо среде (например, звука) нужно принимать во внимание движение как источника так и приёмника волн относительно этой среды. Для электромагнитных волн (например, света), для распространения которых не нужна никакая среда, имеет значение только[1] относительное движение источника и приёмника.

Эффект был впервые описан Кристианом Доплером в 1842 году.

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью. В этом случае в лабораторной системе регистрируется черенковское излучение, имеющее непосредственное отношение к эффекту Доплера.

Сущность явления

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется — длина волны увеличивается.

где f0 — частота, с которой источник испускает волны, c — скорость распространения волн в среде, v — скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

(1)

Аналогично, если приёмник движется навстречу волнам, он регистрирует их гребни чаще и наоборот. Для неподвижного источника и движущегося приёмника.

(2)

u — скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив значение частоты из формулы (1) в формулу (2), получим формулу для общего случая.

(3)

Релятивистский эффект Доплера

В случае электромагнитных волн формулу для частоты выводят из уравнений специальной теории относительности.Так как для распространения электромагнитных волн не требуется материальная среда, можно рассматривать только относительную скорость источника и наблюдателя.

где с — скорость света, v — относительная скорость приёмника и источника (положительная в случае их удаления друг от друга).

Как наблюдать эффект Доплера

Не меняющий своего местоположения микрофон записывает звук, издаваемый сиренами двух движущихся влево полицейских машин. Снизу можно видеть частоту каждого из двух звуков, принимаемую микрофоном.

Поскольку явление характерно для любых колебательных процессов, то его очень легко наблюдать для звука. Частота звуковых колебаний воспринимается на слух как высота звука. Надо дождаться ситуации, когда быстро движущийся автомобиль будет проезжать мимо вас, издавая звук, например, сирену или просто звуковой сигнал. Вы услышите, что когда автомобиль будет приближаться к вам, высота звука будет выше, потом, когда автомобиль поравняется с вами, резко понизится и далее, при удалении, автомобиль будет сигналить на более низкой ноте.

Применение

Доплеровский радар

Радар, который измеряет изменение частоты сигнала, отражённого от объекта. По изменению частоты вычисляется радиальная составляющая скорости объекта (проекция скорости на прямую, проходящую через объект и радар). Доплеровские радары широко применяются в самых разных областях: для определения скорости летательных аппаратов, кораблей, автомобилей, гидрометеоров (например, облаков) и других объектов.

Доказательство вращения Земли вокруг Солнца с помощью эффекта Допплера.

Астрономия

С помощью ЭД по спектру небесных тел определяется их лучевая скорость. Изменение длин волн световых колебаний приводит к тому, что все спектральные линии в спектре источника смещаются в сторону длинных волн, если лучевая скорость его направлена от наблюдателя (красное смещение), и в сторону коротких, если направление лучевой скорости – к наблюдателю (фиолетовое смещение). Если скорость источника мала по сравнению со скоростью света (300000км/с), то лучевая скорость равна скорости света, умноженной на изменение длины волны любой спектральной линии и деленной на длину волны этой же линии в неподвижном источнике.

  • по увеличению ширины линий спектра определяют температуру звезд

Неинвазивное измерение потока жидкости

С помощью эффекта Доплера измеряют скорость потока жидкостей. Преимущество этого метода заключается в том, что не требуется помещать датчики непосредственно в поток. Скорость определяется по рассеянию ультразвука на неоднородностях среды (частицах взвеси, каплях жидкости, не смешивающихся с основным потоком, пузырьках газа).

Автосигнализации

Для обнаружения движущихся объектов вблизи и внутри автомобиля

Примечания

  1. В первом приближении. На самом деле скорость света через прозрачную среду зависит от скорости движения этой среды. См. опыт Физо.

См. также

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Эффект Допплера Википедия

Источник волн перемещается влево. Тогда слева частота волн становится выше (больше), а справа — ниже (меньше). Другими словами, если источник волн догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется — длина волны увеличивается.

Эффе́кт До́плера — изменение частоты и, соответственно, длины волны излучения, воспринимаемое наблюдателем (приёмником), вследствие движения источника излучения и/или движения наблюдателя (приёмника). Эффект назван в честь австрийского физика Кристиана Доплера.

История открытия

Исходя из собственных наблюдений за волнами на воде, Доплер предположил, что подобные явления происходят в воздухе с другими волнами. На основании волновой теории он в 1842 году вывел, что приближение источника света к наблюдателю увеличивает наблюдаемую частоту, отдаление уменьшает её (статья «О цветном свете двойных звезд и некоторых других звезд на небесах (англ.)русск.»). Доплер теоретически обосновал зависимость частоты звуковых и световых колебаний, воспринимаемых наблюдателем, от скорости и направления движения источника волн и наблюдателя относительно друг друга. Это явление впоследствии было названо его именем.

Доплер использовал этот принцип в астрономии и провёл параллель между акустическим и оптическим явлениями. Он полагал, что все звёзды излучают белый свет, однако цвет меняется из-за их движения к или от Земли (этот эффект для рассматриваемых Доплером двойных звёзд очень мал). Хотя изменения в цвете невозможно было наблюдать с оборудованием того времени, теория о звуке была проверена уже в 1845 году. Только открытие спектрального анализа дало возможность экспериментальной проверки эффекта в оптике.

Критика публикации Доплера

Главным основанием для критики являлось то, что статья не имела экспериментальных подтверждений и была исключительно теоретической. Хотя общее объяснение его теории и вспомогательные иллюстрации, которые он привел для звука, и были верны, объяснения и девять поддерживающих аргументов об изменении цвета звёзд верны не были. Ошибка произошла из-за заблуждения, что все звёзды излучают белый свет, и Доплер, видимо, не знал об открытиях инфракрасного (У. Гершель, 1800 год) и ультрафиолетового излучения (И. Риттер, 1801 год)

[1].

Хотя к 1850 году эффект Доплера был подтверждён экспериментально для звука, его теоретическая основа вызвала острые дебаты, которые спровоцировал Йозеф Пецваль[2]. Основные возражения Пецваля были основаны на преувеличении роли высшей математики. Он ответил на теорию Доплера своей работой «Об основных принципах волнового движения: закон сохранения длины волны», представленной на встрече Академии Наук 15 января 1852 года. В ней он утверждал, что теория не может представлять ценности, если она опубликована всего на 8 страницах и использует только простые уравнения. В своих возражениях Пецваль смешал два абсолютно разных случая движения наблюдателя и источника и движения среды. В последнем случае, согласно теории Доплера, частота не меняется

[3].

Экспериментальная проверка

В 1845 году голландский метеоролог из Утрехта, Христофор Хенрик Дидерик Бёйс-Баллот, подтвердил эффект Доплера для звука на железной дороге между Утрехтом и Амстердамом. Локомотив, достигший невероятной на то время скорости 40 миль/ч (64 км/ч), тянул открытый вагон с группой трубачей. Баллот слушал изменения тона во время движения вагона при приближении и удалении. В тот же год Доплер провел эксперимент, используя две группы трубачей, одна из которых двигалась от станции, а вторая оставалась неподвижной. Он подтвердил, что, когда оркестры играют одну ноту, они находятся в диссонансе. В 1846 году он опубликовал пересмотренную версию своей теории, в которой он рассматривал как движение источника, так и движение наблюдателя. Позднее в 1848 году французский физик Арман Физо обобщил работы Доплера, распространив его теорию и на свет (рассчитал смещение линий в спектрах небесных светил)

[4]. В 1860 году Эрнст Мах предсказал, что линии поглощения в спектрах звёзд, связанные с самой звездой, должны обнаруживать эффект Доплера, также в этих спектрах существуют линии поглощения земного происхождения, не обнаруживающие эффект Доплера. Первое соответствующее наблюдение удалось провести в 1868 году Уильяму Хаггинсу[5].

Прямое подтверждение формул Доплера для световых волн было получено Г. Фогелем в 1871 году путём сравнения положений линий Фраунгофера в спектрах, полученных от противоположных краёв солнечного экватора. Относительная скорость краёв, рассчитанная по значениям измеренных Г. Фогелем спектральных интервалов, оказалась близка к скорости, рассчитанной по смещению солнечных пятен[6].

Сущность явления

Эффект Доплера легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится, и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, он услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты звуковых волн.

Для волн (например, звука), распространяющихся в какой-либо среде, нужно принимать во внимание движение как источника, так и приёмника волн относительно этой среды. Для электромагнитных волн (например, света), для распространения которых не нужна никакая среда, в вакууме имеет значение только относительное движение источника и приёмника[7].

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью. В этом случае в лабораторной системе регистрируется черенковское излучение, имеющее непосредственное отношение к эффекту Доплера.

Математическое описание явления

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны λ) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется — длина волны увеличивается:

λ=2π(c−v)ω0,{\displaystyle \lambda ={\frac {2\pi \left({c-v}\right)}{\omega _{0}}},}

где ω0{\displaystyle \omega _{0}} — угловая частота, с которой источник испускает волны, c{\displaystyle c} — скорость распространения волн в среде, v{\displaystyle v} — скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

ω=2πcλ=ω01(1−vc).{\displaystyle \omega =2\pi {\frac {c}{\lambda }}=\omega _{0}{\frac {1}{\left(1-{\frac {v}{c}}\right)}}.}(1)

Аналогично, если приёмник движется навстречу волнам, он регистрирует их гребни чаще и наоборот. Для неподвижного источника и движущегося приёмника

ω=ω0(1+uc),{\displaystyle \omega =\omega _{0}\left(1+{\frac {u}{c}}\right),}(2)

где u{\displaystyle u} — скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив вместо ω0{\displaystyle \omega _{0}} в формуле (2) значение частоты ω{\displaystyle \omega } из формулы (1), получим формулу для общего случая:

ω=ω0(1+uc)(1−vc).{\displaystyle \omega =\omega _{0}{\frac {\left(1+{\frac {u}{c}}\right)}{\left(1-{\frac {v}{c}}\right)}}.}(3)

Релятивистский эффект Доплера

В случае распространения электромагнитных волн (или других безмассовых частиц) в вакууме, формулу для частоты выводят из уравнений специальной теории относительности. Так как для распространения электромагнитных волн не требуется материальная среда, можно рассматривать только относительную скорость источника и наблюдателя[8][9].

ω=ω0⋅1−v2c21−vc⋅cos⁡θ{\displaystyle \omega =\omega _{0}\cdot {\frac {\sqrt {1-{\frac {v^{2}}{c^{2}}}}}{1-{\frac {v}{c}}\cdot \cos \theta }}}

где c{\displaystyle c} — скорость света, v{\displaystyle v} — скорость источника относительно приёмника (наблюдателя), θ{\displaystyle \theta } — угол между направлением на источник и вектором скорости в системе отсчёта приёмника. Если источник радиально удаляется от наблюдателя, то θ=π{\displaystyle \theta =\pi }, если приближается, то θ=0{\displaystyle \theta =0}.

Релятивистский эффект Доплера обусловлен двумя причинами:

Последний фактор приводит к поперечному эффекту Доплера, когда угол между волновым вектором и скоростью источника равен θ=π2{\displaystyle \theta ={\frac {\pi }{2}}}. В этом случае изменение частоты является чисто релятивистским эффектом, не имеющим классического аналога.

Наблюдение эффекта Доплера

Поскольку явление характерно для любых волн и потоков частиц, то его очень легко наблюдать для звука. Частота звуковых колебаний воспринимается на слух как высота звука. Надо дождаться ситуации, когда быстро движущийся автомобиль или поезд будет проезжать мимо вас, издавая звук, например, сирену или просто звуковой сигнал. Вы услышите, что когда автомобиль будет приближаться к вам, высота звука будет выше, потом, когда автомобиль поравняется с вами, резко понизится и далее, при удалении, автомобиль будет сигналить на более низкой ноте.

Применение

Эффект Доплера является неотъемлемой частью современных теорий о начале Вселенной (Большом взрыве и красном смещении). Принцип получил многочисленные применения в астрономии для измерений скоростей движения звёзд вдоль луча зрения (приближения или удаления от наблюдателя) и их вращения вокруг оси, параметров вращения планет, колец Сатурна (что позволило уточнить их структуру), турбулентных потоков в солнечной фотосфере, траекторий спутников, контроль за термоядерными реакциями, а затем и в самых разнообразных областях физики и техники (при прогнозе погоды, в воздушной навигации и радарах, используемых ГИБДД). Широкое применение эффект Доплера получил в современной медицине: на нём основано множество приборов ультразвуковой диагностики. Основные области применения:

  • Доплеровский радар — радар, измеряющий изменение частоты сигнала, отражённого от объекта. По изменению частоты вычисляется радиальная составляющая скорости объекта (проекция скорости на прямую, проходящую через объект и радар). Доплеровские радары могут применяться в самых разных областях: для определения скорости летательных аппаратов, кораблей, автомобилей, гидрометеоров (например, облаков), морских и речных течений, а также других объектов.
Доказательство вращения Земли вокруг Солнца с помощью эффекта Доплера.
  • Астрономия:
    • По смещению линий спектра определяют радиальную скорость движения звёзд, галактик и других небесных тел. В астрономии принято называть радиальную скорость небесных светил лучевой скоростью. С помощью эффекта Доплера по спектру небесных тел определяется их лучевая скорость. Изменение длин волн световых колебаний приводит к тому, что все спектральные линии в спектре источника смещаются в сторону длинных волн, если лучевая скорость его направлена от наблюдателя (красное смещение), и в сторону коротких, если направление лучевой скорости — к наблюдателю (фиолетовое смещение). Если скорость источника мала по сравнению со скоростью света (~300 000 км/с), то в нерелятивистском приближении лучевая скорость равна скорости света, умноженной на изменение длины волны любой спектральной линии и делённой на длину волны этой же линии в неподвижном источнике.
    • По увеличению ширины линий спектра можно измерить температуру фотосферы звёзд. Уширение линий при повышении температуры обусловлено увеличением скорости хаотического теплового движения излучающих или поглощающих атомов в газе.
  • Бесконтактное измерение скорости потока жидкости или газа. С помощью эффекта Доплера измеряют скорость потока жидкостей и газов. Преимущество этого метода заключается в том, что не требуется помещать датчики непосредственно в поток. Скорость определяется по рассеянию волн ультразвука или оптического излучения (Оптические расходомеры) на неоднородностях среды (частицах взвеси, каплях жидкости, не смешивающихся с основным потоком, пузырьках газа в жидкости).
  • Охранные сигнализации. Для обнаружения движущихся объектов.
  • Определение координат. В спутниковой системе Коспас-Сарсат координаты аварийного передатчика на земле определяются спутником по принятому от него радиосигналу, используя эффект Доплера.
  • Системы глобального позиционирования GPS и ГЛОНАСС.
Не меняющий своего местоположения микрофон записывает звук, издаваемый сиренами двух движущихся влево полицейских машин. Снизу можно видеть частоту каждого из двух звуков, принимаемую микрофоном.

Искусство и культура

  • В научно-фантастической литературе часто упоминается при совершении гиперпространственных полётов космических кораблей (звездолётов).
  • В 6-й серии 1-го сезона американского комедийного телесериала «The Big Bang Theory» доктор Шелдон Купер идёт на Хэллоуин, для которого надел костюм, иллюстрирующий эффект Доплера. Однако все присутствующие (кроме друзей) думают, что он — зебра.
  • Одно из дополнений компьютерной игры Half-Life называется Blue Shift (синее смещение), что двусмысленно (имеет и научное значение, описанное в данной статье, и также может быть переведено как «синяя смена», что является отсылкой к синей униформе охранников, одним из которых является протагонист).
  • У исполнителя The Algorithm (англ.)русск. есть альбом The Doppler Effect.
  • В начале клипа на песню “DNA” корейской музыкальной группы Bangtan Boys всплывает формула эффекта Доплера, в то время как сама сцена представляет собой его упрощенную иллюстрацию. Это не что иное, как шутка над фанатами, которые постоянно строят теории относительно музыкальных видео группы.

См. также

Примечания

  1. ↑ A.Eden, 1992, с. 31.
  2. Schuster P. Moving the Stars. Christian Doppler, His Life, His Works and Principle and the World After. — Living Edition Publishers, 2005. — 232 с.
  3. ↑ A.Eden, 1992, с. 57.
  4. Roguin A (2002). “Christian Johann Doppler: the man behind the effect”. The British Journal of Radiology. 75 (895): 615—619. DOI:10.1259/bjr.75.895.750615.
  5. Лауэ М. История физики. — Москва: ГИТТЛ, 1956. — 229 с.
  6. Кологривов В. Н. Эффект Доплера в классической физике. — М.: МФТИ, 2012. — С. 25—26. — 32 с.
  7. ↑ При распространении света в среде, его скорость зависит от скорости движения этой среды. См. опыт Физо.
  8. Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — С. 158-159. — («Теоретическая физика», том II). — ISBN 5-02-014420-7.
  9. ↑ Эффект Доплера в теории относительности

Ссылки

wikiredia.ru

Эффект Доплера | ЭТО ФИЗИКА

Если источник звука и наблюдатель движутся друг относительно друга, частота звука, воспринимаемого наблюдателем, не совпадает с частотой источника звука. Это явление, открытое в 1842 г., носит название эффекта Доплера.

Звуковые волны распространяются в воздухе (или другой однородной среде) с постоянной скоростью, которая зависит только от свойств среды. Однако, длина волны и частота звука могут существенно изменяться при движении источника звука и наблюдателя.

Рассмотрим простой случай, когда скорость источника υИ и скорость наблюдателя υН относительно среды направлены вдоль прямой, которая их соединяет. За положительное направление для υИ и υН можно принять направление от наблюдателя к источнику. Скорость звука υ всегда считается положительной.

Рисунок 2.8.1.

Эффект Доплера. Случай движущегося наблюдателя. Последовательные положения наблюдателя показаны через период TН звука, воспринимаемого наблюдателем

Рис. 2.8.1 иллюстрирует эффект Доплера в случае движущегося наблюдателя и неподвижного источника. Период звуковых колебаний, воспринимаемых наблюдателем, обозначен через TН. Из рис. 2.8.1 следует:

υНTН + υTН = λ.

Принимая во внимание

  получим:

Если наблюдатель движется в направлении источника (υН > 0), то fН > fИ, если наблюдатель движется от источника (υН < 0), то fН < fИ.

Рисунок 2.8.2.

Эффект Доплера. Случай движущегося источника. Последовательные положения источника показаны через период T звука, излучаемого источником

На рис. 2.8.2 наблюдатель неподвижен, а источник звука движется с некоторой скоростью υИ. В этом случае согласно рис. 2.8.2 справедливо соотношение:

υt + υИT = υ(t – T) + λ  или  (υИ + υ)T = λ,

где   и 

Отсюда следует:

Если источник удаляется от наблюдателя, то υИ > 0 и, следовательно, fН < fИ. Если источник приближается к наблюдателю, то υИ < 0 и fН > fИ.

В общем случае, когда и источник, и наблюдатель движутся со скоростями υИ и υН, формула для эффекта Доплера приобретает вид:

Это соотношение выражает связь между fН и fИ. Скорости υИ и υН всегда измеряются относительно воздуха или другой среды, в которой распространяются звуковые волны. Это так называемый нерелятивистский Доплер-эффект.

В случае электромагнитных волн в пустоте (свет, радиоволны) также наблюдается эффект Доплера. Так как для распространения электромагнитных волн не требуется материальная среда, можно рассматривать только относительную скорость υ источника и наблюдателя.

Выражение для релятивистского Доплер-эффекта имеет вид

где c – скорость света. Когда υ > 0, источник удаляется от наблюдателя и fН < fИ, в случае υ < 0 источник приближается к наблюдателю, и fН > fИ.

Доплер-эффект широко используется в технике для измерения скоростей движущихся объектов («доплеровская локация» в акустике, оптике и радио).

www.its-physics.org

Эффект Допплера Википедия

Источник волн перемещается влево. Тогда слева частота волн становится выше (больше), а справа — ниже (меньше). Другими словами, если источник волн догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется — длина волны увеличивается.

Эффе́кт До́плера — изменение частоты и, соответственно, длины волны излучения, воспринимаемое наблюдателем (приёмником), вследствие движения источника излучения и/или движения наблюдателя (приёмника). Эффект назван в честь австрийского физика Кристиана Доплера.

История открытия[ | ]

Исходя из собственных наблюдений за волнами на воде, Доплер предположил, что подобные явления происходят в воздухе с другими волнами. На основании волновой теории он в 1842 году вывел, что приближение источника света к наблюдателю увеличивает наблюдаемую частоту, отдаление уменьшает её (статья «О цветном свете двойных звезд и некоторых других звезд на небесах (англ.)русск.»). Доплер теоретически обосновал зависимость частоты звуковых и световых колебаний, воспринимаемых наблюдателем, от скорости и направления движения источника волн и наблюдателя относительно друг друга. Это явление впоследствии было названо его именем.

Доплер использовал этот принцип в астрономии и провёл параллель между акустическим и оптическим явлениями. Он полагал, что все звёзды излучают белый свет, однако цвет меняется из-за их движения к или от Земли (этот эффект для рассматриваемых Доплером двойных звёзд очень мал). Хотя изменения в цвете невозможно было наблюдать с оборудованием того времени, теория о звуке была проверена уже в 1845 году. Только открытие спектрального анализа дало возможность экспериментальной проверки эффекта в оптике.

Критика публикации Доплера[ | ]

Главным основанием для критики являлось то, что статья не имела экспериментальных подтверждений и была исключительно теоретической. Хотя общее объяснение его теории и вспомогательные иллюстрации, которые он привел для звука, и были верны, объяснения и девять поддерживающих аргументов об изменении цвета звёзд верны не были. Ошибка произошла из-за заблуждения, что все звёзды излучают белый свет, и Доплер, видимо, не знал об открытиях инфракрасного (У. Гершель, 1800 год) и ультрафиолетового излучения (И. Риттер, 1801 год)[1].

Хотя к 1850 году эффект Доплера был подтверждён экспериментально для звука, его теоретическая основа вызвала острые дебаты, которые спровоцировал Йозеф Пецваль[2]. Основные возражения Пецваля были основаны на преувеличении роли высшей математики. Он ответил на теорию Доплера своей работой «Об основных принципах волнового движения: закон сохранения длины волны», представленной на встрече Академии Наук 15 января 1852 года. В ней он утверждал, что теория не может представлять ценности, если она опубликована всего на 8 страницах и использует только простые уравнения. В своих возражениях Пецваль смешал два абсолютно разных случая движения наблюдателя и источника и движения среды. В последнем случае, согласно теории Доплера, частота не меняется[3].

ru-wiki.ru

Что такое эффект Доплера?

Эффект Доплера — это хорошо знакомое изменение звука, происходящее при перемещении источника звука относительно слушателя. Неподвижному слушателю кажется, что звук становится более высоким по мере приближения его источника и более низким по мере его удаления.

Это так называемое доплеровское смещение вызывается звуковыми волновыми фронтами, которые по мере приближения источника к слушателю достигают его с постепенно увеличивающейся частотой. Возрастание частоты сопровождается уменьшением длины волны. Ученые установили, что чем больше частота звука, тем выше его тон. Когда объект удаляется от слушателя, направленность изменений меняется на противоположную. Частота уменьшается, длина волны увеличивается, а кажущийся тон звука, воспринимаемого слушателем, становится все более низким.

С эффектом Доплера можно легко познакомиться, если прислушаться к свистку проходящего поезда, сиренам медицинских и полицейских машин или гулу реактивных двигателей самолетов.

Прибывающий поезд свистит более пронзительно

Удаляющийся поезд

Когда поезд удаляется, волновым фронтам его свистка требуется больше времени для достижения слушателя, поэтому тот слышит снижение тона.

Приближающийся поезд

Когда поезд приближается, звуковые волны достигают слушателя быстрее и кажутся более высокими в тоне.

Иллюзия, вызванная движением

Для слушателя на поезде тон свистка неизменен. Однако для слушателя, находящегося сзади или впереди поезда (рисунок справа), тон изменяется из-за неодинаковости расстояния между волновыми фронтами.

Альтернативный взгляд на проблему

Другой способ рассмотрения эффекта Доплера заключается в представлении слушателя приближающимся к источнику звука. Чем ближе пешеход подходит к колоколу, тем быстрее волновые фронты достигают его ушей и тем выше для него тон колокольного звона.

Два вида сверху

Звуковые волны от неподвижного источника распространяются в виде концентрических окружностей (рисунок вверху). Волны от движущегося источника (рисунок вверху справа), концентрируются впереди источника. Длины волн уменьшаются и тон становится более высоким.

information-technology.ru

Эффект Доплера для звуковых волн

Эффект Доплера для звуковых волн

 Вы могли заметить, что высота звука сирены пожарной машины, движущейся с большой скоростью, резко падает после того, как эта машина пронесется мимо вас. Возможно, вы замечали также изменение высоты сигнала автомобиля, проезжающего на большой скорости мимо вас.
 Высота звука двигателя гоночного автомобиля тоже изменяется, когда он проезжает мимо наблюдателя. Если источник звука приближается к наблюдателю, высота звука возрастает по сравнению с тем, когда источник звука покоился. Если же источник звука удаляется от наблюдателя, то высота звука понижается. Это явление называется эффектом Доплера и имеет место для всех типов волн. Рассмотрим теперь причины его возникновения и вычислим изменение частоты звуковых волн, обусловленное этим эффектом.


рис. 1
 Рассмотрим для конкретности пожарный автомобиль, сирена которого, когда автомобиль стоит на месте, испускает звук определенной частоты во всех направлениях, как показано на рис. 1. Пусть теперь пожарный автомобиль начал двигаться, а сирена продолжает испускать звуковые волны на той же частоте. Однако во время движения звуковые волны, испускаемые сиреной вперед, будут располагаться ближе друг к другу, чем в случае, когда автомобиль не двигался, что и показано на рис. 2.

рис. 2
 Это происходит потому, что в процессе своего движения пожарный автомобиль «догоняет» испущенные ранее волны. Таким образом, наблюдатель у дороги заметит большее число волновых гребней, проходящих мимо него в единицу времени, и, следовательно, для него частота звука будет выше. С другой стороны, волны, распространяющиеся позади автомобиля, будут дальше отстоять друг от друга, поскольку автомобиль как бы «отрывается» от них. Следовательно, за единицу времени мимо наблюдателя, находящегося позади автомобиля, пройдет меньшее количество волновых гребней, и высота звука будет ниже.
 Чтобы вычислить изменение частоты, воспользуемся рис. 3 и 4. Будем считать, что в нашей системе отсчета воздух (или другая среда) покоится. На рис. 3 источник звука (например, сирена) находится в покое.

 Показаны два последовательных гребня волны, причем один из них только что испущен источником звука. Расстояние между этими гребнями равно длине волны λ. Если частота колебаний источника звука равна f, то время, прошедшее между испусканиями волновых гребней, равно Т = 1/f.
 На рис. 4 источник звука движется со скоростью vист. За время Т (оно только что было определено) первый гребень волны пройдет расстояние d = vT, где v − скорость звуковой волны в воздухе (которая, конечно, будет одна и та же независимо от того, движется источник или нет). За это же время источник звука переместится на расстояние dист = vистТ. Тогда расстояние между последовательными гребнями волны, равное новой длине волны λ/, запишется в виде
λ/ = d − dист = (v − vист)T = (v − vист)/f,
поскольку Т= 1/f.
 Частота f/ волны дается выражением
f/ = v/λ/ = vf/(v − vист),
или

Источник звука приближается к покоящемуся наблюдателю.
 Поскольку знаменатель дроби меньше единицы, мы имеем f/ > f. Например, если источник создает звук на частоте 400 Гц, когда он находится в покое, то, когда источник начинает двигаться в направлении к наблюдателю, стоящему на месте, со скоростью 30 м/с, последний услышит звук на частоте (при температуре 0 °С) 440 Гц.
 Новая длина волны для источника, удаляющегося от наблюдателя со скоростью vист, будет равна
λ/ = d + dист.
При этом частота f/ дается выражением

Источник звука удаляется от покоящегося наблюдателя.
 Эффект Доплера возникает также в том случае, когда источник звука покоится (относительно среды, в которой распространяются звуковые волны), а наблюдатель движется. Если наблюдатель приближается к источнику звука, то он слышит звук большей высоты, нежели испускаемый источником. Если же наблюдатель удаляется от источника, то звук кажется ему ниже. Количественно изменение частоты здесь мало отличается от случая, когда движется источник, а наблюдатель покоится. В этом случае расстояние между гребнями волны (длина волны λ) не изменяется, а изменяется скорость движения гребней относительно наблюдателя. Если наблюдатель приближается к источнику звука, то скорость волн относительно наблюдателя будет равна v/ = v + vнабл, где v − скорость распространения звука в воздухе (мы предполагаем, что воздух покоится), а vнабл − скорость наблюдателя. Следовательно, новая частота будет равна
f/ = v//λ = (v + vнабл)/λ,
или, поскольку λ = v/f,

Наблюдатель приближается к покоящемуся источнику звука.
 В случае же, когда наблюдатель удаляется от источника звука, относительная скорость будет равна v/ = v − vнабл, и мы имеем

Наблюдатель удаляется от покоящегося источника звука.

 Если звуковая волна отражается от движущегося препятствия, то частота отраженной волны из-за эффекта Доплера будет отличаться от частоты падающей волны.

 Рассмотрим это на следующем примере.

Пример. Звуковая волна с частотой 5000 Гц испускается в направлении к телу, которое приближается к источнику звука со скоростью 3,30 м/с. Чему равна частота отраженной волны?

Решение.
 В этом случае эффект Доплеpa проявляется два раза.
 Во-первых, тело, к которому направлена звуковая волна, ведет себя как движущийся наблюдатель и «peгистрирует» звуковую волну на частоте


 Во-вторых, тело затем действует как вторичный источник звука (отраженного), который движется, так что частота отраженной звуковой волны будет равна

 Таким образом, доплеровский сдвиг частоты равен 100 Гц.

 Если падающую и отраженную звуковые волны наложить одна на другую, то возникнет суперпозиция, а это приведет к биениям. Частота биений равна разности частот двух волн, и в рассмотренном выше примере она равнялась бы 100 Гц. Такое проявление эффекта Доплера широко используется в различных медицинских приборах, использующих, как правило, ультразвуковые волны в мегагерцевом диапазоне частот. Например, отраженные от красных кровяных телец ультразвуковые волны можно использовать для определения скорости кровотока. Аналогичным образом этот метод можно применять для обнаружения движения грудной клетки зародыша, а также для дистанционного контроля за сердцебиениями.
 Следует заметить, что эффект Доплера лежит также в основе метода обнаружения с помощью радара автомобилей, которые превышают предписываемую скорость движения, но в этом случае используются электромагнитные (радио) волны, а не звуковые.
 Точность соотношений (1 − 2) и (3 − 4) снижается, если vист или vнабл приближаются к скорости звука. Это связано с тем, что смещение частиц среды уже не будет пропорционально возвращающей силе, т.е. возникнут отклонения от закона Гука, так что большинство наших теоретических рассуждений потеряет силу.

Решите следующие задачи.
Задача 1. Выведите общую формулу для изменения частоты звука f/ за счет эффекта Доплера в случае, когда как источник, так и наблюдатель движутся. [f/ = f(v ± vo)/(v &mnplus; vs)]

Задача 2. В нормальных условиях скорость потока крови в аорте приблизительно равна 0,28 м/с. Вдоль потока направляются ультразвуковые волны с частотой 4,20 МГц. Эти волны отражаются от красных кровяных телец. Какова будет частота наблюдаемых при этом биений? Считайте, что скорость этих волн равна 1,5 × 103 м/с, т.е. близка к скорости звука в воде. [1,6 кГц]

Задача 3. Эффект Доплера для ультразвуковых волн на частоте 1,8 МГц используется для контроля частоты сердцебиений зародыша. Наблюдаемая частота биений (максимальная) равна 600 Гц. Считая, что скорость распространения звука в ткани равна 1,5 × 103 м/с, вычислите максимальную скорость поверхности бьющегося сердца. [0,25 м/с]

Задача 4. Звук заводского гудка имеет частоту 650 Гц. Если дует северный ветер со скоростью 12,0 м/с, то звук какой частоты будет слышать покоящийся наблюдатель, находящийся а) к северу, б) к югу, в) к востоку и г) к западу от гудка? Звук какой частоты будет слышать велосипедист, приближающийся со скоростью 15 м/с к гудку д) с севера или е) с запада? Температура воздуха равна 20 °С. [606 Гц; 697 Гц; 648 Гц; 648 Гц; 761 Гц; 708 Гц]

Задача 5. Свисток, совершающий колебания на частоте 500 Гц, движется по окружности радиусом 1 м, делая 3 оборота в секунду. Определите наибольшую и наименьшую частоту, воспринимаемую неподвижным наблюдателем, находящимся на расстоянии 5 м от центра окружности. Скорость звука в воздухе принять равной 340 м/с. [529 Гц; 474 Гц]


 Читайте еще статьи из практикума абитуриента.
 Эффект Доплера в СТО.

fizportal.ru

Доплеровское смещение – это… Что такое Доплеровское смещение?

Источник волн перемещается налево. Тогда слева частота волн становится выше (больше), а справа — ниже (меньше).

Эффе́кт До́плера — изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника. Его легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится (а длина уменьшится), и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, тот услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты (и, соответственно, большей длины) звуковых волн.

Для волн, распространяющихся в какой-либо среде (например, звука) нужно принимать во внимание движение как источника так и приёмника волн относительно этой среды. Для электромагнитных волн (например, света), для распространения которых не нужна никакая среда, имеет значение только[1] относительное движение источника и приёмника.

Эффект был впервые описан Кристианом Доплером в 1842 году.

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью. В этом случае в лабораторной системе регистрируется черенковское излучение, имеющее непосредственное отношение к эффекту Доплера.

Сущность явления

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется — длина волны увеличивается.

где f0 — частота, с которой источник испускает волны, c — скорость распространения волн в среде, v — скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

(1)

Аналогично, если приёмник движется навстречу волнам, он регистрирует их гребни чаще и наоборот. Для неподвижного источника и движущегося приёмника.

(2)

u — скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив значение частоты из формулы (1) в формулу (2), получим формулу для общего случая.

(3)

Релятивистский эффект Доплера

В случае электромагнитных волн формулу для частоты выводят из уравнений специальной теории относительности.Так как для распространения электромагнитных волн не требуется материальная среда, можно рассматривать только относительную скорость источника и наблюдателя.

где с — скорость света, v — относительная скорость приёмника и источника (положительная в случае их удаления друг от друга).

Как наблюдать эффект Доплера

Не меняющий своего местоположения микрофон записывает звук, издаваемый сиренами двух движущихся влево полицейских машин. Снизу можно видеть частоту каждого из двух звуков, принимаемую микрофоном.

Поскольку явление характерно для любых колебательных процессов, то его очень легко наблюдать для звука. Частота звуковых колебаний воспринимается на слух как высота звука. Надо дождаться ситуации, когда быстро движущийся автомобиль будет проезжать мимо вас, издавая звук, например, сирену или просто звуковой сигнал. Вы услышите, что когда автомобиль будет приближаться к вам, высота звука будет выше, потом, когда автомобиль поравняется с вами, резко понизится и далее, при удалении, автомобиль будет сигналить на более низкой ноте.

Применение

Доплеровский радар

Радар, который измеряет изменение частоты сигнала, отражённого от объекта. По изменению частоты вычисляется радиальная составляющая скорости объекта (проекция скорости на прямую, проходящую через объект и радар). Доплеровские радары широко применяются в самых разных областях: для определения скорости летательных аппаратов, кораблей, автомобилей, гидрометеоров (например, облаков) и других объектов.

Доказательство вращения Земли вокруг Солнца с помощью эффекта Допплера.

Астрономия

С помощью ЭД по спектру небесных тел определяется их лучевая скорость. Изменение длин волн световых колебаний приводит к тому, что все спектральные линии в спектре источника смещаются в сторону длинных волн, если лучевая скорость его направлена от наблюдателя (красное смещение), и в сторону коротких, если направление лучевой скорости – к наблюдателю (фиолетовое смещение). Если скорость источника мала по сравнению со скоростью света (300000км/с), то лучевая скорость равна скорости света, умноженной на изменение длины волны любой спектральной линии и деленной на длину волны этой же линии в неподвижном источнике.

  • по увеличению ширины линий спектра определяют температуру звезд

Неинвазивное измерение потока жидкости

С помощью эффекта Доплера измеряют скорость потока жидкостей. Преимущество этого метода заключается в том, что не требуется помещать датчики непосредственно в поток. Скорость определяется по рассеянию ультразвука на неоднородностях среды (частицах взвеси, каплях жидкости, не смешивающихся с основным потоком, пузырьках газа).

Автосигнализации

Для обнаружения движущихся объектов вблизи и внутри автомобиля

Примечания

  1. В первом приближении. На самом деле скорость света через прозрачную среду зависит от скорости движения этой среды. См. опыт Физо.

См. также

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Оставить комментарий