Физика магнетизм – Магнетизм | Русская Физика

Содержание

Магнетизм: история притягательности | Журнал Популярная Механика

Магнетизм изучается с давних времен, а за последние два столетия стал основой современной цивилизации.

Человечество собирает знания о магнитных явлениях не меньше трех с половиной тысяч лет (первые наблюдения электрических сил имели место тысячелетием позже). Четыреста лет назад, на заре становления физики, магнитные свойства веществ были отделены от электрических, после чего долгое время те и другие изучались самостоятельно. Так была создана экспериментальная и теоретическая база, ставшая к середине XIX века основой единой теории электромагнитных явлений Вероятнее всего, необычные свойства природного минерала магнетита (магнитного железняка, Fe3O4) были известны в Месопотамии еще в бронзовом веке. А после возникновения железной металлургии нельзя было не заметить, что магнетит притягивает железные изделия. О причинах такого притяжения думал уже отец греческой философии Фалес из Милета (примерно 640−546 годы до н.э.), который объяснял его особой одушевленностью этого минерала (Фалес также знал, что натертый о шерсть янтарь притягивает сухие листья и мелкие щепочки, а потому наделял и его духовной силой). Позднее греческие мыслители рассуждали о невидимых парах, окутывающих магнетит и железо и влекущих их друг к другу. Неудивительно, что само слово «магнит» тоже имеет греческие корни. Скорее всего, оно восходит к названию Магнесии-у-Сипила, города в Малой Азии, вблизи которого залегал магнетит. Греческий поэт Никандр упоминал о пастухе Магнисе, оказавшемся рядом со скалой, которая тянула к себе железный наконечник его посоха, но это, по всей вероятности, просто красивая легенда.

Природными магнитами интересовались и в Древнем Китае. Способность магнетита притягивать железо упоминается в трактате «Весенние и осенние записи мастера Лю», датируемом 240 годом до н.э. Столетие спустя китайцы заметили, что магнетит не действует ни на медь, ни на керамику. В VII—VIII вв./bm9icg===>еках они выяснили, что свободно подвешенная намагниченная железная игла поворачивается к Полярной звезде. В результате во второй половине XI века в Китае появились настоящие морские компасы, европейские мореплаватели освоили их сотней лет позже. Примерно тогда же китайцы обнаружили, что намагниченная игла смотрит восточнее направления на север и открыли тем самым магнитное склонение, намного опередив в этом вопросе европейских мореплавателей, которые пришли к этому выводу только в XV столетии.

Маленькие магнитики

В ферромагнетике собственные магнитные моменты атомов выстраиваются параллельно (энергия такой ориентации минимальна). В результате образуются намагниченные области, домены — микроскопические (10−4-10−6 м) постоянные магнитики, разделённые доменными стенками. В отсутствие внешнего магнитного поля магнитные моменты доменов ориентированы в ферромагнетике хаотически, во внешнем поле границы начинают смещаться, так что домены с моментами параллельно полю вытесняют все остальные — ферромагнетик намагничивается.

Зарождение науки об магнетизме

Первое в Европе описание свойств природных магнитов сделал француз Пьер де Марикур. В 1269 году он служил в армии короля Сицилии Карла Анжуйского, осадившей итальянский город Лусеру. Оттуда он и отправил приятелю в Пикардию документ, который вошел в историю науки как «Письмо о магните» (Epistola de Magnete), где рассказал о своих опытах с магнитным железняком. Марикур заметил, что в каждом куске магнетита имеются две области, особенно сильно притягивающие железо. Он усмотрел параллель между этими зонами и полюсами небесной сферы и позаимствовал их названия для областей максимума магнитной силы — поэтому мы теперь и говорим о северном и южном магнитных полюсах. Если разбить кусок магнетита надвое, пишет Марикур, в каждом осколке появляются собственные полюса. Марикур не только подтвердил, что между кусками магнетита возникает как притяжение, так и отталкивание (это уже было известно), но впервые связал этот эффект с взаимодействием между разноименными (северным и южным) либо одноименными полюсами.

Многие историки науки считают Марикура бесспорным пионером европейской экспериментальной науки. Во всяком случае, его заметки о магнетизме ходили в десятках списков, а после появления книгопечатания издавались отдельной брошюрой. Их с уважением цитировали многие натуралисты вплоть до XVII столетия. Этот труд был хорошо известен и английскому естествоиспытателю и врачу (лейб-медику королевы Елизаветы и ее преемника Якова I) Уильяму Гильберту, который в 1600 году опубликовал (как положено, на латыни) замечательный труд «О магните, магнитных телах и большом магните — Земле». В этой книге Гильберт не только привел практически все известные сведения о свойствах природных магнитов и намагниченного железа, но и описал собственные опыты с шаром из магнетита, с помощью которых он воспроизвел основные черты земного магнетизма. Например, он обнаружил, что на обоих магнитных полюсах такой «маленькой Земли» (по латыни terrella) компасная стрелка устанавливается перпендикулярно ее поверхности, на экваторе — параллельно, а на средних широтах — в промежуточном положении. Так Гильберт смоделировал магнитное наклонение, о существовании которого в Европе знали более полувека (в 1544 году это явление впервые описал нюрнбергский механик Георг Хартман).

Революция в навигации. Компас произвёл настоящую революцию в морской навигации, сделав глобальные путешествия не единичными случаями, а привычной регулярной рутиной.

Гильберт воспроизвел на своей модели и геомагнитное склонение, которое приписал не идеально гладкой поверхности шара (и потому в планетарном масштабе объяснял этот эффект притяжением континентов). Он обнаружил, что сильно нагретое железо теряет магнитные свойства, но при охлаждении они восстанавливаются. И наконец, Гильберт первым провел четкое различие между притяжением магнита и притяжением натертого янтаря, которое он назвал электрической силой (от латинского названия янтаря electrum). В общем, это был чрезвычайно новаторский труд, по достоинству оцененный и современниками, и потомками. Утверждение Гильберта, что Землю следует считать «большим магнитом», стало вторым по счету фундаментальным научным выводом о физических свойствах нашей планеты (первый — открытие ее шарообразности, сделанное еще в Античности).

Два века перерыва

После Гильберта наука о магнетизме вплоть до начала XIX века продвинулась очень мало. Сделанное за это время можно буквально перечесть по пальцам. В 1640 году ученик Галилея Бенедетто Кастелли объяснил притяжение магнетита наличием в его составе множества мельчайших магнитных частиц — первая и очень несовершенная догадка, что природу магнетизма следует искать на атомном уровне. Голландец Себальд Бругманс в 1778 году заметил, что висмут и сурьма отталкиваются от полюсов магнитной стрелки — это был первый пример физического явления, которое 67 годами позже Фарадей назвал диамагнетизмом. В 1785 году Шарль-Огюстен Кулон посредством прецизионных измерений на крутильных весах показал, что сила взаимодействия магнитных полюсов обратно пропорциональна квадрату расстояния между ними — точно так же, как и сила взаимодействия между электрическими зарядами (в 1750 году к аналогичному выводу пришел англичанин Джон Мичелл, но кулоновское заключение много надежней).

А вот изучение электричества в те годы двигалось семимильными шагами. Объяснить это нетрудно. Единственными первичными источниками магнитной силы оставались природные магниты — других наука не знала. Их сила стабильна, ее нельзя ни изменить (разве что уничтожить нагревом), ни тем более генерировать по собственному желанию. Понятно, что это обстоятельство сильно ограничивало возможности экспериментаторов.

Электричество было в гораздо более выгодном положении — ведь его можно было получать и накапливать. Первый генератор статических зарядов построил в 1663 году бургомистр Магдебурга Отто фон Герике (знаменитые магдебургские полушария — тоже его детище). Век спустя такие генераторы стали столь широко распространены, что их демонстрировали даже на великосветских приемах. В 1744 году немец Эвальд Георг фон Клейст и немногим позже голландец Питер ван Мушенбрук изобрели лейденскую банку — первый электрический конденсатор; тогда же появились и первые электрометры. В результате к концу XVIII века наука знала об электричестве куда больше, чем в его начале. А вот о магнетизме этого сказать было нельзя.

А потом все изменилось. В 1800 году Алессандро Вольта изобрел первый химический источник электрического тока — гальваническую батарею, также известную как вольтов столб. После этого открытие связи между электричеством и магнетизмом стало вопросом времени. Оно могло состояться уже на следующий год, когда французский химик Николя Готеро заметил, что два параллельных провода с током притягиваются друг к другу. Однако ни он, ни великий Лаплас, ни замечательный физик-экспериментатор Жан-Батист Био, которые позже наблюдали это явление, не придали ему никакого значения. Поэтому приоритет справедливо достался ученому, давно предположившему существование такой связи и много лет посвятившему ее поискам.

От Копенгагена до Парижа

Все читали сказки и истории Ганса Христиана Андерсена, но мало кто знает, что когда будущий автор «Голого короля» и «Дюймовочки» четырнадцатилетним подростком добрался до Копенгагена, он обрел друга и покровителя в лице своего двойного тезки, ординарного профессора физики и химии Копенгагенского университета Ганса Христиана Эрстеда. И оба прославили свою страну на весь мир.


Многообразие магнитных полей Ампер изучил взаимодействие между параллельными проводниками с током. Его идеи развил Фарадей, который предложил концепцию магнитных силовых линий.

Эрстед с 1813 года вполне сознательно пытался установить связь между электричеством и магнетизмом (он был приверженцем великого философа Иммануила Канта, полагавшего, что все природные силы обладают внутренним единством). В качестве индикаторов Эрстед использовал компасы, но долгое время безрезультатно. Эрстед ожидал, что магнитная сила тока параллельна ему самому, и для получения максимального крутящего момента располагал электрический провод перпендикулярно стрелке компаса. Естественно, что стрелка не реагировала на включение тока. И только весной 1820 года во время лекции Эрстед протянул провод параллельно стрелке (либо чтобы посмотреть, что из этого получится, либо у него появилась новая гипотеза — об этом историки физики спорят до сих пор). И вот тут-то стрелка и качнулась — не слишком сильно (у Эрстеда была маломощная батарея), но все-таки заметно.

Правда, великое открытие тогда еще не состоялось. Эрстед почему-то прервал эксперименты на три месяца и вернулся к ним лишь в июле. И вот тут-то он понял, что «магнитное воздействие электрического тока направлено по окружностям, охватывающим этот ток». Это был парадоксальный вывод, ведь ранее вращающиеся силы не появлялись ни в механике, ни в какой-либо другой ветви физики. Эрстед изложил свои выводы в статье и 21 июля отправил ее в несколько научных журналов. Потом он больше электромагнетизмом не занимался, и эстафета перешла к другим ученым. Первыми ее приняли парижане. 4 сентября известный физик и математик Доминик Араго рассказал об открытии Эрстеда на заседании Академии наук. Его коллега Андре-Мари Ампер решил заняться магнитным действием токов и буквально на следующий день приступил к экспериментам. Первым делом он повторил и подтвердил опыты Эрстеда, а в начале октября обнаружил, что параллельные проводники притягиваются, если токи текут через них в одном и том же направлении, и отталкиваются — если в противоположных. Ампер изучил взаимодействие и между непараллельными проводниками и представил его формулой (закон Ампера). Он показал также, что свернутые в спираль проводники с током поворачиваются в магнитном поле, подобно стрелке компаса (и между делом изобрел соленоид — магнитную катушку). Наконец, он выдвинул смелую гипотезу: внутри намагниченных материалов текут незатухающие микроскопические параллельные круговые токи, которые и служат причиной их магнитного действия. Тогда же Био и Феликс Савар совместными усилиями выявили математическую зависимость, позволяющую определять интенсивность магнитного поля, создаваемого постоянным током (закон Био-Савара).

Чтобы подчеркнуть новизну изученных эффектов, Ампер предложил термин «электродинамические явления» и постоянно пользовался им в своих публикациях. Но это еще не было электродинамикой в современном смысле. Эрстед, Ампер и их коллеги работали с постоянными токами, создававшими статичные магнитные силы. Физикам только предстояло обнаружить и объяснить действительно динамичные нестационарные электромагнитные процессы. Эта задача была решена в 1830—1870-х. К ней приложили руку около дюжины исследователей из Европы (в том числе и России- вспомним правило Ленца) и США. Однако главная заслуга бесспорно принадлежит двум титанам британской науки — Фарадею и Максвеллу.

Лондонский тандем

Для Майкла Фарадея 1821 год стал воистину судьбоносным. Он получил заветную должность суперинтенданта лондонского Королевского института и фактически случайно начал исследовательскую программу, благодаря которой занял уникальное место в истории мировой науки.

Магнитные и не очень. Различные вещества во внешнем магнитном поле ведут себя по‑разному, это обусловлено различным поведением собственных магнитных моментов атомов. Наиболее известны ферромагнетики, существуют парамагнетики, антиферромагнетики и ферримагнетики, а также диамагнетики, у атомов которых нет собственных магнитных моментов (во внешнем поле они слабо намагничиваются «против поля»).

Произошло это так. Редактор журнала «Анналы философии» Ричард Филипс предложил Фарадею написать критический обзор новых работ, посвященных магнитному действию тока. Фарадей не только последовал этому совету и опубликовал «Исторический эскиз электромагнетизма», но приступил к собственным исследованиям, которые растянулись на долгие годы. Сначала он, как и Ампер, повторил эксперимент Эрстеда, после чего двинулся дальше. К концу 1821 года он изготовил устройство, где токонесущий проводник вращался вокруг полосового магнита, а другой магнит поворачивался вокруг второго проводника. Фарадей предположил, что и магнит, и провод под током окружены концентрическими силовыми линиями, lines of force, которыми и обусловлено их механическое воздействие. Это уже был зародыш концепции магнитного поля, хотя сам Фарадей таким термином не пользовался.

Поначалу он почитал силовые линии удобным методом описания наблюдений, но со временем уверился в их физической реальности (тем более что нашел способ наблюдать их с помощью рассыпанных между магнитами железных опилок). К концу 1830-х он четко осознал, что энергия, источником которой служат постоянные магниты и проводники под током, распределена в пространстве, заполненном силовыми линиями. Фактически Фарадей уже мыслил в теоретико-полевых терминах, в чем значительно опередил своих современников.

Но главное его открытие состояло в другом. В августе 1831 года Фарадей смог заставить магнетизм генерировать электрический ток. Его прибор состоял из железного кольца с двумя противоположными обмотками. Одну из спиралей можно было замкнуть на электрическую батарею, другая соединялась с проводником, расположенным над магнитным компасом. Стрелка не меняла положения, если по первой катушке шел постоянный ток, но качалась во время его включения и выключения. Фарадей понял, что в это время во второй обмотке возникали электрические импульсы, обусловленные возникновением или исчезновением магнитных силовых линий. Иначе говоря, он открыл, что причиной электродвижущей силы служат изменения магнитного поля. Этот эффект обнаружил также американский физик Джозеф Генри, но он опубликовал свои результаты позднее, чем Фарадей, и не сделал столь серьезных теоретических выводов.

Электромагниты и соленоиды лежат в основе множества технологий, без которых невозможно представить современную цивилизацию: от вырабатывающих электроэнергию электрогенераторов, электродвигателей, трансформаторов до радиосвязи и вообще практически всей современной электроники.

К концу жизни Фарадей пришел к заключению, что новые знания об электромагнетизме нуждаются в математическом оформлении. Он решил, что эта задача придется по плечу Джеймсу Клерку Максвеллу, молодому профессору Маришал-колледжа в шотландском городе Абердине, о чем ему и написал в ноябре 1857 года. И Максвелл действительно объединил все тогдашние знания об электромагнетизме в единую математизированную теорию. Эта работа была в основном выполнена в первой половине 1860-х годов, когда он стал профессором натуральной философии лондонского Кингз-колледжа. Понятие электромагнитного поля впервые появилось в 1864 году в мемуаре, представленном Лондонскому Королевскому обществу. Максвелл ввел этот термин для обозначения «той части пространства, которая содержит и окружает тела, пребывающие в электрическом или магнитном состоянии», причем специально подчеркнул, что это пространство может быть как пустым, так и заполненным любым видом материи.

Главным итогом трудов Максвелла стала система уравнений, связывающих между собой электромагнитные явления. В опубликованном в 1873 году «Трактате об электричестве и магнетизме» он назвал их общими уравнениями электромагнитного поля, а сегодня они зовутся уравнениями Максвелла. Позднее их не раз обобщали (например, для описания электромагнитных явлений в различных средах), а также переписывали с использованием все более совершенного математического формализма. Максвелл показал также, что эти уравнения допускают решения, включающие незатухающие поперечные волны, частным случаем которых является видимый свет.

Теория Максвелла представила магнетизм как особого рода взаимодействие между электрическими токами. Квантовая физика XX века добавила к этой картине всего два новых момента. Теперь мы знаем, что электромагнитные взаимодействия переносятся фотонами и что электроны и многие другие элементарные частицы обладают собственными магнитными моментами. На этом фундаменте построены все экспериментальные и теоретические работы в области магнетизма.

Статья опубликована в журнале «Популярная механика» (№7, Июль 2010).

www.popmech.ru

Физика Электричество и магнетизм

ЭЛЕКТРИЧЕСТВО

Точечным называется заряд, размерами и формами которого, в данных условиях можно пренебречь.

Элементарный заряд:

Система называется электрически изолированной, если она не взаимодействует не с какими другими заряженными телами.

Закон сохранения электрического заряда:

Алгебраическая сумма электрических зарядов, образующих замкнутую электрически изолированную систему не изменяется при любых взаимодействиях тел, внутри данной системы:

Закон Кулона:

Сила взаимодействия двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов и обратно пропорциональна квадрату расстояния между ними.

Линейная плотность заряда:

[Кл/м]

Поверхностная плотность заряда:

Объемная плотность заряда:

Поле называется электростатическим, если оно образовано неподвижными зарядами.

Напряженность – это силовая характеристика электрического поля.

Напряженностью электрического поля называется векторная физическая величина, равная отношению силы, действующей на пробный заряд, помещенный в данную точку поля, к величине этого заряда.

[Н/Кл]

Электростатическое поле называется однородным, если вектор во всех его точках одинаков по модулю.

Электрическое поле называется стационарным, если оно не меняется с течением времени.

Линиями напряженности (силовыми линиями) называются линии, проведенные в поле так, что касательная к ним в каждой точке, совпадает по направлению с вектором напряженности.

Принцип суперпозиции полей:

Напряженность электрического поля системы неподвижных точечных зарядов, равна сумме напряженностей, созданных каждым зарядом.

Напряженность поля, созданная равномерно заряженным кольцом зарядом q:

Элементарный поток вектора напряженности электрического поля:

Полный поток:

– поток вектора напряженности.

Теорема Остроградского – Гаусса для электростатического поля в вакууме:

Поток вектора напряженности через произвольную замкнутую поверхность равен алгебраической сумме зарядов, заключенной внутри этой плоскости деленной на электрическую постоянную:

Поток вектора напряженности в точке, находящейся на некотором расстоянии от центра сферы:

Напряженность поля, созданная нитью:

Напряженность поля, созданная разноименно заряженными плоскостями:

Теорема о циркуляции вектора напряженности электростатического поля:

Потенциальная энергия взаимодействия зарядов:

Потенциал – это энергетическая характеристика электрическая поля.

Потенциал электрического поля численно равен отношению потенциальной энергии, которой обладает заряд в данной точке поля к величине этого заряда.

Потенциал точечного заряда:

Связь потенциальной энергии и консервативной силы:

Связь напряженности с потенциалом:

Сила тока – это скалярная физическая величина, равная отношению заряда dq, прошедшего через сечение проводника S за малый промежуток времени, к величине этого промежутка времени dt.

Плотность тока – Векторная физическая величина, модуль которой определяется формулойа направление совпадает с направлением движения положительного заряда.

Плотность тока через концентрацию носителей заряда:

Из формулы можно получить выражение силы тока через плотность тока

Закон Ома для однородного участка цепи:

Удельная электропроводность:

Закон Ома в дифференциальной форме:

Плотность тока прямо пропорциональна напряженности электрического поля в данной точке.

Условие существования электрического тока в цепи, ЭДС.

В источнике тока заряды переносятся от меньшего потенциала к большему, следовательно, такую работу могут совершать силы неэлектрического взаимодействия, а сторонние.

ЭДС называется отношение работы сторонних сил по перемещению заряда к величине этого заряда.

Полная работа по перемещению заряда в цепи будет равна:

Величина, численно равная работе, совершаемой сторонними и электростатическими силами при перемещении единичного положительного заряда вдоль цепи к величине этого заряда называется напряжением.

Закон Ома для полной цепи:

МАГНЕТИЗМ.

Закон Ампера для параллельных токов:

Магнитным моментом пробного контура называется вектор, равный по величине произведений силы тока в контуре на площадь данного контура. Направление совпадает с положительной нормалью.

Вращательный механический момент – векторная физическая величина, равная векторному произведению ;

Вектор магнитной индукции численно равен отношению максимального вращательного момента, который действует на контур со стороны внешнего магнитного поля к величине магнитного поля к величине магнитного момента контура.

В = [Тл]

Закон Био – Савара – Лапласа

Этот закон позволяет определить величину индукции магнитного поля, созданного элементарным проводником в произвольной точке поля.

Принцип суперпозиции:

;

Индукция магнитного поля, создаваемая проводником конечной длины:

Индукция магнитного поля, создаваемая проводником бесконечной длины:

Индукция магнитного поля, создаваемая кольцом:

Индукция магнитного поля в центре кольца:

Закон Ампера (Сила Ампера)

На проводник с током, находящийся в магнитном поле действует сила ампера

Сила Лоренца

Радиус движения частицы в магнитном поле:

Период обращения частицы в магнитном поле:

Шаг – это расстояние, которое проходит частица между двумя радиусами, то есть за время равное периоду.

Самоиндукцией называется возникновение ЭДС в проводнике вследствие изменения в нем электрического тока. Эта ЭДС называется ЭДС самоиндукции.

Ток при замыкании и размыкании цепи

Уравнения Максвелла

1)

2)

3)

4)

studfiles.net

Физика Электричество и магнетизм

ЭЛЕКТРИЧЕСТВО

Точечным называется заряд, размерами и формами которого, в данных условиях можно пренебречь.

Элементарный заряд:

Система называется электрически изолированной, если она не взаимодействует не с какими другими заряженными телами.

Закон сохранения электрического заряда:

Алгебраическая сумма электрических зарядов, образующих замкнутую электрически изолированную систему не изменяется при любых взаимодействиях тел, внутри данной системы:

Закон Кулона:

Сила взаимодействия двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов и обратно пропорциональна квадрату расстояния между ними.

Линейная плотность заряда:

[Кл/м]

Поверхностная плотность заряда:

Объемная плотность заряда:

Поле называется электростатическим, если оно образовано неподвижными зарядами.

Напряженность – это силовая характеристика электрического поля.

Напряженностью электрического поля называется векторная физическая величина, равная отношению силы, действующей на пробный заряд, помещенный в данную точку поля, к величине этого заряда.

[Н/Кл]

Электростатическое поле называется однородным, если вектор во всех его точках одинаков по модулю.

Электрическое поле называется стационарным, если оно не меняется с течением времени.

Линиями напряженности (силовыми линиями) называются линии, проведенные в поле так, что касательная к ним в каждой точке, совпадает по направлению с вектором напряженности.

Принцип суперпозиции полей:

Напряженность электрического поля системы неподвижных точечных зарядов, равна сумме напряженностей, созданных каждым зарядом.

Напряженность поля, созданная равномерно заряженным кольцом зарядом q:

Элементарный поток вектора напряженности электрического поля:

Полный поток:

– поток вектора напряженности.

Теорема Остроградского – Гаусса для электростатического поля в вакууме:

Поток вектора напряженности через произвольную замкнутую поверхность равен алгебраической сумме зарядов, заключенной внутри этой плоскости деленной на электрическую постоянную:

Поток вектора напряженности в точке, находящейся на некотором расстоянии от центра сферы:

Напряженность поля, созданная нитью:

Напряженность поля, созданная разноименно заряженными плоскостями:

Теорема о циркуляции вектора напряженности электростатического поля:

Потенциальная энергия взаимодействия зарядов:

Потенциал – это энергетическая характеристика электрическая поля.

Потенциал электрического поля численно равен отношению потенциальной энергии, которой обладает заряд в данной точке поля к величине этого заряда.

Потенциал точечного заряда:

Связь потенциальной энергии и консервативной силы:

Связь напряженности с потенциалом:

Сила тока – это скалярная физическая величина, равная отношению заряда dq, прошедшего через сечение проводника S за малый промежуток времени, к величине этого промежутка времени dt.

Плотность тока – Векторная физическая величина, модуль которой определяется формулойа направление совпадает с направлением движения положительного заряда.

Плотность тока через концентрацию носителей заряда:

Из формулы можно получить выражение силы тока через плотность тока

Закон Ома для однородного участка цепи:

Удельная электропроводность:

Закон Ома в дифференциальной форме:

Плотность тока прямо пропорциональна напряженности электрического поля в данной точке.

Условие существования электрического тока в цепи, ЭДС.

В источнике тока заряды переносятся от меньшего потенциала к большему, следовательно, такую работу могут совершать силы неэлектрического взаимодействия, а сторонние.

ЭДС называется отношение работы сторонних сил по перемещению заряда к величине этого заряда.

Полная работа по перемещению заряда в цепи будет равна:

Величина, численно равная работе, совершаемой сторонними и электростатическими силами при перемещении единичного положительного заряда вдоль цепи к величине этого заряда называется напряжением.

Закон Ома для полной цепи:

МАГНЕТИЗМ.

Закон Ампера для параллельных токов:

Магнитным моментом пробного контура называется вектор, равный по величине произведений силы тока в контуре на площадь данного контура. Направление совпадает с положительной нормалью.

Вращательный механический момент – векторная физическая величина, равная векторному произведению ;

Вектор магнитной индукции численно равен отношению максимального вращательного момента, который действует на контур со стороны внешнего магнитного поля к величине магнитного поля к величине магнитного момента контура.

В = [Тл]

Закон Био – Савара – Лапласа

Этот закон позволяет определить величину индукции магнитного поля, созданного элементарным проводником в произвольной точке поля.

Принцип суперпозиции:

;

Индукция магнитного поля, создаваемая проводником конечной длины:

Индукция магнитного поля, создаваемая проводником бесконечной длины:

Индукция магнитного поля, создаваемая кольцом:

Индукция магнитного поля в центре кольца:

Закон Ампера (Сила Ампера)

На проводник с током, находящийся в магнитном поле действует сила ампера

Сила Лоренца

Радиус движения частицы в магнитном поле:

Период обращения частицы в магнитном поле:

Шаг – это расстояние, которое проходит частица между двумя радиусами, то есть за время равное периоду.

Самоиндукцией называется возникновение ЭДС в проводнике вследствие изменения в нем электрического тока. Эта ЭДС называется ЭДС самоиндукции.

Ток при замыкании и размыкании цепи

Уравнения Максвелла

1)

2)

3)

4)

studfiles.net

Магнетизм « Учи физику!

Катушка индуктивности диаметром 4 см, имеющая 400 витков медной проволоки сечением 1 мм², расположена в однородном магнитном поле, индукция которого направлена вдоль оси катушки и равномерно изменяется со скоростью 0,1 Тл/с. Концы катушки замкнуты накоротко. Определить количество теплоты, выделяющейся в катушке за 1 с. Удельное сопротивление меди равно 1,7 • 10~8 Oм•м.

Подробнее…

Ещё ни кто не комментировал

Соленоид — длинная катушка с большим числом витков в обмотке. Определите индуктивность соленоида, если N — число витков, S — площадь витков, l — длина соленоида.

Подробнее…

Ещё ни кто не комментировал

Проволочную катушку, насчитывающую 1000 витков, помещают в однородное магнитное поле, так что линии магнитной индукции перпендикулярны плоскости витков. Катушка подсоединена к гальванометру. Затем катушку удаляют из поля, при этом по цепи катушки протекает заряд 10¯³ Кл. Определить индукцию магнитного поля, если площадь витка 10¯³м², а полное сопротивление цепи катушки 2 Ом.

Подробнее…

Ещё ни кто не комментировал

Прямоугольная проводящая рамка равномерно вращается в однородном магнитном поле с угловой скоростью w. Индукция магнитного поля В, площадь рамки S. Определите эдс индукции и постройте графики зависимости эдс индукции и магнитного потока от времени.

Подробнее…

Ещё ни кто не комментировал

Ток I течет по проводнику прямоугольного сечения (см. рис. 3.23), помещенному в однородное магнитное поле. К точкам А и С подключен вольтметр, показывающий разность потенциалов U. Концентрация свободных электронов в проводнике nо. Определите индукцию магнитного поля В.

Подробнее…

Ещё ни кто не комментировал

Проводник АС длиной l = 0,4 м и сопротивлением R = 4 Ом лежит на двух горизонтальных проводниках, замкнутых на источник тока, эдс которого  ε= 2 В (рис. 3.22). Проводники находятся в вертикальном магнитном поле с индукцией В = 0, 2 Тл. Определите силу тока в проводнике, если он движется равномерно со скоростью v = 5 м/с     а) вправо; б) влево. Сопротивлением шин пренебречь.

Подробнее…

Ещё ни кто не комментировал

Квадратная рамка со стороной 5 см, имеющая 10 витков, находится в однородном магнитном поле с индукцией 0,1 Тл. Плоскость рамки составляет угол 0° с направлением магнитного поля. Определить вращающий момент сил, действующих на рамку, если ток в рамке равен 4 А.

Подробнее…

Ещё ни кто не комментировал

В однородном магнитном поле, индукция которого равна 4 • 10-2 Тл и направлена под углом β? = 30° к вертикали, по вертикальным проводам без трения вверх движется прямой проводник массой 10 г, по которому течет ток 3 А. Через 5 с после начала движения проводник имеет скорость 20 м/с. Определить длину проводника.

 

Подробнее…

Ещё ни кто не комментировал

Заряженные частицы, заряд которых 3,2 •10-19Кл, ускоряются в циклотроне в однородном магнитном поле с индукцией В = 10-1  Тл и частотой ускоряющего напряжения v — 6 МГц. Найти кинетическую энергию частиц в момент, когда они движутся по радиусу R — 2 м.

 

Подробнее…

Ещё ни кто не комментировал

Электрон движется в однородном магнитном поле с индукцией 10-2  Тл В некоторый момент вектор его скорости, равной 10 м/с, составляет угол 30° с направлением магнитного поля Вычислить радиус R и шаг h винтовой линии, по которой движется электрон. Масса электрона m(е) = 9,1 • 10-31  кг, его заряд g(е) = -1,6 • 10-19 Кл.

Подробнее…

Прокомментировали 1 раз

uchifiziku.ru

Природа магнетизма. Опыты Ейхенвальда – МАГНЕТИЗМ. МАГНИТНОЕ ПОЛЕ ЭЛЕКТРИЧЕСКОГО ТОКА – ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ – ФИЗИКА

Часть 3 ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

 

Раздел 9 МАГНЕТИЗМ. МАГНИТНОЕ ПОЛЕ ЭЛЕКТРИЧЕСКОГО ТОКА

 

9.2. Природа магнетизма. Опыты Ейхенвальда

 

Изучая магнетизм, В. Гильберт 1600 г. высказал мнение о том, что, несмотря на некоторую внешнюю аналогию, которая есть между электрическими и магнитными явлениями, природа их различна. Однако уже в середине XVIII в. наука имела в своем распоряжении отдельные данные, свидетельствующие о тесной связь между электрическими и магнитными явлениями. К ним относится наблюдение за намагничиванием кусков железа и перемагнічуванням стрелки компаса, если вблизи них проходил грозовой разряд. Понятно, что такие отдельные данные только наводили на мысль о существовании связи между электрическими и магнитными явлениями, но не были доказательством его. Нужны были систематические экспериментальные исследования, которыми стали исследования X. Эрстеда, проведенные им в 1820 г. Наблюдая за размещенной вблизи прямолинейного проводника магнитной стрелкой X. Эрстед установил, что при прохождении тока через проводник магнитная стрелка отклоняется от своего предыдущего положения и пытается разместиться так, чтобы ее ось была перпендикулярной к проводнику. С изменением направления тока изменяется направление отклонения стрелки. Дальнейшие экспериментальные исследование влияния на магнитную стрелку электрических токов, проходящих по проводниках произвольной формы, позволили сделать окончательный вывод: при прохождении тока через проводник вокруг него возникает магнитное поле, которое влияет на ориентацию магнитной стрелки.

Если вместо металлического проводника электрический ток пропускать через электролит или газоразрядную трубку, то магнитная стрелка также будет отклонена. В 1911 г. А. Ф. Иоффе экспериментально доказал тождество магнитного поля электронного пучка и прямого тока.

Очень простое экспериментальное подтверждение справедливости положения о том, что магнитное поле образуется любыми движущимися зарядами (током), сделал О. О. Эйхенвальд 1901 г. Схему одного из опытов В. О. Ейхенвальда изображен на рис. 9.1. Два параллельных металлических диски D1 и D2 могли вращаться вокруг оси ОО’. Вблизи дисков на тонкой нитке подвесили небольшую магнитную стрелку А, ось которой параллельна плоскости дисков. Для наблюдения за смещением стрелки к ней прикрепили небольшое зеркальце. Стрелка находилась внутри кожуха ведущего, что защищал ее от действия электрического поля и от потоков воздуха при вращении дисков. Оба диски заряжали разноименно и быстро вращали. При этом вращался или один из дисков, или оба диска вместе как в одном, так и в противоположных направлениях. Опыты показали, что при вращении дисков магнитная стрелка отклоняется, указывает на появление магнитного поля. Если между дисками D1 и D2 поместить диск D3 из диэлектрика с диэлектрической проницаемостью ε, то заряд на металлических дисках увеличится в е раз и будет равна εq. Поэтому при вращении дисков и неподвижном диэлектрике магнитное поле увеличится также в раз.

 

 

Рис. 9.1

 

На поверхности диэлектрика возникают поляризационные заряды, которые на каждой поверхности диска D3 равны (ε-1)q. Если оставить диски D1 и D2 неподвижными, а вращать диск D3, то также возникнет магнитное поле. Однако это поле будет значительно меньше, чем при вращении диска D1 или D2, поскольку на диске D3 возникают заряды двух знаков и его действие аналогичная двум круговым токам, напрямленим противоположно. Если вращать весь конденсатор с диэлектриком как целое, то на каждом металлическом диске будет перемещаться заряд εq, а на прилегающей к нему поверхности диэлектрика – заряд противоположного знака – (ε-1)q. Поэтому магнитная действие будет пропорциональна εq – (ε -1)q = q, то есть будет такой, как и без диэлектрика. Все эти случаи В. О. Эйхенвальд проверил экспериментально. Опыты показали, что магнитное поле возникает при движении любых электрических зарядов независимо от природы их, в том числе и поляризационных.

Следовательно, магнитное поле возникает не только вблизи естественных и искусственных магнитов, а и у проводников, по которым проходит электрический ток, причем магнитное поле постоянных магнитов ничем не отличается от магнитного поля тока.

Основной характеристикой магнитного поля является вектор магнитной индукции , который в данной точке поля пропорционален силе, действующей на северный полюс бесконечно малой магнитной стрелки, помещенной в эту точку магнитного поля. Сила, действующая со стороны магнитного поля на южный полюс стрелки, направлена противоположно вектору . Бесконечно малая магнитная стрелка не меняет существенно магнитного поля, в которое она вносится. Оба полюса такой стрелки содержатся в бесконечно близких точках поля. Следовательно, силы, действующие на полюса, численно равны друг другу и направлены противоположно. Под действием такой пары сил магнитная стрелка поворачивается так, чтобы ось стрелки, соединяющая южный и северный полюса, совпала с направлением поля, то есть с направлением вектора .

Как и электростатические поля, магнитные поля можно изображать графически с помощью линий вектора магнитной индукции. Линиями вектора магнитной индукции (магнитными силовыми линиями) называют кривые, касательные к которым в каждой точке совпадают с направлением вектора в этих точках. Конфигурацию магнитных силовых линий можно установить в каждом конкретном случае с помощью магнитной стрелки, которая ориентируется вдоль этих линий. Как известно из школьного курса физики, наглядное представление о линии магнитной индукции можно достать с помощью мелких железных опилок, которые намагничиваются в исследуемом поле и ведут себя подобно миниатюрных магнитных стрелок. На рис. 9.2 изображен плоский сечение магнитного поля прямого тока. Для определения направления линий индукции магнитного поля тока можно воспользоваться правилом свердлика: если свердлик закручивать так, чтобы направление его поступательного движения совпадал с направлением тока, то направление вращательного движения рукоятки покажет направление линий вектора магнитной индукции.

Рис. 9.2

 

Наглядное представление о магнитном поле тока, проходящего по кольцевому проводнику. Силовые линии магнитного поля охватывают проводник так, что с одной стороны они выходят из контура витка, а с второго входят в него. Магнитное поле кругового тока вроде магнитного поля короткого магнита. Одну сторону витка действует на магнитную стрелку как северный полюс магнита, второй – как южный. С изменением направления тока меняются полюса витка.

Если составить схему из параллельных круговых токов одного направления, то магнитные поля их дадут суммарное магнитное поле, подобное полю штабового магнита. Систему параллельных круговых токов одного направления называют соленоидом. Северный полюс магнита совпадает с тем концом соленоида, из которого ток в витках направленный против хода стрелки часов.

Из рис. 9.2 видно, что линии вектора магнитной индукции, в отличие от силовых линий электростатического поля, всегда замкнуты и охватывают проводник с током. На первый взгляд кажется, что в случае полосовых магнитов линии магнитной индукции разомкнутые. Однако это не так. Проведенные исследования показали, что внутри полосовых магнитов существует поле, которое напоминает поле внутри соленоида. Линии магнитной индукции этого поля является продолжением линий индукции поля, что существует извне штабового магнита.

Полная аналогия между магнитными полями полосовых магнитов и соленоидов позволила выдающемуся физику А. Амперу 1821 г. высказать гипотезу, что магнитные свойства постоянных магнитов обусловлены микротоками, что существуют у них. Природу и характер этих микротоков А. Ампер не мог объяснить, поскольку в то время учения о строении вещества было в начальной стадии. Только после открытия электронов и выяснению строения атомов и молекул, то есть почти через 100 лет, гипотеза Ампера была подтверждена и стала основой современных представлений о магнитные свойства вещества. Гипотетические микротоки Ампера достали простое и наглядное толкование. Известно, что в атомах всех тел являются электроны, двигаются по замкнутых орбитах. Они подобно витка с током образуют магнитные поля. Если в каком-то теле элементарные токи, обусловленные движением электронов, размещены так, что их магнитные поля взаимно усиливают друг друга (как у соленоида), то результирующее магнитное поле может быть значительным и такое тело

будет магнитом. В ненамагніченому теле все элементарные токи расположены хаотически. Процесс намагничивания тел заключается в том, что под действием внешнего магнитного поля элементарные токи в большей или меньшей степени, в зависимости от величины внешнего поля, устанавливаются параллельно друг другу и образуют результирующее магнитное поле.

Следовательно, источником магнитного поля является электрический ток, т.е. движущийся электрический заряд. Существование магнитного поля является необходимым и достаточным условием для выявления связанного с ним электрического тока. Магнитное поле – одно из проявлений электрического тока – не может существовать отдельно и независимо от него. Оно, как и электрическое, является одним из видов материи.

na-uroke.in.ua

МАГНЕТИЗМ – Лекции по магнетизму

Лекции по магнетизму
скачать (996 kb.)
Доступные файлы (1):

n1.doc

  1   2   3   4   5   6   7   8   9

МАГНЕТИЗМ

Электронный учебник по физике

КГТУ-КХТИ. Кафедра физики. Старостина И.А., Кондратьева О.И., Бурдова Е.В.
Для перемещения по тексту электронного учебника можно использовать:

1- нажатие клавиш PgDn, PgUp,,  для перемещения по страницам и строкам;

2- нажатие левой клавиши «мыши» по выделенному тексту для перехода в требуемый раздел;

3- нажатие левой клавиши «мыши» по выделенному значку @ для перехода в оглавление.
ОГЛАВЛЕНИЕ


МАГНЕТИЗМ

МАГНЕТИЗМ

1. ОСНОВЫ МАГНИТОСТАТИКИ. МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ

1.1. Магнитное поле и его характеристики.@

1.2. Закон Ампера.@

1.3. Закон Био – Савара – Лапласа и его применение к расчету магнитного поля. @

1.4. Взаимодействие двух параллельных проводников с током. @

1.5. Действие магнитного поля на движущуюся заряженную частицу. @

1.6. Закон полного тока для магнитного поля в вакууме(теорема о циркуляции вектора В). @

1.7. Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля. @

1. 8. Рамка с током в однородном магнитном поле. @

2. МАГНИТНОЕ ПОЛЕ В ВЕЩЕСТВЕ. @

2.1. Магнитные моменты атомов. @

2.2. Атом в магнитном поле. @

2.3. Намагниченность вещества. @

2.4. Виды магнетиков. @

2.5. Диамагнетизм. Диамагнетики. @

2.6. Парамагнетизм. Парамагнетики. @

2.7. Ферромагнетизм. Ферромагнетики. @

2.8. Доменная структура ферромагнетиков. @

2.9. Антиферромагнетики и ферриты. @

3. ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ. @

3.1. Основной закон электромагнитной индукции. @

3.2. Явление самоиндукции. @

3.3. Явление взаимной индукции. @

3.4. Энергия магнитного поля. @

4. УРАВНЕНИЯ МАКСВЕЛЛА. @

4.1. Теория Максвелла для электромагнитного поля. @

4.2. Первое уравнение Максвелла. @

4.3. Ток смещения. @

4.4. Второе уравнение Максвелла. @

4.5. Система уравнений Максвелла в интегральной форме. @

4.6. Электромагнитное поле. Электромагнитные волны. @

МАГНЕТИЗМ

Магнетизм – раздел физики, изучающий взаимодействие между электричес­ки­ми токами, между токами и магнитами (телами с магнитным моментом) и между магнитами.

Долгое время магнетизм считался совершенно независимой от электричества наукой. Однако ряд важнейших открытий 19-20 веков А.Ампера, М.Фарадея и др. доказали связь электрических и магнитных явлений, что позволило считать учение о магнетизме составной частью учения об электричестве.

1. ОСНОВЫ МАГНИТОСТАТИКИ. МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ

1.1. Магнитное поле и его характеристики.@


Впервые магнитные явления были последовательно рассмотрены английским врачом и физиком Уильямом Гильбертом в его работе – «О магните, магнитных телах и о большом магните – Земле». Тогда казалось, что электричество и магнетизм не имеют ничего общего. Лишь в начале XIX века датский ученый Г.Х.Эрстед выдвинул идею о том, что магнетизм может оказаться одной из скрытых форм электричества, что и подтвердил в 1820 г. на опыте. Этот опыт повлек за собой лавину новых открытий, имевших огромное значение.

Многочисленные опыты начала XIX века показали, что каждый проводник с током и постоянный магнит способны оказывать силовое воздействие через пространство на другие проводники с током или магниты. Это происходит из-за того, что вокруг проводников с током и магнитов возникает поле, которое было названо магнитным.

Для исследования магнитного поля применяют небольшую магнитную стрелку, подвешенную на нити или уравновешенную на острие (Рис.1.1). В каждой точке магнитного поля стрелка, расположенная произвольно, будет п
Рис.1.1. Направление магнитного поля
оворачиваться в определенном направлении. Это происходит из-за того, что в каждой точке магнитного поля на стрелку действует вращающий момент, который стремится расположить ее ось вдоль магнитного поля. Осью стрелки называется отрезок, соединяющий ее концы.

Рассмотрим ряд опытов, которые позволили установить основные свойства магнитного поля:


  1. Если заряженный шарик из диэлектрика подвесить на нити вблизи магнитной стрелки, стрелка и шарик остаются неподвижными. Следовательно, постоянные магниты не действуют на неподвижные заряды и неподвижные заряды не создают магнитного поля.

  2. Если магнитную стрелку поместить под прямолинейным проводником с током, то она будет поворачиваться, стремясь расположиться перпендикулярно проводнику (опыт Эрстеда). Смена направления т
    Рис.1.2 Силовые линии

    магнитного поля прямолинейного тока и правило правой руки.

    ока на противоположное вызовет переориентацию стрелки на 180˚С.

  3. Пучок движущихся электронов оказывает действие на магнитную стрелку аналогичное проводнику с током (опыт Иоффе).

  4. Конвекционные токи, образуемые движущимися заряженными телами, по своему действию на магнитную стрелку подобны токам проводимости (опыт Эйхенвальда).

На основании данных опытов был сделан вывод о том, что магнитное поле создается только движущимися зарядами или движущимися заряженными телами, а также постоянными магнитами. Этим магнитное поле отличается от электрического поля, которое создается как движущимися, так и неподвижными зарядами и действует как на одни, так и на другие.

Основной характеристикой магнитного поля является вектор магнитной индукции . За направление магнитной индукции в данной точке поля принимают направление, по которому в данной точке располагается ось магнитной стрелки от S к N (рис.1.1). Графически магнитные поля изображаются силовыми линиями магнитной индукции, то есть кривыми, касательные к которым в каждой точке совпадают с направлением вектора В.

Эти силовые линии можно увидеть с помощью железных опилок: например, если рассыпать опилки вокруг длинного прямолинейного проводника и пропустить через него ток, то опилки поведут себя подобно маленьким магнитикам, располагаясь вдоль силовых линий магнитного поля (рис. 1.2).

Как определить направление вектора около проводника с током? Это можно сделать с помощью правила правой руки, которое иллюстрируется рис. 1.2. Большой палец правой руки ориентируют в направлении тока, тогда остальные пальцы в согнутом положении указывают направление силовых линий магнитного поля. В случае, изображенном на рис.1.2, линии представляют собой концентрические окружности. Линии вектора магнитной индукции всегда замкнуты и охватывают проводник с током. Этим они отличаются от линий напряженности электрического поля, которые начинаются на положительных и кончаются на отрицательных зарядах, т.е разомкнуты. Линии магнитной индукции постоянного магнита выходят из одного полюса, называемого северным (N) и входят в другой – южный (S) (рис. 1.3а). Вначале кажется, что здесь наблюдается полная аналогия с линиями напряженности электрического поля Е, причем полюса магнитов играют роль магнитных зарядов. Однако если разрезать магнит, картина сохраняется, получаются более мелкие магниты со своими северными и южными полюсами, т.е. полюса разделить невозможно, потому что свободных магнитных зарядов, в отличие от электрических зарядов, в природе не существует. Было установлено, что внутри магнитов имеется магнитное поле и линии магнитной индукции этого поля являются продолжением линий магнитной индукции вне магнита, т.е. замыкают их. Подобно постоянному магниту магнитное поле соленоида – катушки из тонкой изолированной проволоки с длиной намного больше диаметра, по которой течет ток (рис.1.3б). Конец соленоида, из которого ток в витке виден идущим против часовой стрелки, совпадает с северным полюсом магнита, другой – с южным. Магнитная индукция в системе СИ измеряется в Н/(А∙м), этой величине присвоено специальное наименование – тесла [Tл].

Согласно предположению французского физика А.Ампера, намагниченное железо (в частности, стрелки компаса) содержит непрерывно движущиеся заряды, т.е. электрические токи в атомном масштабе. Такие микроскопические токи, обусловленные движением электронов в атомах и молекулах, существуют в любом теле. Эти микротоки создают свое магнитное поле и могут сами поворачиваться во внешних полях, создаваемых проводниками с током. Например, если вблизи какого-либо тела поместить проводник с током, то под действием его магнитного поля микротоки во всех атомах определенным образом ориентируются, создавая в теле дополнительное магнитное поле. О природе и характере этих микротоков Ампер в то время ничего не мог сказать, так как учение о строении вещества находилось еще в самой начальной стадии. Гипотеза Ампера была блестяще подтверждена лишь спустя 100 лет, после открытия электрона и выяснения строения атомов и молекул.

Магнитные поля, существующие в природе, разнообразны по масштабам и по вызываемым эффектам. Магнитное поле Земли, образующее земную магнитосферу, простирается на расстоянии 70 – 80 тысяч км в направлении к Солнцу и на многие миллионы километров в обратном направлении. В околоземном пространстве магнитное поле образует магнитную ловушку для заряженных частиц высоких энергий. Происхождение магнитного поля Земли связывают с движениями проводящего жидкого вещества в земном ядре. Из других планет Солнечной системы лишь Юпитер и Сатурн обладают заметными магнитными полями. Магнитное поле Солнца играет важнейшую роль во всех происходящих на Солнце процессах – вспышках, появлении пятен и протуберанцев, рождении солнечных космических лучей.

Магнитное поле широко применяется в различных отраслях промышленности, в частности при очистке муки на хлебозаводах от металлических примесей. Специальные просеиватели муки снабжены магнитами, которые притягивают к себе мелкие кусочки железа и его соединений, которые могут содержаться в муке.

  1   2   3   4   5   6   7   8   9

МАГНЕТИЗМ

nashaucheba.ru

Магнетизм. Научные журналы. Наука и техника

В. ЛИШЕВСКИЙ, кандидат физико-математических наук

Это явление известно людям очень давно. Свое название оно получило от города Магнетии в Малой Азии, где были обнаружены залежи магнитного железняка – «камня, притягивающего железо».

Первым письменным свидетельствам знакомства человека с магнитными свойствами некоторых материалов более двух тысяч лет. В одном из таких источников – замечательной поэме «О природе вещей», написанной Титом Лукрецием Каром в I веке до нашей эры, читаем:

«Также бывает, что попеременно порода железа
Может от камня отскакивать или к нему привлекаться.
Также и то наблюдал я, как прыгают в медном сосуде
Самофракийские кольца железные или опилки
В случае, если под этим сосудом есть камень магнитный».

Лукреций объяснял магнетизм «магнитными токами», истекающими из «камня-магнита», а силу притяжения образно рисовал так:

«Связь такова здесь, как будто крючки, зацепившись за петли.
Держатся между собой в сочетаньи известном, какое
Можем увидеть мы между железом и камнем магнитным».

Одно из первых практических использований магнетизма тел – компас. Наши предки заметили: продолговатый кусочек магнитного железа, подвешенный на нитке или прикрепленный к пробке, плавающей в воде, всегда располагается так, что один его конец показывает на север, а другой – на юг. Компас был изобретен в Китае примерно за тысячу лет до нового летосчисления; в Европе он известен с XII века. Без этого простейшего навигационного прибора были бы невозможны Великие географические открытия XV…XVII веков.

Теперь магнетизм широко используется в науке, технике и обыденной жизни. Постоянные магниты и электромагниты стоят в генераторах, вырабатывающих ток, и в электромоторах, его потребляющих; без них не может обойтись большинство транспортных средств – автомобиль, троллейбус, тепловоз, самолет, корабль. Магниты облегчают нашу жизнь и развлекают нас, служа нам в различных электробытовых приборах, а также в магнитофонах, радиолах и всевозможных игрушках. Наконец, магниты – неотъемлемая часть многих научных приборов, начиная от небольших, располагающихся на столе исследователя, и до огромных ускорителей с размерами, измеряемыми многими километрами.

Но магнитные явления интересуют сейчас не только инженеров, создающих новую технику. Эти явления изучают применительно к своей специальности врачи, биологи, геологи, представители других профессий. Например, геологи по аномалиям магнитного поля Земли ищут полезные ископаемые, врачи наряду с электрокардиограммой снимают у больного магнитокардиограмму – она им дает дополнительную информацию о работе сердца, а биологи изучают магнитные поля, создаваемые живыми организмами, и влияние на них, в свою очередь, внешних магнитных полей.

Интерес к воздействию магнитных полей на человека возник сразу же после открытия этого явления. Древние приписывали магниту много чудесных свойств. Считалось, что истолченный в порошок «магнитный камень» хорош как слабительное средство, излечивает от водянки и безумия, останавливает любое кровотечение и выделения из носа, ушей и даже рассасывает раковые опухоли, а принимаемый в определенных дозах гарантирует бессмертие. Правда, рекомендации часто бывали противоречивы. Например, одни лекари считали, что магнит – сильный яд, другие же предлагали его использовать как противоядие. Между прочим, некоторые современные японские фирмы, выпускающие магнитные браслеты, рекламируют их по примеру древних, приписывая своим изделиям массу изумительных качеств: от способности сохранять красоту до излечивания гипертонии, бронхиальной астмы и невралгии. Как показала проверка, проведенная различными лечебными учреждениями, при ношении магнитных браслетов субъективно самочувствие больного улучшается (скорее всего, срабатывает психотерапевтический эффект), тогда как объективные показатели практически не меняются, скажем, кровяное давление остается на том же уровне.

Вместе с тем отрицать влияние магнитных полей на живой организм нельзя. Эксперименты на мышах показали, что внешнее магнитное поле задерживает их развитие, замедляет рост клеток, изменяет состав крови. Сильное неоднородное магнитное поле – десять килоэрстед и больше даже способно убить молодые особи. (Аналогичные результаты получены и в опытах с другими животными.)

Так как магнитное поле оказывает воздействие на все живое, разработаны допустимые его уровни. Для человека разные исследователи считают безопасным магнитное поле напряженностью 300…700 эрстед.

Магнитное поле влияет и на растения. Результаты некоторых опытов показали, что всхожесть и рост семян зависят от того, как первоначально они были ориентированы относительно магнитного поля Земли. Изменение внешнего магнитного поля может или ускорять или угнетать развитие растений. (Это, по-видимому, можно использовать в практических целях.)

Почему магнитное поле воздействует на человека? На этот счет есть несколько гипотез. Одна из них считает, что магнитное поле влияет на протекание в организме некоторых тонких биохимических реакций. И хотя влияние магнитного поля на химические процессы в последнее время тщательно исследуется (в частности, больших успехов здесь добились новосибирские ученые), физика этого процесса пока не совсем ясна.

Магнитным явлениям уделяют внимание и писатели, особенно работающие в жанре научной фантастики. В их произведениях вы можете встретить магнитные пушки, башмаки, «прилипающие» к металлической обшивке космического корабля и позволяющие без труда передвигаться в невесомости, другие магнитные диковинки.

В известной комедии «Сирано де Бержерак» Эдмон Ростан устами своего героя предложил такой шутливый способ путешествия к Луне:

Лечь на железный лист и сильными рывками
Магнит подбрасывать, он лист железный с вами
Подтянет кверху. Вы опять.
Так до Луны и упражняйтесь!

Магнетизм и связанные с ним явления интересовали А. Конан-Дойля («Письма доктора Монро»), А.И. Куприна (рассказ «Тост», действие которого происходит в 2906 году), Д. Свифта («Путешествия Гулливера») и многих других писателей.

На рисунке показаны магнитные поля, встречающиеся в природе и технике. Чтобы можно было изобразить все это многообразие на одном рисунке, применена логарифмическая шкала – два соседних деления отличаются друг от друга по величине в 10 раз. Единица измерения шкалы носит имя известного шведского физика X.К. Эрстеда. Напряженность магнитного поля в эрстедах указывается в системе СГС (сантиметр, грамм, секунда), в Международной системе единиц (СИ) она измеряется в амперах на метр (А/м). Эти две единицы связаны между собой соотношением: 1 эрстед = 79,5775 А/м, то есть для того, чтобы получить значение напряженности магнитного ноля в системе СИ, надо величину, указанную на рисунке, разделить примерно на 80. Слабые магнитные поля, например, вариации геомагнитного поля, измеряют в гаммах – одной стотысячной доле эрстеда (1 γ = 10–5 эрстед).

Рассматривая рисунок, вы увидите, что самые сильные поля, зарегистрированные во Вселенной, создаются нейтронными звездами и пульсарами. В лабораториях удается достичь магнитной напряженности в сотни тысяч раз более слабой, да и то на очень короткое время, измеряемое долями секунды. Если можно было бы воспроизвести в лабораторных условиях поля, сравнимые с теми, которые создаются нейтронными звездами, то мы стали бы свидетелями удивительных явлений. Например, железо, имеющее плотность 7,87 г/см3, под действием такого поля превратилось бы в вещество с плотностью 2700 г/см3. Кубик с ребром 10 см из такого вещества, аккуратно положенный на стол, тут же проломил бы его крышку.

На рисунке указаны средние значения магнитных полей. Например, напряженность поля Земли меняется от 0,24 эрстед (в Бразилии) до 0,68 эрстед (в Антарктиде). Поэтому считается, что геомагнитное поле равно 0,5 эрстеда. (Бывают и аномалии, скажем, Курская магнитная, где напряженность равна 2 эрстеда.) Также в определенных пределах лежат магнитные поля практически всех известных нам объектов и явлений. Слева от центральной шкалы показано принятое деление полей на слабые, средние, сильные и сверхсильные.

Магнитное взаимодействие играет важную роль в процессах, протекающих во Вселенной. Вот только два примера, подтверждающие сказанное. Известно, что магнитное поле звезды порождает звездный ветер, аналогичный солнечному, который, уменьшая массу и момент инерции звезды, изменяет ход ее развития. Известно также, что магнитосфера Земли защищает нас от гибельного воздействия космических лучей. Если бы ее не было, эволюция живых существ на нашей планете, видимо, пошла бы иным путем, а может быть, жизнь на Земле не возникла бы вовсе.

Магнетизм – всеобъемлющее, глобальное свойство природы, но, к сожалению, мы многого о нем не знаем. Нам неизвестно, например, есть ли монополь – частица с одним магнитным полюсом, наподобие положительных или отрицательных электрических частиц. Законы электродинамики не запрещают существование магнитного монополя, но он пока не обнаружен. До сих пор нет законченной теории земного и солнечного магнетизма, ряда других магнитных явлений в космическом масштабе. Не завершены исследования сверхпроводимости, которую тоже можно отнести к магнетизму. Овладев его тайнами, мы не только решим многие задачи, стоящие перед создателями современной техники, но и поймем, как рождаются и умирают миры в окружающем нас пространстве Вселенной.

 

Ранее опубликовано:

Наука и жизнь. 1988. №2.

Дата публикации:

11 марта 2003 года

n-t.ru

Оставить комментарий