Формула физика сила архимеда – Закон Архимеда — Википедия

Вычисление силы Архимеда

В предыдущем параграфе мы назвали две формулы, при помощи которых силу Архимеда можно измерить. Теперь выведем формулу, при помощи которой силу Архимеда можно вычислить.

Закон Архимеда для жидкости выражается формулой (см. § 3-е):

Fарх = Wж

Примем, что вес вытесненной жидкости равен действующей силе тяжести:

Wж = Fтяж = mжg

Масса вытесненной жидкости может быть найдена из формулы плотности:

r = m/V     Ю     mж = rжVж

Подставляя формулы друг в друга, получим равенство:

Fарх = Wж = Fтяж = mж g = rжVж g

Выпишем начало и конец этого равенства:

Fарх = rж gVж

Вспомним, что закон Архимеда справедлив для жидкостей и газов. Поэтому вместо обозначения «rж» более правильно использовать «rж/г». Также заметим, что объём жидкости, вытесненной телом, в точности равен объёму погруженной части тела: Vж = Vпчт. С учётом этих уточнений получим:

Fарх – архимедова сила, Н
rж/г – плотность жидкости, кг/м3
g – коэффициент силы тяжести, Н/кг
Vпчт – объём погруженной части тела, м3

Итак, мы вывели частный случай закона Архимеда – формулу, выражающую способ вычисления силы Архимеда. Вы спросите: почему же эта формула – «частный случай», то есть менее общая?

Поясним примером. Вообразим, что мы проводим опыты в космическом корабле. Согласно формуле Fарх = Wж, архимедова сила равна нулю (так как вес жидкости равен нулю), согласно же формуле Fарх = rж/г gVпчт архимедова сила нулю не равна, так как ни одна из величин (r, g, V) в невесомости в ноль не обращается. Перейдя от воображаемых опытов к настоящим, мы убедимся, что справедлива именно общая формула.

Продолжим наши рассуждения и выведем ещё один частный случай закона Архимеда. Посмотрите на рисунок. Поскольку бревно находится в покое, следовательно, на него действуют уравновешенные силы – сила тяжести и сила Архимеда. Выразим это равенством:

Fарх = Fтяж

Или, подробнее:

rж gVпчт = mт g

Разделим левую и правую части равенства на коэффициент «g»:

rж Vпчт = mт

Вспомнив, что m = rV, получим равенство:

rж Vпчт = rт Vт

Преобразуем это равенство в пропорцию:

В левой части этой пропорции стоит дробь, показывающая долю, которую составляет объём погруженной части тела от объёма всего тела. Поэтому всю дробь называют погруженной долей тела:

Используя эту формулу, предскажем, чему должна быть равна погруженная доля бревна при его плавании в воде:

ПДТ (полена) » 500 кг/м3 : 1000 кг/м3 = 0,5

Число 0,5 означает, что плавающее в воде бревно погружено наполовину. Так предсказывает теория, и это совпадает с практикой.

Итак, обе формулы в рамках являются менее общими, чем исходная, то есть имеют более узкие границы применимости. Почему же так произошло? Причина – применение нами формулы W = Fтяж. Вспомним, что она не верна, если тело или его опора (подвес) движутся непрямолинейно (см. § 3-г). Упоминавшийся нами космический корабль именно так и движется – по круговой орбите вокруг Земли.

questions-physics.ru

ФИЗИКА: Задачи на силу Архимеда с решениями

Задачи на силу Архимеда с решениями

Формулы, используемые на уроках «Задачи на силу Архимеда», «Сообщающиеся сосуды».

Название величины
Обозначение
Единица измерения
Формула
Объем тела
V
м3
Vт = FA / pg
Плотность жидкости
p
кг/м3
pж = FA / (Vg)
Сила Архимеда
FA
Н
FA = pж Vт g
Постоянная
g ≈ 10 Н/кг
Н/кг

 




ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1. Тело объемом 2 м3 погружено в воду. Найдите архимедову силу, действующую на тело.


Задача № 2. Определить выталкивающую силу, действующую на деревянный плот объемом 12 м3, погруженный в воду на половину своего объема.


Задача № 3.  Каков объем железобетонной плиты, если в воде на нее действует выталкивающая сила 8000 Н?


Задача № 4.  Какую силу надо приложить, чтобы удержать под водой бетонную плиту, масса которой 720 кг?


Задача № 5.  Какую высоту должен иметь столб нефти, чтобы уравновесить в сообщающихся сосудах столб ртути высотой 16 см?


Задача № 6. Вес тела в воздухе равен 26 кН, а в воде — 16 кН. Каков объем тела?


Задача № 7. Какую силу нужно приложить, чтобы удержать в воде кусок гранита объемом 40 дм3?


Задача № 8. Определите объем куска меди, который при погружении в керосин выталкивается силой 160 Н.


Задача № 9 (повышенной сложности).  Медный шар в воздухе весит 1,96 Н, а в воде 1,47 Н. Сплошной этот шар или полый?


Задача № 10 (повышенной сложности).  Рассчитайте, какой груз сможет поднять шар объемом 1 м3, наполненный водородом. Какой примерно объем должен иметь шар с водородом, чтобы поднять человека массой 70 кг? (Вес оболочки не учитывать.)


Теория для решения задач.

Давление жидкости на покоящееся в ней тело называют гидростатическим давлением. Гидростатическое давление на глубине h равно р = ратм  + p*g*h

Закон Паскаля

. Жидкость и газ передают оказываемое на них давление во всех направлениях одинаково.


Конспект урока «Задачи на силу Архимеда с решениями».

Следующая тема: «Задачи на механическую работу».

 

ЗАДАЧИ на силу Архимеда с решениями

5 (100%) 2 votes

uchitel.pro

Закон Архимеда – Формулы по физике.рф

Закон (Сила) Архимеда — На тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу вытесненной этим телом жидкости или газа.

В интегральной форме


Архимедова сила направлена всегда противоположно силе тяжести, поэтому вес тела в жидкости или газе всегда меньше веса этого тела в вакууме.

Если тело плавает на поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

Что касается тел, которые находятся в газе, например в воздухе, то для нахождения подъёмной силы (Силы Архимеда) нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

В отсутствие гравитационного поля (Сила тяготения), то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление конвекции (естественное перемещение воздуха в пространстве), поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами

В формуле мы использовали :

— Сила Архимеда

— Плотность жидкости

— Объем погруженного тела

— Ускорение свободного падения

— Давление в произвольной точке

xn--e1adcbkcgpcji1bjh6h.xn--p1ai

03-ж. Вычисление силы Архимеда

      § 03-ж. Вычисление силы Архимеда

В предыдущем параграфе мы назвали две формулы, при помощи которых силу Архимеда можно измерить. Теперь выведем формулу, при помощи которой силу Архимеда можно вычислить.

Закон Архимеда для жидкости выражается формулой (см. § 3-е):

Fарх = Wж

Примем, что вес вытесненной жидкости равен действующей силе тяжести:

Wж = Fтяж = mжg

Масса вытесненной жидкости может быть найдена из формулы плотности:

r = m/V     Ю     mж = rжVж

Подставляя формулы друг в друга, получим равенство:

Fарх = Wж = Fтяж = mж g = rжVж g

Выпишем начало и конец этого равенства:

Fарх = r

ж gVж

Вспомним, что закон Архимеда справедлив для жидкостей и газов. Поэтому вместо обозначения «rж» более правильно использовать «rж/г». Также заметим, что объём жидкости, вытесненной телом, в точности равен объёму погруженной части тела: Vж = Vпчт. С учётом этих уточнений получим:

Итак, мы вывели частный случай закона Архимеда – формулу, выражающую способ вычисления силы Архимеда. Вы спросите: почему же эта формула – «частный случай», то есть менее общая?

Поясним примером. Вообразим, что мы проводим опыты в космическом корабле. Согласно формуле F

арх = Wж, архимедова сила равна нулю (так как вес жидкости равен нулю), согласно же формуле Fарх = rж/г gVпчт архимедова сила нулю не равна, так как ни одна из величин (r, g, V) в невесомости в ноль не обращается. Перейдя от воображаемых опытов к настоящим, мы убедимся, что справедлива именно общая формула.

 

Продолжим наши рассуждения и выведем ещё один частный случай закона Архимеда. Посмотрите на рисунок. Поскольку бревно находится в покое, следовательно, на него действуют уравновешенные силы – сила тяжести и сила Архимеда. Выразим это равенством:

Fарх = Fтяж

Или, подробнее:

rж gVпчт = mт g

Разделим левую и правую части равенства на коэффициент «g»:

rж Vпчт = mт

Вспомнив, что m = rV, получим равенство:

rж Vпчт = rт Vт

Преобразуем это равенство в пропорцию:

В левой части этой пропорции стоит дробь, показывающая долю, которую составляет объём погруженной части тела от объёма всего тела. Поэтому всю дробь называют погруженной долей тела:

Используя эту формулу, предскажем, чему должна быть равна погруженная доля бревна при его плавании в воде:

ПДТ (полена) » 500 кг/м3 : 1000 кг/м3 = 0,5

Число 0,5 означает, что плавающее в воде бревно погружено наполовину. Так предсказывает теория, и это совпадает с практикой.

Итак, обе формулы в рамках являются менее общими, чем исходная, то есть имеют более узкие границы применимости. Почему же так произошло? Причина – применение нами формулы W = Fтяж. Вспомним, что она не верна, если тело или его опора (подвес) движутся непрямолинейно (см. § 3-г). Упоминавшийся нами космический корабль именно так и движется – по круговой орбите вокруг Земли.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!