Формула кинетическая энергия идеального газа – Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры. Связь основного уравнения МКТ с уравнением Менделеева-Клайперона

Содержание

Средняя кинетическая энергия теплового движения молекул газа.

Уравнение состояния
идеального газа в форме pV
= nRT
или p
= nkT может
быть обосновано и методами кинетической
теории газов. На основе кинетического
подхода сравнительно просто выводится
выражение для давления идеального газа
в сосуде, которое получается как результат
усреднения импульсов молекул, передаваемых
стенке сосуда при многочисленных
соударениях молекул со стенкой. Величина
получаемого при этом давления определяется
как

,

Где бv
2
с – среднее
значение квадрата скорости молекул, m
– масса молекулы.

Средняя кинетическая
энергия молекул газа (в расчете на одну
молекулу) определяется выражением

Кинетическая
энергия поступательного движения атомов
и молекул, усредненная по огромному
числу беспорядочно движущихся частиц,
является мерилом того, что называется
температурой. Если температура T
измеряется в градусах Кельвина (К), то
связь ее с Ek
дается соотношением

Это соотношение
позволяет, в частности, придать более
отчетливый физический смысл постоянной
Больцмана

  1. Внутренняя
    энергия идеального газа.

В теории идеального газа потенциальная
энергия взаимодействия молекул считается
равной нулю. Поэтому внутренняя энергия
идеального газа определяется кинетической
энергией движения всех его молекул.
Средняя энергия движения одной молекулы
равна

Так как в одном киломоле содержится
молекул,
то внутренняя энергия одного киломоля
газа будет

Учитывая,
что,
получим

Для любой массы m газа, т.е. для любого
числа киломолей
внутренняя
энергия

(10.12)

Из этого выражения следует, что внутренняя
энергия является однозначной функцией
состояния и, следовательно, при совершении
системой любого процесса, в результате
которого система возвращается в исходное
состояние, полное изменение внутренней
энергии равно нулю. Математически это
записывается в виде тождества

  1. Распределение
    Максвелла

Распределение
Ма́ксвелла
распределение
вероятности
, встречающееся вфизикеихимии.
Оно лежит в основаниикинетической
теории газов
, которая объясняет
многие фундаментальные свойства газов,
включаядавлениеидиффузию.
Распределение Максвелла также применимо
для электронных процессов переноса и
других явлений. Распределение Максвелла
применимо к множеству свойств
индивидуальных молекул в газе. О нём
обычно думают как о распределении
энергий молекул в газе, но оно может
также применяться к распределению
скоростей, импульсов, и модуля импульсов
молекул. Также оно может быть выражено
как дискретное распределение по множеству
дискретных уровней энергии, или как
непрерывное распределение по некоторому
континууму энергии.

Распределение Максвелла может и должно
быть получено при помощи статистической
механики
(см. происхождениестатсуммы).
Как распределение энергии, оно
соответствует самому вероятному
распределению энергии, в
столкновительно-доминируемой системе,
состоящей из большого количества
невзаимодействующих частиц, в которой
квантовые эффекты являются незначительными.
Так как взаимодействие между молекулами
в газе является обычно весьма небольшим,
распределение Максвелла даёт довольно
хорошее приближение ситуации, существующей
в газе.

Во многих других случаях, однако, даже
приблизительно не выполнено условие
доминирования упругих
соударений
над всеми другими
процессами. Это верно, например, в физикеионосферыи космическойплазмы,
где процессы рекомбинации и столкновительного
возбуждения (то есть излучательные
процессы) имеют большое значение, в
особенности для электронов. Предположение
о применимости распределения Максвелла
дало бы в этом случае не только
количественно неверные результаты, но
даже предотвратило бы правильное
понимание физики процессов на качественном
уровне. Также, в том случае где квантоваяде
Бройлева длина волны
частиц
газа не является малой по сравнению с
расстоянием между частицами, будут
наблюдаться отклонения от распределения
Максвелла из-за квантовых эффектов.

Распределение энергии Максвелла может
быть выражено как дискретное распределение
энергии:

,

где
является
числом молекул имеющих энергиюпри
температуре системы,является
общим числом молекул в системе и—постоянная
Больцмана
. (Отметьте, что иногда
вышеупомянутое уравнение записывается
с множителем,
обозначающим степень вырождения
энергетических уровней. В этом случае
сумма будет по всем энергиям, а не всем
состояниям системы). Поскольку скорость
связана с энергией, уравнение (1) может
использоваться для получения связи
между температурой и скоростями молекул
в газе. Знаменатель в уравнении (1)
известен как каноническаястатистическая
сумма
.

  1. Распределение
    Больцмана.

Распределение Больцмана
распределение вероятностей различных
энергетических состоянийидеальной
термодинамической системы (идеальный
газ атомов или молекул)
в условияхтермодинамического
равновесия
; открытоЛ.
Больцманом
в18681871.

Согласно распределению Больцманасреднее число частиц с полной энергиейравно

где

кратность состояния частицы с энергией—
число возможных состояний частицы с
энергией.
Постояннаянаходится
из условия, что суммапо
всем возможным значениямравна
заданному полному числу частицв
системе (условие нормировки):

В случае, когда движение частиц подчиняется
классической механике, энергию
можно
считать состоящей из

  • кинетической энергии
    (кин)
    частицы (молекулы или атома),

  • внутренней энергии
    (вн)
    (например, энергии возбуждения электронов)
    и

  • потенциальной энергии
    (пот)
    во внешнем поле, зависящей от положения
    частицы в пространстве:

  1. Явление переноса.
    Диффузия

В термодинамически
неравновесных системах происходят
особые необратимые процессы, называемые
явлениями
переноса
, в
результате которых осуществляется
пространственный перенос массы, импульса,
энергии. К явлениям переноса относятся
теплопроводность
(перенос энергии), диффузия
(перенос массы) и внутреннее
трение

(перенос импульса). Ограничимся одномерными
явлениями переноса. Систему отсчета
будем выберать так, чтобы ось х была
направлена в сторону в направления пер

Диффузия.
При происходит самопроизвольное
проникновение и перемешивание частиц
двух соприкасающихся газов, жидкостей
и даже твердых тел; диффузия есть обмен
масс частиц этих тел, при этом явление
возникает и продолжается, пока существует
градиент плотности. Во времена становления
молекулярно-кинетической теории по
вопросу явления диффузии возникли
противоречия. Поскольку молекулы
перемещаются в пространстве с огромными
скоростями, то диффузия должна происходить
очень быстро. Если же открыть в комнате
крышку сосуда с пахучим веществом, то
запах распространяется довольно
медленно. Но здесь нет противоречия.
При атмосферном давлении молекулы
обладают малой длиной свободного пробега
и, при столкновениях с другими молекулами,
приемущественно «стоят» на месте.

Явление диффузии для химически
однородного газа подчиняется закону
Фика
:

(3)

где jm
плотность
потока массы

— величина, определяемая массой вещества,
диффундирующего в единицу времени через
единичную площадку, перпендикулярную
оси х, D — диффузия
(коэффициент
диффузии
),
dρ/dx — градиент плотности, который равен
скорости изменения плотности на единицу
длины х в направлении нормали к этой
площадке. Знак минус говорит о том, что
перенос массы происходит в направлении
убывания плотности (поэтому знаки jmи dρ/dx противоположны). Диффузия D численно
равна плотности потока массы при
градиенте плотности, равном единице.
Согласно кинетической теории газов,(4)

  1. Явление переноса.
    Теплопроводность

В термодинамически
неравновесных системах происходят
особые необратимые процессы, называемые
явлениями
переноса
, в
результате которых осуществляется
пространственный перенос массы, импульса,
энергии. К явлениям переноса относятся
теплопроводность
(перенос энергии), диффузия
(перенос массы) и внутреннее
трение

(перенос импульса). Ограничимся одномерными
явлениями переноса. Систему отсчета
будем выберать так, чтобы ось х была
направлена в сторону в направления
переноса.

Теплопроводность.
Если в первой области газа средняя
кинетическая энергия молекул больше,
чем во второй, то вследствие постоянных
столкновений молекул с течением времени
происходит процесс выравнивания средних
кинетических энергий молекул, т. е.,
выравнивание температур. Перенос энергии
в форме теплоты подчиняется закону
Фурье
:

(1)

где jE
плотность
теплового потока

— величина, которая определяется
энергией, переносимой в форме теплоты
в единицу времени через единичную
площадку, перпендикулярную оси х, λ —
теплопроводность,
— градиент температуры, равный скорости
изменения температуры на единицу длины
х в направлении нормали к этой площадке.
Знак минус говорит о том, что во время
теплопроводности энергия перемещается
в направлении убывания температуры
(поэтому знаки jE
и – противоположны). Теплопроводность
λ равна плотности теплового потока при
градиенте температуры, равном единице.

Можно показать, что

(2)

где сV
удельная
теплоемкость

газа при постоянном объеме (количество
теплоты, которое необходимо для нагревания
1 кг газа на 1 К при постоянном объеме),
ρ — плотность газа, <ν>
— средняя скорость теплового движения
молекул, <l>
— средняя длина свободного пробега.

  1. Явление переноса.
    Вязкость

В термодинамически
неравновесных системах происходят
особые необратимые процессы, называемые
явлениями
переноса
, в
результате которых осуществляется
пространственный перенос массы, импульса,
энергии. К явлениям переноса относятся
теплопроводность
(перенос энергии), диффузия
(перенос массы) и внутреннее
трение

(перенос импульса). Ограничимся одномерными
явлениями переноса. Систему отсчета
будем выберать так, чтобы ось х была
направлена в сторону в направления
переноса.

Внутреннее
трение

(
вязкость).
Суть механизма возникновения внутреннего
трения между параллельными слоями газа
(жидкости), которые движущутся с различными
скоростями, есть в том, что из-за
хаотического теплового движения
осуществляется обмен молекулами между
слоями, в результате чего импульс слоя,
который движется быстрее, уменьшается,
который движется медленнее — увеличивается,
что приводит к торможению слоя, который
движется быстрее, и ускорению слоя,
который движется медленнее.

Как
известно, сила внутреннего трения между
двумя слоями газа (жидкости) подчиняется
закону
Ньютона
:

(5)

где η — динамическая вязкость
(вязкость), dν/dx
— градиент скорости, который показывает
быстроту изменения скорости в направлении
х, перпендикулярном направлению движения
слоев, S — площадь, на которую действует
сила F.

Согласно второму закону
Ньютона взаимодействие двух слоев можно
рассматривать как процесс, при котором
в единицу времени от одного слоя к
другому передается импульс, который по
модулю равен действующей силе. Тогда
выражение (5) можно записать в виде

(6)

где jp
плотность
потока импульса

— величина, которая определяется
определяемая полным импульсом, переносимым
в единицу времени в положительном
направлении оси х через единичную
площадку, перпендикулярную оси х, dν/dx
— градиент скорости. Знак минус говорит
о том, что импульс переносится в
направлении убывания скорости (поэтому
знаки jp
и dν/dx
противоположны).

Динамическая
вязкость
η
численно равна плотности потока импульса
при градиенте скорости, равном единице;
она вычисляется по формуле

(7)

Из сопосавления формул (1), (3) и (6),
которые описывают явления переноса,
следует, что закономерности всех явлений
переноса сходны между собой. Эти законы
были известны еще задолго до того, как
они были обоснованы и получены из
молекулярно-кинетической теории, которая
позволила установить, что внешнее
сходство их математических выражений
является следствием общностью лежащего
в основе явлений теплопроводности,
диффузии и внутреннего трения молекулярного
механизма перемешивания молекул в
процессе их хаотического движения и
столкновений друг с другом.

Рассмотренные
законы Фурье, Фика и Ньютона не вскрывают
молекулярно-кинетической сути
коэффициентов λ, D и η. Выражения для
коэффициентов переноса получаются из
кинетической теории. Они записаны без
вывода, поскольку строгое и формальное
рассмотрение явлений переноса довольно
громоздко, а качественное — не имеет
смысла. Формулы (2), (4) и (7) дают связь
коэффициентов переноса и характеристики
теплового движения молекул. Из этих
формул следуют простые зависимости
между λ, D и η:и

  1. Реальный газы.
    Уравнение Ван-дер-Ваальса. Изотермы
    реального газа.

Реальный газгаз,
который не описывается уравнением
состояния идеального газа Клапейрона —
Менделеева
.

Зависимости между
его параметрами показывают, что молекулы
в реальном газе взаимодействуют между
собой и занимают определенный объём.
Состояние реального газа часто на
практике описывается обобщённым
уравнением Менделеева — Клапейрона:

где p — давление;
V — объем; T — температура; Zr
= Zr
(p,T)  — коэффициент
сжимаемости

газа; m — масса; М — молярная
масса
;
R — газовая
постоянная
.

Уравнение
состояния газа Ван-дер-Ваальса
уравнение,
связывающее основные термодинамические
величины

в модели газа Ван-дер-Ваальса.

Хотя модель
идеального
газа

хорошо описывает поведение реальных
газов

при низких давлениях
и высоких температурах,
в других условиях её соответствие с
опытом
гораздо хуже. В частности, это проявляется
в том, что реальные
газы

могут быть переведены в жидкое
и даже в твёрдое
состояние
,
а идеальные — не могут.

Для более точного
описания поведения реальных газов при
низких температурах была создана модель
газа Ван-дер-Ваальса, учитывающая силы
межмолекулярного взаимодействия. В
этой модели внутренняя
энергия

становится
функцией не толькотемпературы,
но и объёма.

Уравнение
Ван-дер-Ваальса — это одно из широко
известных приближённых уравнений
состояния, имеющее компактную форму и
учитывающее основные характеристики
газа с межмолекулярным взаимодействием[1].

-Поскольку весь
процесс происходит при постоянной
температуре T,
кривую, что изображает зависимость
давления р от объёма V,
называют изотермой.
При объёме V1
начинается конденсация
газа, а при объёме V2
она заканчивается. Если V > V1
то вещество будет в газообразном
состоянии, а при V < V2 —
в жидком.

  1. Твёрдое тело.
    Закон Дюлонга и Пти. Тепловое расширение
    твердых тел. Плавление.

Твёрдое тело —
это одно из четырёх агрегатных
состояний вещества
,
отличающееся от других агрегатных
состояний (жидкости,
газов,
плазмы)
стабильностью формы и характером
теплового
движения

атомов,
совершающих малые колебания
около положений равновесия[1].

Различают
кристаллические
и аморфные
твёрдые тела. Раздел физики,
изучающий состав и внутреннюю структуру
твёрдых тел, называется физикой
твёрдого тела
.
То, как твёрдое тело меняет форму при
воздействиях и движении, изучается
отдельной дисциплиной — механикой
твёрдого (деформируемого) тела
.
Движением абсолютно твёрдого тела
занимается третья наука — кинематика
твёрдого тела
.

Технические
приспособления, созданные человеком,
используют различные свойства твёрдого
тела. В прошлом твёрдое тело применялось
как конструкционный материал и в основе
употребления лежали непосредственно
ощутимые механические свойства как то
твёрдость,
масса,
пластичность,
упругость,
хрупкость.
В современном мире применение твёрдого
тела основывается на физических
свойствах, которые зачастую обнаруживаются
только при лабораторных исследованиях.

Закон Дюлонга —
Пти
(Закон
постоянства теплоёмкости
) —
эмпирический
закон
,
согласно которому молярная
теплоёмкость

твёрдых тел при комнатной температуре
близка к 3R[1]:

где R —
универсальная
газовая постоянная
.

Закон выводится
в предположении, что кристаллическая
решетка тела состоит из атомов, каждый
из которых совершает гармонические
колебания

в трех направлениях, определяемыми
структурой решетки, причем колебания
по различным направлениям абсолютно
независимы друг от друга. При этом
получается, что каждый атом представляет
три
осциллятора
с энергией E,
определяемой следующей формулой:

Формула вытекает
из теоремы о равнораспределении энергии
по степеням свободы. Так как каждый
осциллятор имеет одну степень
свободы
,
то его средняя кинетическая
энергия

равна
,
а так как колебания происходят
гармонически, то средняяпотенциальная
энергия

равна средней кинетической, а полная
энергия — соответственно их сумме.
Число осцилляторов в одном моле вещества
составляет
,
их суммарная энергия численно равна
теплоемкости тела — отсюда и вытекает
закон Дюлонга-Пти.

Приведем таблицу
экспериментальных значений теплоемкости
ряда химических элементов для нормальных
температур:

Элемент

,
кал/(К·моль)

Элемент

,
кал/(К·моль)

C

1,44

Pt

6,11

B

2,44

Au

5,99

Al

5,51

Pb

5,94

Ca

5,60

U

6,47

Ag

6,11

Тепловое
расширение
—изменение
линейных размеров и формы тела при
изменении его температуры.
Количественно тепловое расширение
жидкостей и газов при постоянном давлении
характеризуется изобарным
коэффициентом
расширения

(объёмным коэффициентом теплового
расширения). Для характеристики теплового
расширения твёрдых тел дополнительно
вводят коэффициент линейного теплового
расширения.

Раздел физики
изучающий данное свойство называется
дилатометрией.

Тепловое расширение
тел учитывается при конструировании
всех установок, приборов и машин,
работающих в переменных температурных
условиях.

Основной закон
теплового расширения

гласит, что тело с линейным размером
в
соответствующем измерении при увеличении
его температуры нарасширяется
на величину,
равную:

,

где

так называемыйкоэффициент
линейного теплового расширения
.
Аналогичные формулы имеются для расчета
изменения площади и объема тела. В
приведенном простейшем случае, когда
коэффициент теплового расширения не
зависит ни от температуры, ни от
направления расширения, вещество будет
равномерно расширяться по всем
направлениям в строгом соответствии с
вышеприведенной формулой.

Плавле́ние—это процесс перехода
тела из кристаллического
твёрдого состояния в жидкое, то есть
переход вещества из одного агрегатного
состояния

в другое. Плавление происходит с
поглощением удельной
теплоты плавления

и является фазовым
переходом

первого рода, которое сопровождается
скачкообразным
изменением теплоёмкости
в конкретной для каждого вещества
температурной точке превращения —
температура
плавления
.

Способность
плавиться

относится к физическим
свойствам

вещества[1]

При нормальном
давлении, наибольшей температурой
плавления

среди металлов
обладает вольфрам
(3422 °C), среди простых
веществ
 —
углерод
(по разным данным 3500 — 4500 °C[2])
а среди произвольных веществ — карбид
тантала-гафния

Ta4HfC5
(4216 °C). Можно считать, что самой низкой
температурой плавления обладает гелий:
при нормальном давлении он остаётся
жидким при сколь угодно низких
температурах.

Многие вещества
при нормальном давлении не имеют жидкой
фазы. При нагревании они путем сублимации
сразу переходят в газообразное состояние.

  1. Жидкости.
    Поверхностное плавление. Смачивание.

Жи́дкость
вещество, находящееся в жидком агрегатном
состоянии
,
занимающем промежуточное положение
между твёрдым и газообразным состояниями[1].
Основным свойством жидкости, отличающим
её от веществ, находящихся в других
агрегатных состояниях, является
способность неограниченно менять форму
под действием касательных механических
напряжений, даже сколь угодно малых,
практически сохраняя при этом объём.

Поверхностные
явления
,физико-химические
явления, которые обусловлены особыми
(по сравнению с объемными) свойствами
поверхностных слоев жидкостей
и твердых тел. Наиболее общее и важное
свойство этих слоев — избыточная свободная
энергия F = sS,
где s-поверхностное (межфазное) натяжение,
для твердых тел — удельная свободная
поверхностная
энергия
.
S-площадь
поверхности раздела фаз. Поверхностные
явления протекают наиболее выраженно
в гетерогенных системах с сильно развитой
поверхностью раздела фаз, т. е. в дисперсных
системах.
Изучение
закономерностей поверхностных явлений
является составной частью коллоидной
химии

и чрезвычайно важно для всех ее
практических приложений.

Самопроизвольные
поверхностные явления происходят
вследствие уменьшения поверхностной
энергии
системы.
Они могут быть обусловлены уменьшением
общей поверхности системы либо уменьшением
поверхностного натяжения на границе
раздела фаз. К поверхностным явлениям,
связанным с уменьшением общей поверхности,
относят: 1) капиллярные
явления
.
в частности приобретение каплями (в
туманах) и газовыми пузырьками (в жидкой
среде) сферич. формы, при которой
поверхность капли (пузырька) минимальна.
2) Коалесценция
— слияние капель в эмульсиях
(или газовых пузырьков в пенах)при
их непосредств. контакте. 3) Спекание
мелких твердых частиц в порошках
при достаточно высоких температурах.
4) Собирательная рекристаллизация —
укрупнение зерен поликристаллического
материала при повышении температуры.
5) Изотермическая перегонка
— увеличение объема крупных капель за
счет уменьшения мелких. При этом
вследствие повышенного давления
паров
жидкости с более высокой кривизной
поверхности происходит испарение
мелких капель и последующая их конденсация
на более крупных каплях. Для жидкости,
находящейся на твердой подложке,
существенная роль в переносе вещества
от мелких капель к крупным играет
поверхностная диффузия.
Изотермическая перегонка
твердых частиц может происходить через
жидкую фазу вследствие повышенной
растворимости более мелких частиц.

При определенных
условиях в системе могут происходить
самопроизвольные поверхностные явления,
сопровождающиеся увеличением общей
поверхности раздела фаз. Так,
самопроизвольное диспергирование и
образование устойчивых лиофильных
коллоидных
систем

(например, критических эмульсий)
происходит в условиях, когда увеличение
поверхностной энергии, вызываемое
измельчением
частиц, компенсируется их вовлечением
в тепловое движение и соответствующим
возрастанием энтропии
(см. Микроэмульсии).
При гомогенном
образовании зародышей новой фазы при
конденсации паров, кипении.
кристаллизации
из растворов и расплавов
увеличение энергии системы вследствие
образования новой поверхности
компенсируется уменьшением хим.
потенциала вещества при фазовом
переходе
.
Критические размеры зародышей, при
превышении которых выделение новой
фазы идет самопроизвольно, зависят от
поверхностного натяжения, а также от
величины перегрева (переохлаждения,
пересыщения). Связь между этими параметрами
определяется уравнением Гиббса (см.
Зарождение
новой фазы).

Сма́чивание—физическое
взаимодействие жидкости
с поверхностью твёрдого
тела

или другой жидкости. Смачивание бывает
двух видов:

  • Иммерсионное
    (вся поверхность твёрдого тела
    контактирует с жидкостью)

  • Контактное
    (состоит из трёх фаз — твердая,
    жидкая, газообразная)

Смачивание зависит
от соотношения между силами сцепления
молекул
жидкости с молекулами (или атомами)
смачиваемого тела (адгезия)
и силами взаимного сцепления молекул
жидкости (когезия).

Если жидкость
контактирует с твёрдым телом, то
существуют две возможности:

  1. молекулы жидкости
    притягиваются друг к другу сильнее,
    чем к молекулам твёрдого тела. В
    результате силы притяжения между
    молекулами жидкости собирают её в
    капельку. Так ведёт себя ртуть
    на стекле,
    вода
    на парафине
    или «жирной» поверхности. В этом случае
    говорят, что жидкость не
    смачивает

    поверхность;

  2. молекулы жидкости
    притягиваются друг к другу слабее, чем
    к молекулам твёрдого тела. В результате
    жидкость стремится прижаться к
    поверхности, расплывается по ней. Так
    ведёт себя ртуть на цинковой
    пластине, вода на чистом стекле или
    дереве. В этом случае говорят, что
    жидкость смачивает
    поверхность.

Степень смачивания
характеризуется углом смачивания. Угол
смачивания (или краевой угол смачивания)
— это угол, образованный касательными
плоскостями к межфазным поверхностям,
ограничивающим смачивающую жидкость,
а вершина угла лежит на линии раздела
трёх фаз. Измеряется методом лежащей
капли[1].
В случае порошков надёжных методов,
дающих высокую степень воспроизводимости,
пока (по состоянию на 2008 год) не разработано.
Предложен весовой метод определения
степени смачивания, но он пока не
стандартизован.

Измерение степени
смачивания весьма важно во многих
отраслях промышленности (лакокрасочная,
фармацевтическая, косметическая
и т. д.). К примеру, на лобовые стёкла
автомобилей наносят особые покрытия,
которые должны быть устойчивы против
разных видов загрязнений. Состав и
физические свойства покрытия стёкол и
контактных линз можно сделать оптимальным
по результатам измерения контактного
угла[2].

К примеру, популярный
метод увеличения добычи нефти при помощи
закачки воды в пласт исходит из того,
что вода заполняет поры и выдавливает
нефть.
В случае мелких пор и чистой воды это
далеко не так, поэтому приходится
добавлять специальные ПАВ.
Оценку смачиваемости горных пород при
добавлении различных по составу растворов
можно измерить различными приборами.

studfiles.net

Средняя кинетическая энергия частиц газа — КиберПедия

Оказывается, что ключевую роль в описании идеального газа играет средняя кинетическая энергия его частиц.

Частицы газа двигаются с разными скоростями. Пусть в газе содержится N частиц, скорости которых равны v1,v2,…,vN. Масса каждой частицы равна m0. Кинетические энергии частиц:

.

Средняя кинетическая энергия E частиц газа — это среднее арифметическое их кинетических энергий:

.

Последний множитель — это средний квадрат скорости, обозначаемый просто v2:

.

Тогда формула для средней кинетической энергии приобретает привычный вид:

. (1)

Корень из среднего квадрата скорости называется средней квадратической скоростью:

.

Основное уравнение МКТ идеального газа

Cвязь между давлением газа и средней кинетической энергией его частиц называется основным уравнением молекулярно-кинетической теории идеального газа. Эта связь выводится из законов механики и имеет вид:

где n — концентрация газа (число частиц в единице объёма). С учётом (1) имеем также:

.

Что такое m0n? Произведение массы частицы на число частиц в единице объёма даёт массу единицы объёма, то есть плотность: m0n = ρ. Получаем третью разновидность основного уравнения:

.

Энергия частиц и температура газа

Можно показать, что при установлении теплового равновесия между двумя газами выравниваются средние кинетические энергии их частиц. Но мы знаем, что при этом становятся равны и температуры газов. Следовательно, температура газа — это мера средней кинетической энергии его частиц.

Собственно, ничто не мешает попросту отождествить эти величины и сказать, что температура газа — это средняя кинетическая энергия его молекул. В продвинутых курсах теоретической физики так и поступают. Определённая таким образом температура измеряется в энергетических единицах — джоулях.

Но для практических задач удобнее иметь дело с привычными кельвинами. Связь средней кинетической энергии частиц и абсолютной температуры газа даётся формулой:

(2)

где k = 1,38 · 10−23 Дж/К — постоянная Больцмана.

Из данной формулы можно получить выражение для средней квадратической скорости частиц. Подставим (1) в (2):

откуда

В эту формулу входит масса частицы m0, которую ещё надо вычислить. Но можно получить более удобный вариант формулы, домножив числитель и знаменатель подкоренного выражения на число Авогадро NA:

r3kNA

.

m0NA

В знаменателе имеем: m0NA = µ — молярная масса газа. В числителе стоит произведение двух констант, которое также является константой:


Дж Дж

−23 23 −1

R = kNA = 1,38 · 10 · 6,02 · 10 моль = 8,31 .

К моль · К

Константа R называется универсальной газовой постоянной.

Теперь формула для средней квадратической скорости приобретает вид:

.

Такое выражение гораздо более удобно для практических вычислений.

cyberpedia.su

Температура и средняя кинетическая энергия теплового движения молекул


      
Из опыта известно, что если привести в соприкосновение два тела, горячее и холодное, то через некоторое время их температуры выравниваются.




      
Что перешло от одного тела к другому? Раньше, во времена Ломоносова и Лавуазье, считали, что носителем тепла является некоторая жидкость – теплород. На самом деле – ничто не переходит, только изменяется средняя кинетическая энергия – энергия движения молекул, из которых состоят эти тела. Именно средняя кинетическая энергия атомов и молекул служит характеристикой системы в состоянии равновесия.

      
Это свойство позволяет определить параметр состояния, выравнивающийся у всех тел, контактирующих между собой, как величину, пропорциональную средней кинетической энергии частиц в сосуде. Чтобы связать энергию с температурой, Больцман ввел коэффициент пропорциональности k, который впоследствии был назван его именем:


 ,  (1.3.1)

      
где k – постоянная Больцмана, k = 1,38·10-23 Дж·К-1.


      
Величину T называют абсолютной температурой и измеряют в градусах Кельвина (К). Она служит мерой кинетической энергии теплового движения частиц идеального газа.

      
Из (1.3.1) получим:


  (1.3.2)


      
Формула (1.3.2) применима для расчетов средней кинетической энергии на одну молекулу идеального газа.

      
Можно записать: .

      
Обозначим: R=kNAуниверсальная газовая постоянная,


 .   



Тогда, с учетом обозначения получим:


 ,  (1.3.3)



– это формула для молярной массы газа.

      
Так как температура определяется средней энергией движения молекул, то она, как и давление, является статистической величиной, то есть параметром, проявляющимся в результате совокупного действия огромного числа молекул. Поэтому не говорят: «температура одной молекулы», нужно сказать: «энергия одной молекулы, но температура газа».


      
С учетом вышесказанного о температуре, основное уравнение молекулярно-кинетической теории можно записать по-другому. Так как из (1.2.3) , где . Отсюда


 ,  (1.3.4)


      
В таком виде основное уравнение молекулярно-кинетической теории употребляется чаще.

      
Термометры. Единицы измерения температуры

      
Наиболее естественно было бы использовать для измерения температуры определение , т.е. измерять кинетическую энергию поступательного движения молекул газа. Однако чрезвычайно трудно проследить за молекулой газа и еще сложнее за атомом. Поэтому для определения температуры идеального газа используется уравнение


   


      
Действительно, величины P и V легко поддаются измерению.

      
В качестве примера рассмотрим изображенный на рис. 1.4 простейший газовый термометр с постоянным давлением. Объем газа в трубке


 ,   


как мы видим, пропорционален температуре, а поскольку высота подъема ртутной капли пропорциональна V, то она пропорциональна и Т.

      
Существенно то, что в газовом термометре необходимо использовать идеальный газ. Если же в трубку вместо идеального газа поместить фиксированное количество жидкой ртути, то мы получим обычный ртутный термометр. Хотя ртуть далеко не идеальный газ, вблизи комнатной температуры ее объем изменяется почти пропорционально температуре. Термометры, в которых вместо идеального газа используются какие-либо другие вещества, приходится калибровать по показаниям точных газовых термометров.




  
 Рис. 1.4 Рис. 1.5


      
В физике и технике за абсолютную шкалу температур принята шкала Кельвина, названная в честь знаменитого английского физика, лорда Кельвина. 1 К – одна из основных единиц СИ.

      
Кроме того, используются и другие шкалы:


– шкала Фаренгейта (немецкий физик 1724 г.) – точка таяния льда 32 °F, точка кипения воды 212 °F.


– шкала Цельсия (шведский физик 1842 г.) – точка таяния льда 0°С, точка кипения воды 100 °С.

0 °С = 273,15 К.


      
На рис. 1.5 приведено сравнение разных температурных шкал.


Цельсий Андерс (1701 – 1744) – шведский астроном и физик. Работы относятся к астрономии, геофизике, физике. Предложил в 1742 г. стоградусную шкалу термометра, в которой за ноль градусов принял температуру таяния льда, а за 100 градусов – температуру кипения воды.


      
Так как всегда , то и Т не может быть отрицательной величиной.

      
Своеобразие температуры заключается в том, что она не аддитивна (аддитивный – получаемый сложением).

      
Если мысленно разбить тело на части, то температура всего тела не равна сумме температур его частей (длина, объём, масса, сопротивление, и так далее – аддитивные величины). Поэтому температуру нельзя измерять, сравнивая её с эталоном.

      
Современная термометрия основана на шкале идеального газа, где в качестве термометрической величины используют давление. Шкала газового термометра – является абсолютной (Т = 0; Р = 0).


ens.tpu.ru

Средняя кинетическая энергия молекул идеального газа

1. При увеличении средней кинетической энергии теплового движения молекул в 4 раза их средняя квадратичная скорость

1) уменьшится в 4 раза              2) увеличится в 4 раза                         3) уменьшится в 2 раза                  4) увеличится в 2 раза

Вспомним формулу средней кинетической энергии молекул: . Выразим среднюю квадратичную скорость:  . Видим, что увеличение средней кинетической энергии в 4 раза (извлекаем корень из 4) средняя квадратичная скорость увеличивается вдвое.

Ответ: 4.

2.  При увеличении средней кинетической энергии теплового движения молекул идеального газа в 2 раза абсолютная температура газа

1) уменьшится в 4 раза              2) увеличится в 4 раза                         3) не изменится                4) увеличится в 2 раза

Здесь нам понадобится формула   – средняя кинетическая энергия прямо пропорциональна температуре. Значит, если энергия увеличивается вдвое, то и температура увеличивается вдвое.

Ответ: 4.

3. При по­ни­же­нии аб­со­лют­ной тем­пе­ра­ту­ры иде­аль­но­го газа в 1,5 раза сред­няя ки­не­ти­че­ская энер­гия теп­ло­во­го дви­же­ния мо­ле­кул

1) уве­ли­чит­ся в 1,5 раза
2) умень­шит­ся в 1,5 раза
3) умень­шит­ся в 2,25 раза
4) не из­ме­нит­ся

Это обратная предыдущей задача. Так как между средней кинетической энергией и температурой прямая зависимость, то при уменьшении температуры в 1,5 раза средняя кинетическая энергия также уменьшится в 1,5 раза.

Ответ: 2.

4. При умень­ше­нии сред­ней квад­ра­тич­ной ско­ро­сти теп­ло­во­го дви­же­ния мо­ле­кул в 2 раза сред­няя ки­не­ти­че­ская энер­гия теп­ло­во­го дви­же­ния мо­ле­кул

1) не из­ме­нит­ся
2) уве­ли­чит­ся в 4 раза
3) умень­шит­ся в 4 раза
4) уве­ли­чит­ся в 2 раза

Если в формулу ввести разделенное пополам значение средней квадратичной скорости, то при возведении в квадрат получим, что знаменатель увеличился вчетверо, именно во столько раз уменьшится  средняя кинетическая энергия молекул.

Ответ: 3

5. При умень­ше­нии сред­ней ки­не­ти­че­ской энер­гии теп­ло­во­го дви­же­ния мо­ле­кул в 2 раза их сред­няя квад­ра­тич­ная ско­рость

1) умень­шит­ся в 4 раза
2) уве­ли­чит­ся в 4 раза
3) умень­шит­ся в 2 раза
4) уве­ли­чит­ся в 2 раза

5) умень­шит­ся в   раз
6) уве­ли­чит­ся в  раз

Задача, обратная предыдущей. При извлечении корня получим уменьшение средней квадратичной скорости в  раз.

Ответ: 5.

6. При по­ни­же­нии аб­со­лют­ной тем­пе­ра­ту­ры иде­аль­но­го газа в 2 раза сред­няя квад­ра­тич­ная ско­рость теп­ло­во­го дви­же­ния мо­ле­кул

1) умень­шит­ся в   раз
2) уве­ли­чит­ся в   раз
3) умень­шит­ся в 2 раза

4) уве­ли­чит­ся в 2 раза

Между температурой и средней кинетической энергией – прямая зависимость. Поэтому с уменьшится вдвое. Ну а средняя квадратичная скорость тогда – в раз (см. задачу 5).

Ответ: 1.

 

Движение молекул газа подчиняется законам статистической физики. В каждый момент времени скорости отдельных молекул могут значительно отличаться друг от друга, но их средние значения одинаковы, и при расчетах используются не мгновенные скорости отдельных молекул, а некоторые средние значения. Различают среднюю арифметическую  и среднюю квадратичную   скорости хаотического движения молекул.

Пусть имеется N молекул, скорости которых соответственно  … . Средняя арифметическая скорость хаотического движения молекул по модулю определяется как сумма модулей скоростей молекул газа, деленная на их общее число:

Средняя квадратичная скорость хаотического движения молекул

, где   — средний квадрат скорости движения молекул. Его не следует смешивать с квадратом средней скорости:

 

Как показывают расчеты, ;  , где R — универсальная газовая постоянная, Μ — молярная масса.

easy-physic.ru

Средняя кинетическая энергия

Кинетическая энергия представляет собой ту энергию, которая определяется скоростью движения различных точек, принадлежащих этой системе. При этом следует различать энергию, которая характеризует поступательное движение и движение вращательное. При этом, средняя кинетическая энергия – это средняя разность между совокупной энергией всей системы и ее энергией покоя, то есть, в сущности, ее величина является средней величиной потенциальной энергии.

Ее физическая величина определяется по формуле 3 / 2 кТ, в которой обозначены: Т – температура, k — константа Больцмана. Эта величина может служить своеобразным критерием для сравнения (эталоном) для энергий, заключенных в различных типах теплового движения. К примеру, средняя кинетическая энергия для молекул газа при исследовании поступательного движения, равна 17 (- 10) нДж при температуре газа 500 С. Как правило, наибольшей энергией при поступательном движении обладают электроны, а вот энергия нейтральных атомов и ионов и значительно меньше.

Данная величина, если мы рассматриваем любой раствор, газ или жидкость, находящуюся при данной температуре, имеет постоянное значение. Такое утверждение справедливо и для коллоидных растворов.

Несколько иначе обстоит дело с твердыми веществами. В этих веществах средняя кинетическая энергия любой частицы слишком мала для того, чтобы преодолеть силы молекулярного притяжения, а потому она может только совершать движение вокруг некой точки, которая условно фиксирует определенное равновесное положение частицы на протяжении длительного отрезка времени. Это свойство и позволяет твердому веществу быть достаточно устойчивым по форме и объему.

Если мы рассматриваем условия: поступательное движение и идеальный газ, то здесь средняя кинетическая энергия не является величиной, зависимой от молекулярной массы, а потому определяется как значение, прямо пропорциональное значению абсолютной температуры.

Все эти суждения мы привели с той целью, чтобы показать, что они справедливы для всех типов агрегатных состояний вещества – в любом из них температура выступает в качестве основной характеристики, отражающей динамику и интенсивность теплового движения элементов. А в этом состоит сущность молекулярно-кинетической теории и содержание понятия теплового равновесия.

Как известно, если два физических тела приходят во взаимодействие друг с другом, то между ними возникает процесс теплообмена. Если же тело представляет собой замкнутую систему, то есть не взаимодействует ни с какими телами, то его теплообменный процесс будет длиться столько времени, сколько потребуется для выравнивания температур этого тела и окружающей среды. Такое состояние называют термодинамическим равновесием. Этот вывод многократно был подтвержден результатами экспериментов. Чтобы определить среднюю кинетическую энергию, следует обратиться к характеристикам температуры данного тела и его теплообменных свойств.

Важно также учитывать, что микропроцессы внутри тел не заканчиваются и тогда, когда тело вступает в термодинамическое равновесие. В этом состоянии внутри тел происходит перемещение молекул, изменение их скоростей, удары и столкновения. Поэтому выполняется только одно из нескольких наших утверждений – объем тела, давление (если речь идет о газе), могут различаться, но вот температура все равно будет оставаться величиной постоянной. Этим еще раз подтверждается утверждение, что средняя кинетическая энергия теплового движения в изолированных системах определяется исключительно показателем температуры.

Эту закономерность установил в ходе опытов Ж. Шарль в 1787 году. Проводя опыты, он заметил, что при нагреве тел (газов) на одинаковую величину, давление их меняется в соответствии с прямо пропорциональным законом. Это наблюдение дало возможность создать много полезных приборов и вещей, в частности — газовый термометр.

fb.ru

ГАЗ | Энциклопедия Кругосвет

Содержание статьи

ГАЗ одно из агрегатных состояний вещества, в котором составляющие его частицы (атомы, молекулы) находятся на значительных расстояниях друг от друга и находятся в свободном движении. В отличие от жидкости и твердого тела, где молекулы находятся на близких расстояниях и связаны друг с другом значительными по величине силами притяжения и отталкивания, взаимодействие молекул в газе проявляется лишь в короткие моменты их сближения (столкновения). При этом происходит резкое изменение величины и направления скорости движения сталкивающихся частиц.

Название «газ» происходит от греческого слова «haos» и было введено Ван Гельмонтом еще в начале 17 в., оно хорошо отражает истинный характер движения частиц в газе, отличающегося полной беспорядочностью, хаотичностью. В отличие, например, от жидкости газы не образуют свободной поверхности и равномерно заполняют весь доступный им объем.

Газообразное состояние, если причислять к нему и ионизованные газы, является самым распространенным состоянием вещества во Вселенной (атмосферы планет, звезды, туманности, межзвездное вещество и т.д.).

Идеальный газ.

Законы, определяющие свойства и поведение газа, легче всего формулируются для случая так называемого идеального газа или газа относительно низкой плотности. В таком газе среднее расстояние между молекулами предполагается большим по сравнению с радиусом действия межмолекулярных сил. Порядок величины этого среднего расстояния можно определить как , где – n число частиц в единице объема или числовая плотность газа. Если пользоваться приближенной моделью взаимодействия частиц газа, в которой молекулы представляются твердыми упругими шариками диаметром d, то условие идеальности газа записывается как nd3 d = 3·10–8 см. Это означает, что газ является идеальным, если n 22 см–3. Такому условию заведомо отвечает любой газ (например, воздух), находящийся при нормальных условиях (давление p = 1атм, температура T = 273K), поскольку при этих условиях число молекул в одном кубическом сантиметре газа равно 2,69·1019см–3 (число Лошмидта). При фиксированном давлении газа условие идеальности удовлетворяется тем лучше, чем выше температура газа, поскольку плотность газа, как это следует из уравнения состояния идеального газа в этом случае обратно пропорциональна его температуре.

Законы идеального газа были в свое время открыты опытным путем. Так еще в 17 в. был установлен закон Бойля – Мариотта

(1) pV = const,

(2) из которого следует, что изменение объема газа V при постоянной температуре T сопровождается таким изменением его давления p, что их произведение остается постоянной величиной.

Если газ находится в условиях, когда постоянным сохраняется его давление, но меняется температура (такие условия можно осуществить, например, поместив газ в сосуд, закрытый подвижным поршнем), то выполняется закон Гей-Люссака

(2) ,

т.е. при фиксированном давлении отношение объема газа к его температуре является постоянным. Оба указанных закона объединяются в универсальное уравнение Клапейрона – Менделеева, которое называется также уравнением состояния идеального газа

(3) pV = nRT.

Здесь n – число молей газа, R = 8,317 Дж/моль·K – универсальная газовая постоянная. Молем любого вещества называется такое его количество, масса которого в граммах равна атомной или молекулярной массе вещества М. В свою очередь, молекулярной массой вещества называется отношение массы молекулы этого вещества к так называемой атомной единице массы (а.е.м.), в качестве которой принимается масса равная 1/12 массы атома 12С (изотопа углерода с массовым числом 12) (см. ИЗОТОПЫ). При этом 1 а.е.м. = 1,66·10–27 кг.

Один моль любого вещества содержит одно и то же число молекул, равное числу Авогадро моль–1. Число молей данного количества вещества определяется отношением массы вещества m к его молекулярной массе, т.е. n = m/M .

Используя соотношение n = N/V = nNA /V, уравнение состояния можно представить в виде, связывающем между собой давление, плотность и температуру

(4) p = nkT,

где вводится величина

k = R/NA = 1,38·10–23 Дж/K , которая носит название постоянной Больцмана.

Уравнение состояния в форме (3) или (4) может быть обосновано также методами кинетической теории газов, что позволяет, в частности, придать более отчетливый физический смысл постоянной Больцмана k (см. МОЛЕКУЛЯРНО- КИНЕТИЧЕСКАЯ ТЕОРИЯ).

Из уравнения состояния идеального газа непосредственно следует закон Авогадро: при одинаковых давлениях и температурах в равных объемах любого газа содержится одинаковое число молекул. Из этого закона вытекает и обратное утверждение: различные газы, содержащие одинаковое число молекул, при одинаковых давлениях и температурах занимают одинаковый объем. В частности, при нормальных условиях моль любого газа занимает объем

м3/моль

Исходя из этого значения легко определить число Лошмидта

2,69·1025 м–3 = 2,69·10–19 см–3

Другой закон, относящийся к смесям идеальных газов, носит название закона Дальтона: давление смеси газов равно сумме парциальных давлений ее компонентов. Парциальным давлением какого либо газа (компонента газовой смеси) называется при этом давление, которое оказывал бы этот газ, если бы он один занимал весь объем, занимаемый смесью.

Средняя кинетическая энергия теплового движения молекул.

Уравнение состояния идеального газа в форме (3) или (4) может быть обосновано и методами кинетической теории газов. На основе кинетического подхода сравнительно просто выводится выражение для давления идеального газа в сосуде, которое получается как результат усреднения импульсов молекул, передаваемых стенке сосуда при многочисленных соударениях молекул со стенкой. Величина получаемого при этом давления определяется как

(5) ,

Где бv 2с – среднее значение квадрата скорости молекул, m – масса молекулы.

Средняя кинетическая энергия молекул газа (в расчете на одну молекулу) определяется выражением

(6)

Кинетическая энергия поступательного движения атомов и молекул, усредненная по огромному числу беспорядочно движущихся частиц, является мерилом того, что называется температурой. Если температура T измеряется в градусах Кельвина (К), то связь ее с Ek дается соотношением

(7)

Это соотношение позволяет, в частности, придать более отчетливый физический смысл постоянной Больцмана

k = 1,38·10–23 Дж/K, которая фaктически является переводным коэффициентом, определяющим, какая часть джоуля содержится в градусе.

Используя (6) и (7), находим, что (1/3)m бv2с = kT. Подстановка этого соотношения в (5) приводит к уравнению состояния идеального газа в форме

p = nkT, которое уже было получено из уравнения Клапейрона – Менделеева (3).

Из уравнений (6) и (7) можно определить значение средне-квадратичной скорости молекул

(8)

Расчеты по этой формуле при Т = 273К дают для молекулярного водорода бvскв = 1838 м/с, для азота – 493 м/с, для кислорода – 461 м/с и т.д.

Распределение молекул по скоростям.

Приведенные выше значения бvскв позволяют составить представление о порядке величины среднего значения тепловых скоростей молекул для различных газов. Разумеется, не все молекулы движутся с одинаковыми скоростями. Среди них есть определенная доля молекул с малыми значениями скорости и, наоборот, некоторое число достаточно быстрых молекул. Однако, большая часть молекул обладает скоростями, значения которых группируются относительно наиболее вероятной при данной температуре величины, которая не очень существенно отличается от значений, даваемых формулой (8). Такое распределение молекул по скоростям устанавливается в газе в результате обмена импульсом и энергией при многочисленных столкновениях молекул между собой и со стенками сосуда, Вид этого универсального (не меняющегося во времени) распределения молекул по скоростям, соответствующего состоянию теплового равновесия в газе, был впервые теоретически установлен Максвеллом. С помощью распределения Максвелла определяется относительная доля молекул, абсолютные скорости которых лежат в некотором узком интервале значений dv.

(9)

Вид распределения dn/ndv, описываемого выражением (9), для двух различных температур (T2 > T1) представлен на рис.1.

С помощью максвелловского распределения можно вычислить такие важные характеристики газа как средняя, среднеквадратичная и наиболее вероятная скорость теплового движения молекул, рассчитать среднее число столкновений молекул со стенкой сосуда и т.д. Средняя тепловая скорость молекул, например, которая представляет собой фактически средне-арифметическую скорость, определяется при этом формулой

(10)

Наиболее вероятная скорость молекул, соответствующая максимуму кривых, представленных на рис. 1, определена как

(11)

Значения скоростей, определяемых формулами (8), (10) и (11), оказываются близкими по величине. При этом

(12) бvс = 0,93 бvскв, nв = 0,82бvскв

Внутренняя энергия и теплоемкость идеального газа.

Чтобы изменить состояние некоторого заданного объема газа (например, нагреть или охладить его), надо либо совершить над ним механическую работу, либо передать ему некоторое количество тепла за счет контакта с другими телами. Количественно эти изменения выражаются с помощью первого начала термодинамики, которое отражает важнейший закон природы: сохранение механической и тепловой энергии тела. Формулировку первого начала для бесконечно малого квазистатического процесса можно представить в виде (см. ТЕРМОДИНАМИКА).

(13) dQ = dU + dA

Здесь dQ – элементарное количество тепла, передаваемое телу, dU – изменение его внутренней энергии,

dA = pdV – элементарная работа, совершаемая газом при изменении его объема (эта работа равна с обратным знаком элементарной работе, совершаемой внешними силами над газом). Обозначение dU соответствует полному дифференциалу от переменной U. Это означает, что приращение внутренней энергии при переходе газа из некоторого состояния 1 в состояние 2 можно представить в виде интеграла

Обозначения dQ и dA означают, что в общем случае интеграл от них нельзя представить в виде разности соответствующих значений в конечном и начальном состоянии газа, поэтому интегрирование (13) по всему процессу приводит к соотношению

Q = U2U1 + A

Вводится понятие теплоемкости газа как количества тепла, которое нужно сообщить газу, чтобы повысить его температуру на один градус Кельвина. Тогда по определению

Далее под С подразумевается теплоемкость, отнесенная к одному молю газа, или молярная теплоемкость. Внутренняя энергия U также определена для одного моля газа. Если газ нагревается при постоянном объеме (изохорический процесс), т.е. совершаемая газом работа равна нулю, то

(14)

Если состояние газа меняется при постоянном давлении (изобарический процесс), то в соответствии с (13)

(15)

Использование уравнение состояния идеального газа (3) при v = 1 дает

Следовательно, молярные теплоемкости идеального газа при постоянном давлении и при постоянном объеме связаны соотношением

(16) Cp = Cv + R

Внутренняя энергия газа, в общем случае, состоит из кинетической энергии поступательного и вращательного движения молекул, энергии внутреннего (колебательного) движения атомов в молекуле, а также потенциальной энергии взаимодействия молекул. В случае идеального газа вкладом последнего слагаемого в полную энергию можно пренебрегать.

В классической статистической механике доказывается так называемая теорема о равномерном распределении кинетической энергии по степеням свободы молекул, согласно которой на каждую степень свободы молекулы в состоянии теплового равновесия в среднем приходится энергия, равная (1/2)kT.

Для газов, состоящих из одноатомных молекул, (например, инертные газы) средняя кинетическая энергия, приходящаяся на один атом, определена соотношением (7), поскольку она соответствует лишь поступательному движению атомов, (3 степени свободы). В этом случае

,

Существенно, что для идеального газа одноатомных молекул внутренняя энергия зависит только от температуры и не зависит от объема.

Для линейных двухатомных молекул число степеней свободы равно пяти (на одну степень свободы меньше, чем для системы двух независимых атомов, поскольку в молекуле эти атомы связаны жесткой связью) Дополнительные две степени свободы описывают вращательное движение молекулы относительно двух взаимно-перпендикулярных осей. При этом

,

Если атомы в молекуле совершают еще и колебания, то, согласно классической теории, наличие колебательного движения вносит вклад в среднюю энергию молекулы, равный kT (по kT/2, приходящийся на кинетическую и потенциальную энергии колебаний. Тогда в случае молекулы, образованной из атомов,

,

где i = nпост + nвращ + 2nкол – полное число степеней свободы молекулы. При этом nпост = 3. Для линейной молекулы nвращ = 2, nкол = 3N – 5. Для всех других молекул nвращ = 3, nкол = 3N – 6.

Классическая теория, в основном, правильно описывает тепловые явления в газе в некоторых узких интервалах температур, однако температурная зависимость теплоемкости в целом, наблюдаемая в эксперименте, ведет себя далеко не так, как предсказывает классическая теория. Это несоответствие теории и эксперимента было понято только с появлением квантовой теории теплоемкости, основанной на представлении о дискретности вращательных и колебательных уровней молекул. При низких температурах наблюдается только поступательное движение молекул. С ростом температуры все большее число молекул вовлекается во вращательное движение. Если средняя тепловая энергия kT заметно превышает энергию первого вращательного уровня, в молекуле возбуждено уже много вращательных уровней. В этом случае дискретность уровней становится несущественной и теплоемкость равна своему классическому значению. Аналогичная ситуация имеет место и с возбуждением колебательных степеней свободы. Квантовая теория полностью объясняет характер температурной зависимости теплоемкости, ее непрерывный характер, отличающийся постепенным вовлечением в «игру» различных степеней свободы молекул.

Изотермические и адиабатические процессы в газе. Наряду с процессами изменения параметров газа, происходящими при постоянном объеме или при постоянном давлении, возможны изотермические (T = const, внутренняя энергия газа остается неизменной) и адиабатические (без отвода и подвода тепла к газу) процессы. В первом случае все подводимое к газу тепло расходуется на механическую работу, а изменение давления и объема для одного моля газа удовлетворяет условию pV = PT = const. В pV координатах на плоскости соответствующие зависимости образуют семейство изотерм.

Для адиабатического процесса (dQ = 0) из (13) и (14) следует

CVdT + pdV = 0

Уравнение состояния идеального газа дает

dT = R–1(pdV + Vdp).

Используя (16), уравнение адиабатического процесса можно представить в дифференциальной форме

(17) gpdv + Vdp = 0, где g = Ср/CV– отношение теплоемкостей при постоянном давлении и постоянном объеме, называемое адиабатической постоянной. Дифференциальному соотношению (17) при g = const соответствует уравнение адиабаты pVg = const

или

(18) TVg – 1 = const

Так как g > 1, то из (18) следует, что при адиабатическом сжатии газ нагревается, а при расширении – охлаждается. Это явление находит применение, например, в дизельных двигателях, где горючая смесь воспламеняется за счет адиабатического сжатия.

Скорость звука в газе.

Из гидрогазодинамики известно, что скорость звука в сплошной среде определяется соотношением

В первоначальных теориях (Ньютон) считалось, что давление и плотность связаны обычным уравнением состояния, т.е. p/r = соnst. Это соответствует предположению, что разности температур между сгущениями и разрежениями газа в звуковой волне мгновенно выравниваются, т.е. распространение звука является изотермическим процессом. В этом случае формула Ньютона для скорости звука принимает вид

Эта формула, однако, противоречила эксперименту. Лаплас первым понял, что колебания плотности и связанные с этим колебания температуры в звуковой волне происходят настолько быстро, что для таких процессов теплообмен несущественен и выравнивания температур не происходит. Это означает, что вместо уравнения изотермы надо пользоваться уравнением адиабаты. Тогда выражение для скорости звука принимает вид

(19)

Скорость звука в газе имеет тот же порядок величины, что и средняя тепловая или средне-квадратичная скорости молекул. Это понятно, поскольку возмущения в звуковой волне передаются молекулами, движущимися с тепловыми скоростями. Для молекулярного азота, например, g = 1,4 и скорость звука при T = 273К равна 337 м/с. Средняя тепловая скорость молекул азота бvс при тех же условиях равна 458 м/с.

Реальные газы.

С ростом давления и уменьшением температуры состояние газа начинает все больше отклоняться от идеальности. Эксперимент показал, например, что для азота N2 при температуре T = 273K и давлении p =100 атм, ошибка в определении объема газа, если пользоваться уравнением состояния (3), может достигать 7%. Это связано с тем, что при таком давлении молекулы газа в среднем удалены друг от друга на расстояние, которое только вдвое больше их собственных размеров, а собственный объем молекул лишь в 20 раз меньше объема газа. При дальнейшем повышении давления становится все более существенным учет влияния на поведение газа как сил межмолекулярного взаимодействия, так и собственного объема молекул.

Пока отклонения от идеальности малы, их можно учесть с помощью так называемого вириального разложения – разложения давления в ряд по степеням плотности молекул в объеме N/V

(20) ,

где B(T), C(T) – так называемые вириальные коэффициенты, зависящие от температуры и характеризующие влияние межмолекулярного взаимодействия. Для учета более сильных отклонений предложено много полуэмпирических и эмпирических уравнений состояния реальных газов, из которых наиболее часто используется уравнение Ван-дер-Ваальса.

Уравнение состояния неидеального газа – уравнение Ван-дер-Ваальса записывается для одного моля газа в виде

(21)

В нем учитывается как собственный объем молекул (постоянная b), так и влияние сил притяжения между молекулами (постоянная a). Из этого уравнения вытекает, в частности, существование наблюдаемой на опыте критической температуры и критического состояния. Критическое состояние характеризуется значением Tk и соответствующими ему значениями pk и Vk. При критической температуре Tk исчезает различие между разными состояниями вещества. Выше этой температуры переход от жидкости к газу либо, наоборот, от газа к жидкости оказывается непрерывным.

Процессы переноса в газах.

Если в газе создается какая-либо неоднородность его параметров (например, разные температуры газа или разные концентрации компонентов газовой смеси в разных частях сосуда), то возникают отклонения состояния газа от равновесия, которые сопровождаются переносом энергии (теплопроводность) или массы компонентов смеси (диффузия) из одной части сосуда в другую. При различии в скоростях перемещения разных слоев газа (например, при течении газа в трубе) возникает поперечный перенос импульса (вязкость). Все эти явления объединяются одним общим названием процессы переноса. При их описании особенно важным оказывается учет характера столкновений молекул в газе. Порядок величины соответствующих коэффициентов переноса (кинетических коэффициентов) и характер зависимости их от основных параметров дается элементарной кинетической теорией газа, основанной на модели молекул в виде твердых упругих шаров и на концепции средней длины свободного пробега молекул. Для переноса энергии в газе принимается

где q – плотность потока энергии (поток тепла), k – коэффициент теплопроводности, dT/dz – градиент температуры в направлении оси z.

Сила вязкого трения, возникающая между двумя слоями в движущемся газе, если имеется поперечное распределение скорости газа u(x), имеет вид

Наконец, если в бинарной газовой смеси молекул с близкой массой компонентов задано распределение плотности одного из компонентов n1(z), то диффузионный поток молекул компонента в направлении z записывается в виде

Коэффициенты переноса в этих соотношениях: коэффициенты теплопроводности k, вязкости h и самодиффузии D, получаемые методами элементарной кинетической теории, записываются в виде,

(22) , ,

где l – средняя длина свободного пробега молекул, бvс – средняя тепловая скорость молекул. Поскольку , где s – поперечное сечение столкновений молекул. коэффициенты теплопроводности и вязкости не зависят от плотности (или от давления) газа, в то время как коэффициент диффузии D ~ 1/p.

В элементарной теории численные коэффициенты в выражениях (22) оказываются одинаковыми. Точная теория для модели твердых упругих шаров (s = сonst) дает h = 0,5бvс l, k = 2,5(R/M)h,

rD = 1,2h

Более реалистические модели взаимодействия молекул в газе вносят изменения в характер зависимости коэффициентов переноса от температуры, что позволяет обеспечить лучшее совпадение теории с результатами экспериментальных измерений этих коэффициентов.

Владимир Жданов

www.krugosvet.ru

Формула внутренней энергии

Внутренняя энергия зависит от массы, температуры тела, рода вещества и от того, в каком агрегатном состоянии находится тело – твердом, жидком или газообразном.

Внутренняя энергия идеального газа равна кинетической энергии теплового движения его атомов или молекул. Существует формула для внутренней энергии одного моля идеального газа, молекулы которого совершают только поступательное движение:

   

где – масса газа (г), — количество вещества (моль), – молярная масса (г/моль), – универсальная газовая постоянная ( Дж/(моль × K)), – абсолютная температура газа (К).

Условное обозначение — или

Единица измерения энергии — Дж (джоуль).

Внутреннюю энергию нельзя измерить напрямую. Можно определить только изменение внутренней энергии, то есть разность внутренней энергии в различных состояниях.

Примеры решения задач по теме «Внутренняя энергия»



Понравился сайт? Расскажи друзьям!



ru.solverbook.com

Отправить ответ

avatar
  Подписаться  
Уведомление о