Формула сила притяжения земли – Сила земного притяжения формула. Сила земного притяжения. Магнит с легкостью преодолевает гравитацию

Содержание

Формула силы притяжения

ОПРЕДЕЛЕНИЕ


Сила гравитационного притяжения между телами равна произведению гравитационной постоянной и масс обоих объектов, делённому на квадрат расстояния между ними.

   

Здесь – сила притяжения, – гравитационная постоянная, — массы объектов, – расстояние между центрами масс объектов.

Единица измерения силы – Н (ньютон).

Сила гравитации возникает между любыми объектами в Вселенной, обладающими массой. Будучи приложенной к каждому объекту, она направлена на другой, причём модуль этой силы равен для обоих объектов:

Для тела, находящегося на поверхности Земли, формула упрощается, так как масса Земли и расстояние от центра Земли до поверхности известно:

   

Где м/с. называют ускорением свободного падения.

Примеры решения задач по теме «Сила притяжения»

ПРИМЕР 1




ЗаданиеНайти силу притяжения между объектами, массами 100т и 1000т, находящимися на расстоянии 3 км.
РешениеНапомним, что 1 т = 1000 кг, а 1 км = 1000 м. Подставим исходные данные в формулу:

   

ОтветСила гравитации равна .



Понравился сайт? Расскажи друзьям!



ru.solverbook.com

Сила земного притяжения формула. Сила земного притяжения. Магнит с легкостью преодолевает гравитацию

Слово «гравитация» пришло к нам из латинского языка, дословно оно переводится как «тяжесть». Даже если вы не знаете, что такое гравитация, будьте уверены: вы сталкиваетесь с этим явлением каждый день, даже прямо сейчас.

Попробуем разобраться с этим термином.

Значение понятия

Гравитация, или как ее еще называют притяжение или тяготение, означает полное взаимодействие между всеми материальными телами на земле. Это уникальное явление было описано многими учеными. Например, особое внимание данному вопросу уделял Исаак Ньютон. Он даже создал теорию, которая на сегодняшний день называется теорией тяготения Ньютона.

Трехколесный веломобиль презентовали в Лас-Вегасе

Гравитация, особенно гравитационные волны, сейчас находится в сознании многих людей. Мы все испытываем силу тяжести. Это происходит, когда вы прыгаете в воздух, хотя, несмотря на то, что многие с устремлениями Супермена хотели бы, мы склонны падать на пол.

Но что произойдет, если мы сможем остановить силу тяжести? Что вы можете не знать о гравитации.
. Физики убеждены, что этого никогда не произойдет, но это не остановило некоторых людей от изучения этой идеи. Это то, что, согласно коллективной мудрости нескольких экспертов, вероятно, произойдет, если гравитация исчезнет.

В ней Ньютон отметил, что гравитация ассоциирована с силой тяжести. Сущность данного явления Ньютон объяснил так: к какому-либо телу прилагается сила тяжести, источник которой — другое тело. В своем Законе Всемирного Тяготения Ньютон определил, что все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.

Баки говорит, что наши тела приспособлены к гравитационной земной атмосфере. Если бы мы жили какое-то время в месте, где гравитация отличается, как космический корабль, наш организм изменился бы. В настоящее время доказано, что астронавты теряют костную массу и мышечную силу во время их пребывания в космосе, и их чувство равновесия меняется.

По некоторым причинам, которые до сих пор неясно, количество красных кровяных телец спускается в форме «космической анемии». Раны требуют больше времени для заживления, а иммунная система теряет свою силу. Даже сон зависит от уменьшения или отсутствия силы тяжести.

Интересно, что независимо от того, каким размером является тело, оно может создавать гравитационное поле. К примеру, объекты, находящиеся в космосе, такие как галактики, звезды и планеты, могут создавать достаточно большие гравитационные поля.

Гравитация влияет на все объекты, находящиеся во Вселенной. Благодаря ей происходят такие крупные эффекты, как расширение масштабов Вселенной, образование и действие черных дыр и структуры галактик.

Вот что происходит после краткого посещения космоса. «Что произойдет, если мы вырастуем без серьезности?» — спрашивает Бакли. «Что относительно систем, которые зависят от силы тяжести, таких как ваши мышцы, система баланса, ваше сердце или кровеносные сосуды?».

Есть веские основания полагать, что человеческий организм будет развиваться по-разному. Баки вспоминает эксперимент, в котором кошка росла с постоянно скрытым глазом, покрытым патчем. В результате кошка ослепла. Схема, соединяющая области обработки мозга, не была разработана, потому что глаз не обрабатывал визуальную информацию: очень буквальный пример старой фразы «использовать ее или потерять».

Другие теории

Явление тяготения описывал в математическом виде Аристотель. Он считал, что на скорость падения тел влияет их масса. Чем больше весит объект, тем быстрее он падает. И только много сотен лет спустя Галилео Галилей с помощью экспериментов доказал, что данная теория ошибочна. Когда сопротивление воздуха отсутствует, все тела ускоряются одинаково.

Кажется вероятным, что остальная часть нашего тела ответит аналогичным образом. Если бы гравитации не было для наших сердец, мышц и костей, наши органы развивались бы совсем по-другому. И если бы гравитация исчезла в один прекрасный день, у нас были бы еще более острые проблемы, которые можно было бы беспокоиться, помимо долгосрочных последствий для человеческого развития.

Карен Мастерс, астроном из Университета Портсмута в Великобритании, исследовал непосредственные физические последствия отсутствия силы тяжести. Первая проблема заключается в том, что Земля будет вращаться с большой скоростью, точно так же, как гантель будет свисать с цепи, если вы вращаете ее вокруг головы.

В начале XX века о гравитации начал говорить всем известный на данный момент Альберт Эйнштейн. Он создал Общую теорию относительности, которая более точно стала описывать явление тяготения. Эйнштейн объяснил, что эффекты гравитации обусловлены деформацией пространства-времени, которая имеет связь с присутствием массы-времени. Данная теория в настоящий момент самая правильная, она доказана экспериментально.

Отключение гравитации означало бы ослабление цепи, — говорит Мастерс. «Вещи не будут прилипать к Земле каким-либо другим образом и будут летать в пространстве по прямой, от поверхности Земли». «Любой, кому не повезло оказаться в нем в любой момент, будет быстро потерян».

«Люди внутри домов будут более безопасными, потому что большинство зданий надежно закреплены на Земле и останутся такими, даже если бы не было гравитации, по крайней мере на некоторое время», — говорит Мастера. Все, что не было зафиксировано на Земле, будет плавать.

Атмосфера Земли и ее океаны, реки и озера станут одной из первых вещей, которые исчезнут в космосе. «О, и, конечно, мы все умрем», — писала Джолин Крейтон для цифрового журнала «Футуризм». «Сама Земля, вероятно, разломается и поплавится в космосе», — добавил он.

Я решил по мере сил и возможностей подробнее остановиться на освещении научного наследия
академика Николая Викторовича Левашова , потому что вижу, что его работы сегодня ещё не пользуются тем спросом, каким они должны были бы пользоваться в обществе действительно свободных и разумных людей. Люди ещё не понимают
ценности и важности его книг и статей, потому что не догадываются о степени обмана, в котором мы живём последние пару веков; не понимают, что сведения о природе, которые мы считаем привычными и поэтому истинными, являются ложными на 100%
; и навязаны они нам намеренно, чтобы скрыть правду и не дать нам развиваться в правильном направлении…

Без силы тяжести, чтобы держать его вместе, интенсивное давление разрывало бы его сердцевину, вызывая титанический взрыв. То же самое произойдет с другими звездами Вселенной. Однако, поскольку они находятся так далеко, это было бы за несколько лет до того, как вспышка его смерти догнала нас.

Значение ускорения свободного падения на поверхности однородной шарообразной планеты можно определить, если известны масса M
и радиус R
планеты

Наконец, не было бы накопления материи, как звезд или планет, где бы то ни было во Вселенной. Там будет только диффузный суп из атомов и молекул, плавающих по течению. Этот сценарий, который, как мы уже говорили, никогда не может произойти, иллюстрирует решающую силу тяжести в функционировании Вселенной.

Закон всеобщего тяготения

А зачем нам разбираться с этой гравитацией? Разве мы о ней чего-то ещё не знаем. Ну что вы! Мы уже очень много знаем о гравитации! Например, Википедия любезно сообщает нам, что «Гравитация
(притяжение
, всемирное тяготение
, тяготение
) (от лат. gravitas – «тяжесть») – универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна…»
Т.е. проще говоря, эта Интернет-болтушка сообщает, что гравитация – это взаимодействие между всеми материальными телами, а ещё проще говоря – взаимное притяжение
материальных тел друг к другу.

Гравитация — одна из четырех основных сил, которые управляют нашей Вселенной. Остальные три силы так же важны; без электромагнетизма и ядерных сил, сами атомы исчезнут. Но гравитация — это то, что знают большинство людей. Может быть, поэтому нас увлекают такие идеи, как антигравитация.

И, возможно, именно поэтому открытие гравитационных волн настолько захватывающее, хотя оно никогда не затрагивало нашу жизнь напрямую. Между двумя телами появляется притяжение, называемое гравитационной силой, которая зависит от их масс и разделения между ними.

Появлению такого мнения мы обязаны тов. Исааку Ньютону, которому приписывают открытие в 1687 году «Закона всеобщего тяготения»
, по которому все тела якобы притягиваются друг к дружке пропорционально их м

realartist.ru

сила притяжения земли формула — Сила притяжения, на планете Земля. — 22 ответа



В разделе Естественные науки на вопрос Сила притяжения, на планете Земля. заданный автором Отголосок лучший ответ это Никакого притяжения земли не существует, а что такое вечный идеал не для вашего разума, вам пока играть в гравитацию!

Ответ от 22 ответа[гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Сила притяжения, на планете Земля.

Ответ от Невролог[гуру]
Чтобы ускорение от Земли уменьшилось вдвое, достаточно удалиться от ее поверхности на ((корень из 2) — 1) радиусов. То есть, всего на 2 651 км. Много знаешь «крупных» тел на таком расстоянии? А дальше все еще круче будет — в знаменателе формулы «Эр квадрат»! Воздействие есть. Как на тебя, например, подействует взлет комара с окна противоположного дома…

Ответ от Иван Федоров[гуру]
9,8 м/c^2 — это не сила притяжения Земли, а ускорение свободного падения вблизи поверхности Земли.При этом по формуле Ньютона вычисляют не силу, действующую между Землёй и Солнцем, а силу, действующую между Землёй и предметом, находящимся вблизи её поверхности:m*a = G* M*m/r^2M — масса Земли, m — масса тела, r — расстояние между центром земли и центром масс тела, G — гравитационная постоянная. Как видите, масса тела сокращается, остаётся только ускорение — одинаковое для всех тел на расстоянии r. Вблизи поверхности Земли r равно радиусу Земли. Можете сами проверить, что при небольшом изменении r ускорение почти не меняется. Точно так же можете сами убедиться прямыми расчётами, что гравитационное влияние прочих тел пренебрежимо мало: массивные тела слишком далеко, а те, что близко, имеют слишком малую массу.

Ответ от Oleg valnev[новичек]
как тогда люди живут внизу планеты,

Ответ от 2 ответа[гуру]

Привет! Вот еще темы с нужными ответами:

Гравитация на Википедии
Посмотрите статью на википедии про Гравитация

 

Ответить на вопрос:

22oa.ru

определение, формула, виды :: SYL.ru

На вопрос «Что такое сила?» физика отвечает так: «Сила есть мера взаимодействия вещественных тел между собой или между телами и другими материальными объектами – физическими полями». Все силы в природе могут быть отнесены к четырем фундаментальным видам взаимодействий: сильному, слабому, электромагнитному и гравитационному. Наша статья рассказывает о том, что представляют собой гравитационные силы – мера последнего и, пожалуй, наиболее широко распространенного в природе вида этих взаимодействий.

Начнем с притяжения земли

Всем живущим известно, что существует сила, которая притягивает объекты к земле. Она обычно именуется гравитацией, силой тяжести или земным притяжением. Благодаря ее наличию у человека возникли понятия «верх» и «низ», определяющие направление движения или расположения чего-либо относительно земной поверхности. Так в частном случае, на поверхности земли или вблизи нее, проявляют себя гравитационные силы, которые притягивают объекты, обладающие массой, друг к другу, проявляя свое действие на любых как самых малых, так и очень больших, даже по космическим меркам, расстояниях.

Сила тяжести и третий закон Ньютона

Как известно, любая сила, если она рассматривается как мера взаимодействия физических тел, всегда приложена к какому-нибудь из них. Так и в гравитационном взаимодействии тел друг с другом, каждое из них испытывает такие виды гравитационных сил, которые вызваны влиянием каждого из них. Если тел всего два (предполагается, что действием всех других можно пренебречь), то каждое из них по третьему закону Ньютона будет притягивать другое тело с одинаковой силой. Так Луна и Земля притягивают друг друга, следствием чего являются приливы и отливы земных морей.

Каждая планета в Солнечной системе испытывает сразу несколько сил притяжения со стороны Солнца и других планет. Конечно, определяет форму и размеры ее орбиты именно сила притяжения Солнца, но и влияние остальных небесных тел астрономы учитывают в своих расчетах траекторий их движения.

Что быстрее упадет на землю с высоты?

Главной особенностью этой силы является то, что все объекты падают на землю с одной скоростью, независимо от их массы. Когда-то, вплоть до 16-го ст., считалось, что все наоборот – более тяжелые тела должны падать быстрее, чем легкие. Чтобы развеять это заблуждение Галилео Галилею пришлось выполнить свой знаменитый опыт по одновременному сбрасыванию двух пушечных ядер разного веса с наклонной Пизанской башни. Вопреки ожиданиям свидетелей эксперимента оба ядра достигли поверхности одновременно. Сегодня каждый школьник знает, что это произошло благодаря тому, что сила тяжести сообщает любому телу одно и то же ускорение свободного падения g = 9,81 м/с2 независимо от массы m этого тела, а величина ее по второму закону Ньютона равна F = mg.

Гравитационные силы на Луне и на других планетах имеют разные значения этого ускорения. Однако характер действия силы тяжести на них такой же.

Сила тяжести и вес тела

Если первая сила приложена непосредственно к самому телу, то вторая к его опоре или подвесу. В этой ситуации на тела со стороны опор и подвесов всегда действуют силы упругости. Гравитационные силы, приложенные к тем же телам, действуют им навстречу.

Представьте себе груз, подвешенный над землей на пружине. К нему приложены две силы: сила упругости растянутой пружины и сила тяжести. Согласно третьему закону Ньютона груз действует на пружину с силой, равной и противоположной силе упругости. Эта сила и будет его весом. У груза массой 1 кг вес равен Р = 1 кг ∙ 9,81 м/с2 = 9,81 Н (ньютон).

Гравитационные силы: определение

Первая количественная теория гравитации, основанная на наблюдениях движения планет, была сформулирована Исааком Ньютоном в 1687 году в его знаменитых «Началах натуральной философии». Он писал, что силы притяжения, которые действуют на Солнце и планеты, зависят от количества вещества, которое они содержат. Они распространяются на большие расстояния и всегда уменьшаются как величины, обратные квадрату расстояния. Как же можно вычислить эти гравитационные силы? Формула для силы F между двумя объектами с массами m1 и m2, находящимися на расстоянии r, такова:

Физический механизм гравитации

Ньютон был не полностью удовлетворен своей теорией, поскольку она предполагала взаимодействие между притягивающимися телами на расстоянии. Сам великий англичанин был уверен, что должен существовать некий физический агент, ответственный за передачу действия одного тела на другое, о чем он вполне ясно высказался в одном из своих писем. Но время, когда было введено понятие гравитационного поля, которое пронизывает все пространство, наступило лишь через четыре столетия. Сегодня, говоря о гравитации, мы можем говорить о взаимодействии любого (космического) тела с гравитационным полем других тел, мерой которого и служат возникающие между каждой парой тел гравитационные силы. Закон всемирного тяготения, сформулированный Ньютоном в вышеприведенной форме, остается верным и подтверждается множеством фактов.

Теория гравитации и астрономия

Она была очень успешно применена к решению задач небесной механики во время XVIII и начале XIX века. К примеру, математики Д. Адамс и У. Леверье, анализируя нарушения орбиты Урана, предположили, что на него действуют гравитационные силы взаимодействия с еще неизвестной планетой. Ими было указано ее предполагаемое положение, и вскоре астрономом И. Галле там был обнаружен Нептун.

Хотя оставалась одна проблема. Леверье в 1845 году рассчитал, что орбита Меркурия прецессирует на 35» за столетие, в отличие от нулевого значения этой прецессии, получаемого по теории Ньютона. Последующие измерения дали более точное значение 43». (Наблюдаемая прецессия равна действительно 570»/век, но кропотливый расчет, позволяющий вычесть влияние от всех других планет, дает значение 43».)

Только в 1915 г. Альберт Эйнштейн смог объяснить это несоответствие в рамках созданной им теории гравитации. Оказалось, что массивное Солнце, как и любое другое массивное тело, искривляет пространство-время в своей окрестности. Эти эффекты вызывают отклонения в орбитах планет, но у Меркурия, как самой малой и ближайшей к нашей звезде планете, они проявляются сильнее всего.

Инерционная и гравитационная массы

Как уже отмечалось выше, Галилей был первым, кто наблюдал, что объекты падают на землю с одинаковой скоростью, независимо от их массы. В формулах Ньютона понятие массы происходит от двух разных уравнений. Второй его закон говорит, что сила F, приложенная к телу с массой m, дает ускорение по уравнению F = ma.

Однако сила тяжести F, приложенная к телу, удовлетворяет формуле F = mg, где g зависит от другого тела, взаимодействующего с рассматриваемым (земли обычно, когда мы говорим о силе тяжести). В обоих уравнений m есть коэффициент пропорциональности, но в первом случае это инерционная масса, а во втором – гравитационная, и нет никакой очевидной причины, что они должны быть одинаковыми для любого физического объекта.

Однако все эксперименты показывают, что это действительно так.

Теория гравитации Эйнштейна

Он взял факт равенства инерционной и гравитационной масс как отправную точку для своей теории. Ему удалось построить уравнения гравитационного поля, знаменитые уравнения Эйнштейна, и с их помощью вычислить правильное значение для прецессии орбиты Меркурия. Они также дают измеренное значение отклонения световых лучей, которые проходят вблизи Солнца, и нет никаких сомнений в том, что из них следуют правильные результаты для макроскопической гравитации. Теория гравитации Эйнштейна, или общая теория относительности (ОТО), как он сам ее назвал, является одним из величайших триумфов современной науки.

Гравитационные силы – это ускорение?

Если вы не можете отличить инерционную массу от гравитационной, то вы не можете отличить и гравитацию от ускорения. Эксперимент в гравитационном поле вместо этого может быть выполнен в ускоренно движущемся лифте в отсутствии гравитации. Когда космонавт в ракете ускоряется, удаляясь от земли, он испытывает силу тяжести, которая в несколько раз больше земной, причем подавляющая ее часть приходит от ускорения.

Если никто не может отличить гравитацию от ускорения, то первую всегда можно воспроизвести путем ускорения. Система, в которой ускорение заменяет силу тяжести, называется инерциальной. Поэтому Луну на околоземной орбите также можно рассматривать как инерциальную систему. Однако эта система будет отличаться от точки к точке, поскольку изменяется гравитационное поле. (В примере с Луной гравитационное поле изменяет направление из одной точки в другую.) Принцип, согласно которому всегда можно найти инерциальную систему в любой точке пространства и времени, в которой физика подчиняется законам в отсутствии гравитации, называется принципом эквивалентности.

Гравитация как проявление геометрических свойств пространства-времени

Тот факт, что гравитационные силы можно рассматривать как ускорения в инерциальных системах координат, которые отличаются от точки к точке, означает, что гравитация – это геометрическое понятие.

Мы говорим, что пространство-время искривляется. Рассмотрим мяч на плоской поверхности. Он будет покоиться или, если нет никакого трения, равномерно двигаться при отсутствии действия каких-либо сил на него. Если поверхность искривляется, мяч ускорится и будет двигаться до самой низкой точки, выбирая кратчайший путь. Аналогичным образом теория Эйнштейна утверждает, что четырехмерное пространство-время искривлено, и тело движется в этом искривленном пространстве по геодезической линии, которой соответствует кратчайший путь. Поэтому гравитационное поле и действующие в нем на физические тела гравитационные силы – это геометрические величины, зависящие от свойств пространства-времени, которые наиболее сильно изменяются вблизи массивных тел.

www.syl.ru

Формула силы тяжести

   

Здесь – сила тяжести, – масса, — ускорение свободного падения.

Единица измерения силы – Н (ньютон).

Для тела, находящегося на определённой высоте над Землёй сила тяжести может быть найдена по формуле:

   

Здесь – гравитационная постоянная, – масса тела, – масса Земли ( кг), – высота тела над Землёй, – радиус Земли ( м).

Из-за того, что Земля имеет сплюснутую форму, то есть её радиус не везде одинаков, ускорение свободного падения меняется в зависимости от географической широты, от на экваторе до на полюсах. – его среднее значение.

Сила тяжести действует на тело, имеющее опору или подвес. Если тело их не имеет, то есть находится в состоянии свободного падения, то говорят, что тело находится в невесомости. Сила тяжести всегда направлена к центру Земли.

Примеры решения задач по теме «Сила тяжести»



Понравился сайт? Расскажи друзьям!



ru.solverbook.com

Закон всемирного тяготения: определение и формула

 

Все мы ходим по Земле потому, что она нас притягивает. Если бы Земля не притягивала все находящиеся на ее поверхности тела, то мы, оттолкнувшись от нее, улетели бы в космос. Но этого не происходит, и всем известно о существовании земного притяжения.

Притягиваем ли мы Землю? Притягивает Луна!

А притягиваем ли мы сами к себе Землю? Смешной вопрос, правда? Но давайте разберемся. Вы знаете, что такое приливы и отливы в морях и океанах? Каждый день вода уходит от берегов, неизвестно где шляется несколько часов, а потом, как ни в чем не бывало, возвращается обратно.

Так вот вода в это время находится не неизвестно где, а примерно посредине океана. Там образуется что-то наподобие горы из воды. Невероятно, правда? Вода, которая имеет свойство растекаться, сама не просто стекается, а еще и образует горы. И в этих горах сосредоточена огромная масса воды.

Просто прикиньте весь объем воды, который отходит от берегов во время отливов, и вы поймете, что речь идет о гигантских количествах. Но раз такое происходит, должна же быть какая-то причина. И причина есть. Причина кроется в том, что эту воду притягивает к себе Луна.

Вращаясь вокруг Земли, Луна проходит над океанами и притягивает к себе океанические воды. Луна вращается вокруг Земли, потому что она притягивается Землей. Но, выходит, что она и сама при этом притягивает к себе Землю. Земля, правда, для нее великовата, но ее влияние оказывается достаточным для перемещения воды в океанах.

Сила и закон всемирного тяготения: понятие и формула

А теперь пойдем дальше и подумаем: если два громадных тела, находясь неподалеку, оба притягивают друг друга, не логично ли предположить, что и тела поменьше тоже будут притягивать друг друга? Просто они намного меньше и сила их притяжения будет маленькой?

Оказывается, что такое предположение абсолютно верно. Абсолютно между всеми телами во Вселенной существуют силы притяжения или, другими словами, силы всемирного тяготения.

Первым такое явление обнаружил и сформулировал в виде закона Исаак Ньютон. Закон всемирного тяготения гласит: все тела притягиваются друг к другу, при этом сила их притяжения прямо пропорциональна массе каждого из тел и обратно пропорциональна квадрату расстояния между ними:

F = G * ( m_1 * m_2 ) / r^2   ,

где F величина вектора силы притяжения между телами, m_1  и m_2 массы этих тел, r расстояние между телами, G гравитационная постоянная.

Гравитационная постоянная численно равна силе, которая существует между телами массами 1 кг, находящимися на расстоянии 1 метр. Эта величина найдена экспериментально: G=6,67*〖10〗^(-11)  Н* м^2⁄〖кг〗^2 .

Возвращаясь к нашему исходному вопросу: «притягиваем ли мы Землю?», мы можем с уверенностью ответить: «да». Согласно третьему закону Ньютона мы притягиваем Землю ровно с такой же силой, с какой Земля притягивает нас. Силу эту можно рассчитать из закона всемирного тяготения.

А согласно второму закону Ньютона воздействие тел друг на друга какой-либо силой выражается в виде придаваемого ими друг другу  ускорения. Но придаваемое ускорение зависит от массы тела.

Масса Земли велика, и она придает нам ускорение свободного падения. А наша масса ничтожно мала по сравнению с Землей, и поэтому ускорение, которое мы придаем Земле, практически равно нулю. Именно поэтому мы притягиваемся к Земле и ходим по ней, а не наоборот.

Нужна помощь в учебе?



Предыдущая тема: Движение тела, брошенного вертикально вверх: суть и как решать задачи
Следующая тема:&nbsp&nbsp&nbspУскорение свободного падения на Земле и других небесных телах

Все неприличные комментарии будут удаляться.

www.nado5.ru

Закон всемирного тяготения: физика :: SYL.ru

Закон всемирного тяготения открыл Ньютон в 1687 году при изучении движения спутника Луны вокруг Земли. Английский физик четко сформулировал постулат, характеризующий силы притяжения. Кроме того, анализируя законы Кеплера, Ньютон вычислил, что силы притяжения должны существовать не только на нашей планете, но и в космосе.

История вопроса

Закон всемирного тяготения родился не спонтанно. Издревле люди изучали небосвод, главным образом для составления сельскохозяйственных календарей, вычисления важных дат, религиозных праздников. Наблюдения указывали, что в центре «мира» находится Светило (Солнце), вокруг которого по орбитам вращаются небесные тела. Впоследствии догматы церкви не позволяли так считать, и люди утратили накапливавшиеся тысячелетиями знания.

В 16 веке, до изобретения телескопов, появилась плеяда астрономов, взглянувших на небосвод по-научному, отбросив запреты церкви. Т. Браге, многие годы наблюдая за космосом, с особой тщательностью систематизировал перемещения планет. Эти высокоточные данные помогли И. Кеплеру впоследствии открыть три своих закона.

К моменту открытия (1667 г.) Исааком Ньютоном закона тяготения в астрономии окончательно утвердилась гелиоцентрическая система мира Н. Коперника. Согласно ей, каждая из планет системы вращается вокруг Светила по орбитам, которые с приближением, достаточным для многих расчетов, можно считать круговыми. В начале XVII в. И. Кеплер, анализируя работы Т. Браге, установил кинематические законы, характеризующие движения планет. Открытие стало фундаментом для выяснения динамики движения планет, то есть сил, которые определяют именно такой вид их движения.

Описание взаимодействия

В отличие от короткопериодных слабых и сильных взаимодействий, гравитация и электромагнитные поля имеют свойства дальнего действия: их влияние проявляется на гигантских расстояниях. На механические явления в макромире воздействуют 2 силы: электромагнитная и гравитационная. Воздействие планет на спутники, полет брошенного или запущенного предмета, плавание тела в жидкости – в каждом из этих явлений действуют гравитационные силы. Эти объекты притягиваются планетой, тяготеют к ней, отсюда и название «закон всемирного тяготения».

Доказано, что между физическими телами безусловно действует сила взаимного притяжения. Такие явления, как падение объектов на Землю, вращение Луны, планет вокруг Солнца, происходящие под действием сил всемирного притяжения, называют гравитационными.

Закон всемирного тяготения: формула

Всемирное тяготение формулируется следующим образом: два любых материальных объекта друг к другу притягиваются с определенной силой. Величина этой силы прямо пропорциональна произведению масс этих объектов и обратно пропорциональна квадрату расстояния между ними:

В формуле m1 и m2 являются массами исследуемых материальных объектов; r – расстояние, определяемое между центрами масс расчетных объектов; G – постоянная гравитационная величина, выражающая силу, с которой осуществляется взаимное притяжение двух объектов массой по 1 кг каждый, располагающихся между собой на расстоянии 1 м.

Гравитационная постоянная определена экспериментальным путем. Выполнить расчеты удалось британскому ученому Генри Кавендишу с помощью специального динамометра – крутильных весов. Выяснилось, что величина G=(6,673±0,003)·10-11Н·м2·кг2 в МСЕ (Международной системе единиц).

Нюансы вычислений

Закон тяготения Исаака Ньютона относится к так называемой классической механике (традиционной физике) и не всегда точно отражает взаимодействия на микроуровне (в «новой» физике). Поэтому принято закон всемирного тяготения Ньютона применять только для материальных точек (объектов). Силу притяжения, возникающую между двумя объектами, можно определить по формуле, представленной выше, в следующих случаях:

  • Если оба тела – однородные объекты, тогда r – известное расстояние между центрами объектов; m1, m2 – массы объектов.
  • Одно из тел – материальная точка (объект), а второе – однородный шар, тогда m1 – масса точки, m2 – шара, r – известное расстояние между центрами масс.

Поле тяготения

Две силы взаимодействия, которые действуют на каждый из взаимодействующих объектов, одинаковы по величине, при этом противоположны по направлению в полном соответствии с 3 законом Ньютона (закон взаимодействия 2 материальных точек). Направлены силы вдоль прямой, которая соединяет обе материальные точки – их называют центральными. Гравитационное взаимодействие между этими объектами осуществляется полем тяготения. В каждой точке гравитационного поля на помещенный в него объект воздействует сила тяжести, пропорциональная массе этого объекта. Сила тяжести при этом не зависит от среды, в которой исследуемый объект (тело, точка) находится.

Поле тяготения имеет специфическое свойство – во время переноса объекта определенной массы (m) между различными точками поля тяготения действие силы тяжести не будет зависеть от траектории движения объекта, а будет зависеть исключительно от положения в гравитационном поле начальной и конечной точки перемещения объекта. Силы, обладающие подобными свойствами, назвали консервативными, а поле с действием таких сил – потенциальным.

Сила тяжести в космическом масштабе

Исаак Ньютон доказал, что закон всемирного тяготения, определение которого он дал для классической механики, также актуален при астрономических расчетах. Неотъемлемой характеристикой закона тяготения является понятие силы тяжести – та сила, с которой объект притягивается полем тяготения. Данное определение актуально для любых космических объектов.

Обычно сила тяжести (Ft) рассчитывается по простой формуле: Ft=mg, то есть масса объекта (m), поднятого над поверхностью Земли, умножается на коэффициент ускорения свободного падения (g). У поверхности Земли коэффициент g известен, если округлить, он равен 9,8 м/с². Но расчеты становятся неточными, если объект находится от плоскости Земли на значительном отдалении. В этой ситуации коэффициент g заранее не известен, и здесь приходит на помощь ньютоновская физика. Закон всемирного тяготения позволяет рассчитать силу тяжести даже для отдаленных объектов (например, Луны, спутников, метеоритов и т. д.), если известно расстояние между телом и Землей.

Пример расчетов

Разместим на высоте h над Землей, радиус которой — Rc, и масса — Mc, объект массой m. Между объектом и Землей действует все та же сила всемирного тяготения:

В этом случае Ft называется силой тяжести – силой притяжения исследуемого объекта Землей (точнее, составляющей этой силы). Эта сила придает объекту ускорение свободного падения. Рассчитать его можно так: Ft=G·(Mc·m/r²) , где r=Rc+h – это расстояние от объекта до центра Земли, G – гравитационная постоянная.

Если изучить формулу, становится очевидным, что чем выше объект исследования над плоскостью планеты, тем сила тяжести меньше и меньше. То есть гравитационное поле планеты увеличивается при приближении к ее центру.

Особенности воздействия

Из-за суточного вращения Земли либо другой планеты вокруг оси сила притяжения и сила тяжести для одного и того же объекта отличаются между собой по модулю и направлению. Сила притяжения (гравитационная сила) всегда направлена по радиусу к центру Земли, сила тяжести Ft – по линии отвеса к центру Земли.

Сила притяжения зависит от значений географической широты. Причина такой зависимости заключается в том, что произвольное тело, которое находится в покое относительно Земли, участвует в ее суточном вращении, поэтому при движении вокруг оси по кругу на тело действует сила притяжения и сила реакции, направленная под определенным углом. Равнодействующая этих сил и придает телу центростремительное ускорение.

От чего зависит сила притяжения

Закон всемирного тяготения по-разному действует, в зависимости от региона. Так как сила притяжения зависит от значений широты на определенной местности, то аналогично ускорение свободного падения обладает разными значениями в разных местах. Максимальное значение сила тяжести и, соответственно, ускорение свободного падения имеют на полюсах Земли – сила тяжести в этих точках равна силе притяжения. Минимальными значения будут на экваторе.

Земной шар слегка сплюснут, его полярный радиус меньше экваториального примерно на 21,5 км. Однако эта зависимость менее существенная по сравнению с суточным вращением Земли. Расчеты показывают, что из-за сплюснутости Земли на экваторе величина ускорения свободного падения чуть меньше его значения на полюсе на 0,18%, а через суточное вращение – на 0,34%.

Впрочем, в одном и том же месте Земли угол между векторами направления мал, поэтому расхождение между силой притяжения и силой тяжести незначительно, и ею в расчетах можно пренебречь. То есть можно считать, что модули этих сил одинаковы – ускорение свободного падения около поверхности Земли везде одинаковое и равно приблизительно 9,8 м/с².

Вывод

Исаак Ньютон был ученым, который совершил научную революцию, полностью перестроил принципы динамики и на их основе создал научную картину мира. Его открытие повлияло на развитие науки, на создание материальной и духовной культуры. На судьбу Ньютона выпала задача пересмотреть результаты представления о мире. В XVII в. ученым завершена грандиозная работа построения фундамента новой науки – физики.

www.syl.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о