Интеграл от деления – как понять и решать неопределенные и определенные интегралы, правила и примеры

Интеграл от дроби, все формулы и примеры

Нужно запомнить, что интеграл от дроби не равен интегралу числителя, деленному на интеграл знаменателя:

   

Для интегрирования подобных выражений существует несколько методов, которые зависят от вида подынтегральной функции.

Первый метод вычисления интеграла от дроби

Подынтегральная функция является отношением двух многочленов и представляет собою неправильную дробь (степень числителя больше или равна степени знаменателя). Тогда нужно выделить целую часть, для этого в числителе либо нужно выделить выражение, стоящее в знаменателе, либо поделить числитель на знаменатель в столбик.

Замечание. Если степень многочлена, стоящего в числителе, большее степени многочлена, стоящего в знаменателе, то рациональнее для выделения целой части делить числитель на знаменатель в столбик.

Второй метод

Для дробей типа

   

применяется метод замены переменной или заданный интеграл сводится к табличным.

Третий метод вычисления интеграла от дроби

Интегралы вида

   

находятся с помощью выделения полного квадрата в знаменателе, что позволит свести их к табличным интегралам.

Четвертый метод

Для интегралов вида

   

применяется следующий подход. В числителе выделяется производная знаменателя, далее дробь почленно делится: получаем сумму двух интегралов, в числителе одного из них стоит производная знаменателя, а второго – константа. Первый из интегралов находится методом замены, метод нахождения второго описан выше.

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Интегрирование дробей

Рациональной дробью называется дробь P(x)/Q(x), числитель P(x) и знаменатель Q(x) которой – многочлены. Рациональные дроби бывают неправильные, если степень многочлена в её числителе не меньше степени многочлена в знаменателе, и правильные, если степень многочлена в числителе меньше степени многочлена в знаменателе.

У любой неправильной дроби можно выделить её целую часть. Для этого следует по правилу деления многочленов разделить числитель на знаменатель. Поэтому любую неправильную дробь можно представить в виде суммы её целой части и некоторой правильной дроби.

Например, неправильную дробь

можно представить в виде

Таким образом, если необходимо проинтегрировать неправильную дробь, то, представив её в виде суммы многочлена и правильной дроби, с помощью метода разложения сведём решение к интегрированию правильной дроби.

Подготовиться к интегрированию дробей самостоятельно, а затем посмотреть ответ.

Пример 0. Представить в виде суммы многочлена и правильной дроби следующие дроби:

1) ;

2) .

Посмотреть ответ.


Ограничимся интегрированием лишь правильных рациональных дробей, знаменателями которых являются многочлены первой и второй степени. В общем виде интегралы от таких дробей записываются следующим образом:

        (1)

       (2)


Пример 1. Найти интеграл дроби

Подынтегральная функция является неправильной рациональной дробью. Используя приведённое выше её представление в виде суммы многочлена и правильной дроби, а также формулу (3), последовательно получим


Любой интеграл вида (2) сводится к нахождению одного или двух следующих интегралов:

      (4)

Поэтому рассмотрим эти интегралы. Первый из них находится по формуле (3) при a = 1.

А теперь формулы для вычисления остальных приведённых интегралов.

      (5)

     (6)

      (7)

      (8)

      (9)

Формулы (5)-(9) можно условно считать табличными интегралами. С их помощью можно найти любой интеграл вида (2). Предварительно такой интеграл приводят к интегралам группы (4). Для этого в знаменателе подынтегральной функции выделяют полный квадрат (это делается при помощи формул сокращённого умножения и ) и представляют его в одном из следующих видов:

или

где m > 0 и n > 0.

В первых двух случаях замена переменной

в третьем непосредственное применение метода разложения приведёт к одному или двум интегралам группы (4).

Пример 2. Найти интеграл дроби

Решение. Результат применения формулы (5) при a = 8:

Пример 3. Найти интеграл дроби

Решение. Выделим в знаменателе подынтегральной функции полный квадрат:

а затем произведём замену переменной t = x + 3 (тогда dt = dx). В результате этого:

,

то есть получили табличный интеграл. Применяем формулу 5):

,

откуда, возвращаясь к старой переменной, окончательно получим

.

Пример 4. Найти интеграл дроби

Решение. Выделяя в знаменателе подынтегральной функции полный квадрат, получаем

Произведём теперь замену переменной t = x – 3 (или x = t + 3; тогда dx = dt). Поэтому

Результат применения формул (8) и (5) при a = 1:

Возвращаясь к “старой” переменной, окончательно получим

.

Пример 5. Найти интеграл дроби

Решение. Знаменатель представляет собой полный квадрат разности:

.

Поэтому

.

Применяя далее формулы (7) и (6), найдём

Пример 6. Найти интеграл дроби

.

Решение. Выделим в знаменателе подынтегральной функции полный квадрат:

Произведём замену переменной t = x – 4 (или x = t + 4; тогда dx = dt):

Результат применения форумул (8) и (9):

.

Возвращаясь к “старой” переменной, окончательно получим

.

Начало темы “Интеграл”

Продолжение темы “Интеграл”

function-x.ru

Интегрирование рациональных функций

Рациональная функция – это дробь вида , числитель и знаменатель которой – многочлены или произведения многочленов.

Из урока “Интегрирование некоторых рациональных дробей и иррациональностей” известно, что рациональные дроби бывают неправильные, если степень многочлена в её числителе не меньше степени многочлена в знаменателе, и правильные, если степень многочлена в числителе меньше степени многочлена в знаменателе. В том же уроке говорилось о том, как представить неправильную дробь в виде суммы её целой части и некоторой правильной дроби.

На этом уроке будем учиться интегрировать такие рациональные функции, которые представлены в виде правильных дробей. Для этого существует метод неопределённых коэффициентов, основанный на теореме, которая гласит, что всякая правильная дробь может быть представлена в виде суммы простых дробей.

Приведённый ниже алгоритм интегирования рациональных функций будет пошагово проиллюстрирован в примерах.

Алгоритм интегрирования рациональных функций

  • Шаг 1. Определить вид многочлена в знаменателе дроби (он может иметь действительные, кратные действительные, комплексные и кратные комплексные корни) и в зависимости от вида разложить дробь на простые дроби, в числителях которых – неопределённые коэффициенты, число которых равно степени знаменателя.
  • Шаг 2. Определить значения неопределённых коэффициентов. Для этого потребуется решить систему уравнений, сводящуюся к системе линейных уравнений.
  • Шаг 3. Найти интеграл исходной рациональной функции (дроби) как сумму интегралов полученных простых дробей, к которым применяются табличные интегралы.

Переходим к первому шагу алгоритма

Многочлен в знаменателе имеет действительные корни. То есть, в знаменателе имеет место цепочка сомножителей вида , в которой каждый из сомножителей находится в первой степени. В этом случае разложение дроби с использованием метода неопределённых коэффициентов будет следующим:

Пример 1. Шаг 1. Дан интеграл от рациональной функции .

От нас требуется разложить подынтегральное выражение – правильную дробь на простые дроби.

Решение. Дискриминант уравнения положительный, поэтому многочлен в знаменателе имеет действительные корни. Получаем следующее разложение исходной дроби на сумму простых дробей:

.

Пример 2. Шаг 1.Дан интеграл от рациональной функции

.

Решение. Разложим знаменатель подынтегрального выражения на множители. Сначала можно вынести за скобки x. Получаем следующую дробь:

.

Для разложения квадратного трёхчлена в скобках решаем квадратное уравнение:

Получаем разложение знаменателя на множители в подынтегральном выражении:

.

Дискриминант решённого выше квадратного уравнения положительный, то есть имеем дело со случаем, когда многочлен в знаменателе имеет действительные корни. Разложение исходной дроби подынтегрального выражения будет следующим:

.

Как и в первом примере, числа, обозначенные большими буквами, пока неизвестны. Отсюда и название – метод неопределённых коэффициентов.

Многочлен в знаменателе имеет кратные действительные корни. Этот случай имеет место, когда в цепочке сомножителей в знаменателе присутствует выражение вида , то есть один из многочленов в степени 2 и больше. В этом случае разложение дроби с использованием метода неопределённых коэффициентов будет следующим:

Пример 3. Шаг 1. Дан интеграл от рациональной функции .

Решение. Представляем разность квадратов в виде произведения суммы и разности .

Тогда подынтегральное выражение запишется в виде

,

все уравнения с многочленами которого имеют действительные корни. Это случай кратных действительных корней, так как последний сомножитель находится во второй степени. Получаем следующее разложение исходной дроби на простые дроби:

Как видим, в этом случае нужно понижать степень кратного многочлена с исходной до первой и записывать простую дробь с каждой из этих степеней в знаменатель.

Пример 4. Шаг 1. Дан интеграл от рациональной функции .

Решение. Уравнения с многочленами в знаменателе имеют действительные корни, а сами многочлены присутствуют в степенях больше первой. Поэтому получаем следующее разложение исходной дроби на простые дроби:

.

Многочлен в знаменателе имеет комплексные корни: дискриминант квадратного уравнения , присутствующего в цепочке сомножителей в знаменателе, меньше нуля. В этом случае при разложении дроби в простой дроби, соответствующей описанному выше сомножителю, в числителе нужно записывать линейное выражение с переменной x (это выражение – последнее в следующей записи):

Пример 5. Шаг 1. Дан интеграл от рациональной функции .

Решение. Уравнение в скобках имеет комплексные корни, а оба сомножителя присутствуют в знаменателе в первой степени. Поэтому получаем следующее разложение исходной дроби на простые дроби:

.

Пример 6. Шаг 1. Дан интеграл от рациональной функции .

Решение. Представим знаменатель дроби в подынтегральном выражении в виде следующего произведения сомножителей:

.

Решение. Уравнение с последним сомножителем имеет комплексные корни, а все сомножители присутствуют в знаменателе в первой степени. Поэтому получаем следующее разложение исходной дроби на простые дроби:

Многочлен в знаменателе имеет кратные комплексные корни: дискриминант квадратного уравнения , присутствующего в цепочке сомножителей в знаменателе, меньше нуля и этот сомножитель присутствует в степени 2 или больше. В этом случае разложение дроби с использованием метода неопределённых коэффициентов будет следующим:

То есть в сумме простых дробей число простых дробей с линейным выражением в числителе должно быть равно степени сомножителя, имеющего комплексные корни.

Пример 7. Шаг 1. Дан интеграл от рациональной функции .

Решение. Квадратный трёхчлен имеет комплексные корни и присутствует в знаменателе подынтегральной дроби во второй степени. Поэтому получаем следующее разложение дробного выражения:

.

Пример 8. Шаг 1. Дан интеграл от рациональной функции .

Решение. Квадратный трёхчлен в знаменателе имеет комплексные корни и присутствует в подынтегральной дроби во второй степени. Поэтому получаем следующее разложение дробного выражения:

.

На первом шаге мы представили подынтегральные дроби в виде суммы дробей с неопределёнными коэффициентами. В начале этого шага потребуется привести полученную сумму дробей к общему знаменателю. После этого в их числителях будут произведения неопределённых коэффициентов на многочлены, которых нет в данной отдельной дроби, но которые есть в других полученных дробях.

Полученное таким образом выражение приравнивается к числителю исходной дроби. Затем составляется система из уравнений, в которых степени икса одинаковы. Путём решения системы и находятся неопределённые коэффициенты. Для решения достаточно знать, как системы уравнений решаются методом подстановки и методом сложения.

Пример 1. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Умножаем неопределённые коэффициенты на многочлены, которых нет в данной отдельной дроби, но которые есть в других полученных дробях:

.

Раскрываем скобки и приравниваем полученое к полученному выражению числитель исходной подынтегральной дроби:

.

В обеих частях равенства отыскиваем слагаемые с одинаковыми степенями икса и составляем из них систему уравнений:

.

Сокращаем все иксы и получаем эквивалентную систему уравнений:

.

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Таким образом, окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 2. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Теперь начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Теперь требуется составить и решить систему уравнений. Для этого приравниваем коэффициенты при переменной в соответствующей степени в числителе исходного выражения функции и аналогичные коэффициенты в полученном на предыдущем шаге выражения:

Решаем полученную систему:

Итак, , отсюда получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 3. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Как и в предыдущих примерах составляем систему уравнений:

Сокращаем иксы и получаем эквивалентную систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 4. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Как приравнивать числитель исходной дроби к выражению в числителе, полученному после разложения дроби на сумму простых дробей и приведения этой суммы к общему знаменателю, мы уже знаем из предыдуших примеров. Поэтому лишь для контроля приведём получившуюся систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

Пример 5. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Самостоятельно приводим к общему знаменателю эту сумму, приравнивать числитель этого выражения к числителю исходной дроби. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 6. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Производим с этой суммой те же действия, что и в предыдущих примерах. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 7. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

После известных действий с полученной суммой должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 8. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Внесём некоторые изменения в уже доведённые до автоматизма действия для получения системы уравнений. Есть искусственный приём, который в некоторых случаях помогает избежать лишних вычислений. Приводя сумму дробей к общему знаменателю получаем и приравнивая числитель этого выражения к числителю исходной дроби, получаем:

Можно заметить, что если принять за значение икса единицу, то второе и третье слагаемые в правой части равенства обратятся в нули и нет необходимости их вычислять. Тогда получаем, что . Далее по уже отработанной схеме получаем систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Полученные простые дроби и интегировать проще. К исходной сумме дробей применяется правило интеграла суммы (интеграл суммы равен сумме интегралов) и табличные интегралы. Чаще всего требуется применять табличные интегралы, приводящие к натуральному логарифму и арктангенсу.

Пример 1. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Интегрируем изначальную рациональную функцию как сумму дробей и используем табличный интеграл, приводящий к натуральному логарифму:

Последнее действие с натуральным логарифмом – приведение к единому выражению под логарифмом – может требоваться при выполнении работ, но требуется не всегда.

Пример 2. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Вновь применяем табличный интеграл, приводящий к натуральному логарифму:

Пример 3. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

В результате интегрирования получаем сумму натуральных логарифмов и одной простой дроби, на случай, если требуется преобразование к единому логарифму, делаем и это:

Пример 4. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

В результате интегрирования получаем сумму натуральных логарифмов и одной дроби, на случай, если требуется преобразование к единому логарифму, делаем и это:

Пример 5. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Интегрируем и получаем сумму натурального логарифма и арктангенса:

Пример 6. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Опять получаем сумму натурального логарифма и арктангенса:

Пример 7. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Интегрируя, получаем натуральные логарифмы и дробь:

Приведение к единому логарифму попробуйте выполнить самостоятельно.

Пример 8. Шаг 3. На шаге 2 получили окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Интегрируя, получаем сумму натурального логарифма, арктангенса и дроби:

Начало темы “Интеграл”

Продолжение темы “Интеграл”

function-x.ru

Примеры интегрирования рациональных функций (дробей)

Здесь мы приводим подробные решения трех примеров интегрирования следующих рациональных дробей:
,   ,   .

Пример 1

Вычислить интеграл:
.

Решение

Здесь под знаком интеграла стоит рациональная функция, поскольку подынтегральное выражение является дробью из многочленов. Степень многочлена знаменателя (3) меньше степени многочлена числителя (4). Поэтому, вначале необходимо выделить целую часть дроби.

1.   Выделим целую часть дроби. Делим x4 на x 3 – 6x 2 + 11x – 6:

Отсюда
.

2.   Разложим знаменатель дроби на множители. Для этого нужно решить кубическое уравнение:
.
Предположим, что оно имеет хотя бы один целый корень. Тогда он является делителем числа 6 (члена без x). То есть целый корень может быть одним из чисел:
1, 2, 3, 6, –1, –2, –3, –6.
Подставим x = 1:
.

Итак, мы нашли один корень x = 1. Делим на x – 1:

Отсюда
.
Решаем квадратное уравнение   .
.
Корни уравнения: ,   .
Тогда
.

3.   Разложим дробь на простейшие.

.

Итак, мы нашли:
.
Интегрируем.

Ответ

.

Пример 2

Вычислить интеграл:
.

Решение

Здесь в числителе дроби – многочлен нулевой степени (1 = x 0). В знаменателе – многочлен третьей степени. Поскольку 0 < 3, то дробь правильная. Разложим ее на простейшие дроби.

1.   Разложим знаменатель дроби на множители. Для этого нужно решить уравнение третьей степени:
.
Предположим, что оно имеет хотя бы один целый корень. Тогда он является делителем числа 3 (члена без x). То есть целый корень может быть одним из чисел:
1, 3, –1, –3.
Подставим x = 1:
.

Итак, мы нашли один корень x = 1. Делим x 3 + 2x – 3 на x – 1:

Итак,
.

Решаем квадратное уравнение:
x 2 + x + 3 = 0.
Находим дискриминант: D = 1 2 – 4·3 = –11. Поскольку D < 0, то уравнение не имеет действительных корней. Таким образом, мы получили разложение знаменателя на множители:
.

2.   Разложим дробь на простейшие. Ищем разложение в виде:
.
Освобождаемся от знаменателя дроби, умножаем на (x – 1)(x 2 + x + 3):
(2.1)   .
Подставим x = 1. Тогда x – 1 = 0,
.

Подставим в (2.1) x = 0:
1 = 3A – C;
.

Приравняем в (2.1) коэффициенты при x 2:
;
0 = A + B;
.

Итак, мы нашли разложение на простейшие дроби:
.

3.   Интегрируем.
(2.2)   .
Для вычисления второго интеграла, выделим в числителе производную знаменателя и приведем знаменатель к сумме квадратов.

;
;
.

Вычисляем I2.


.
Поскольку уравнение x 2 + x + 3 = 0 не имеет действительных корней, то x 2 + x + 3 > 0. Поэтому знак модуля можно опустить.

Поставляем в (2.2):
.

Ответ

.

Пример 3

Вычислить интеграл:
.

Решение

Здесь под знаком интеграла стоит дробь из многочленов. Поэтому подынтегральное выражение является рациональной функцией. Степень многочлена в числителе равна 3. Степень многочлена знаменателя дроби равна 4. Поскольку 3 < 4, то дробь правильная. Поэтому ее можно раскладывать на простейшие дроби. Но для этого нужно разложить знаменатель на множители.

1.   Разложим знаменатель дроби на множители. Для этого нужно решить уравнение четвертой степени:
.
Предположим, что оно имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x). То есть целый корень может быть одним из чисел:
1, 2, –1, –2.
Подставим x = –1:
.

Итак, мы нашли один корень x = –1. Делим на x – (–1) = x + 1:

Итак,
.

Теперь нужно решить уравнение третьей степени:
.
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x). То есть целый корень может быть одним из чисел:
1, 2, –1, –2.
Подставим x = –1:
.

Итак, мы нашли еще один корень x = –1. Можно было бы, как и в предыдущем случае, разделить многочлен     на   , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то мы получили разложение знаменателя на множители:
.

2.   Разложим дробь на простейшие. Ищем разложение в виде:
.
Освобождаемся от знаменателя дроби, умножаем на (x + 1) 2(x 2 + 2):
(3.1)   .
Подставим x = –1. Тогда x + 1 = 0,
.

Продифференцируем (3.1):

;

.
Подставим x = –1 и учтем, что x + 1 = 0:
;
;   .

Подставим в (3.1) x = 0:
0 = 2A + 2B + D;
.

Приравняем в (3.1) коэффициенты при x 3:
;
1 = B + C;
.

Итак, мы нашли разложение на простейшие дроби:
.

3.   Интегрируем.


.

Ответ

.

Автор: Олег Одинцов.     Опубликовано:

1cov-edu.ru

Правила интегрирования | Математика

Основные правила интегрирования и таблица интегралов на начальном этапе изучения темы — полезные подсказки, которые удобно всегда иметь перед собой.

Основные правила интегрирования

   

Постоянный множитель выносится за знак интеграла.

   

Интеграл от суммы равен сумме интегралов от слагаемых.

   

В частности,

   

где k и b — числа.

Таблица неопределенных интегралов

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

adminНеопределенный интеграл

www.matematika.uznateshe.ru

Интегрирование дифференциального бинома

Применяемые подстановки

Рассмотрим интеграл:
,
где m, n, p – рациональные числа, a, b – действительные числа.
Подынтегральное выражение называется дифференциальным биномом. Интеграл от него сводится к интегралам от рациональных функций в трех случаях.

  1)   Если p – целое, то выполняется подстановка x = t N, где N – общий знаменатель дробей m и n.
  2)   Если – целое, то подстановка a x n + b = t M, где M – знаменатель числа p.
  3)   Если – целое, подстановка a + b x – n = t M, где M – знаменатель числа p.

Если ни одно из трех чисел     не является целым числом, то по теореме Чебышева интегралы данного вида не могут быть выражены конечной комбинацией элементарных функций.

Формулы приведения (понижения или повышения показателей степеней)

В ряде случаев, сначала бывает полезным привести интеграл к более удобным значениям показателей степеней m и p. Это можно сделать с помощью формул приведения:
;
.

Доказательство формул приведения

Доказательство первой формулы

Докажем первую формулу:

Выполняем преобразования.


Интегрируем по частям, умножив на na(p+1).
u = xm–n+1, v = (axn + b) p+1, du = (xm–n+1)′ dx = (m–n+1) xm–n dx.

Преобразуем оставшийся интеграл.

Подставляем.

Отсюда

Или
.

Доказательство второй формулы

Докажем вторую формулу:
.

Выполняем преобразования.


Интегрируем по частям, умножив на m + 1.
u = (axn + b)p, v = xm+1,

Преобразуем оставшийся интеграл.

Подставляем.

Отсюда
.

Пример

Вычислить интеграл.

Решение

Преобразуем.

Это интеграл от дифференциального бинома

со значениями m = 1/3, p = 1/3, n = 2, a = – 1, b = 1.
Поскольку
– целое, то интеграл сводится к интегралу от рациональной функции третьей подстановкой:
– 1 + x – 2 = t3.

Возьмем дифференциал от обеих частей этого равенства.


Подставляем

Интегрируем по частям.

Разложим дробь на простейшие.

Выделим в числителе второй дроби производную знаменателя и преобразуем знаменатель.
(t2 – t + 1)′ = 2t – 1

Подставляем

Интегрируем

Окончательно имеем

Ответ


где .

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов.     Опубликовано:

1cov-edu.ru

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *