История развития генетики таблица – 2QM.ru: История развития генетики (кратко). История развития генетики в России

Биология для студентов — 13. Основные этапы развития генетики

Первые идеи о механизме наследственности высказали ещё древнегреческие учёные – Демокрит, Гиппократ, Платон, Аристотель. Гиппократ полагал, что яйцеклетки и сперма формируются при участии всех частей организма и что признаки родителей непосредственно передаются потомкам. Эту гипотезу в целом принял Аристотель, взгляды которого по разным вопросам философии и естествознания господствовали на протяжении всего средневекового периода в Европе. Автор первой научной теории эволюции Ж.Б. Ламарк также воспользовался идеями древнегреческих учёных для объяснения, постулированного им на рубеже XVIII-XIX вв. принципа передачи приобретённых в течение жизни индивидуума новых признаков потомству.

В 80-х годах прошлого века теорию пангенезиса и саму идею о наследовании благоприобретённых признаков резкой критике подверг А. Вейсман (1834-1914). Вейсман принял и развил идею, согласно которой наследственный материал сосредоточен в ядерной субстанции клеток или в хромосомах. Если учесть, что о поведении хромосом в митозе и мейозе к концу XIX в. было уже довольно много известно, то не удивительно, что теория Вейсмана о зародышевой плазме во многом подготовила биологов к необходимости коренного пересмотра взглядов на наследственность сразу после вторичного открытия законов Менделя.

Годом рождения генетики считается 1900-й; она ровесница XX в. Известно, что становлению генетики как самостоятельной области биологии предшествовало необычное в истории науки событие. Фактически основные законы генетики были открыты в 1865 г. Г. Менделем. Однако, на протяжении последующих 35 лет они остались неизвестными большинству биологов, в том числе и Дарвину. Вместе с тем у Менделя были предшественники-экспериментаторы. В их числе О. Сажрэ, И.Г. Кельрейтер, Т.Э. Найт, Ш. Ноден, Дж. Госс. Они наблюдали и факты доминирования, и расщепление признаков родителей в потомстве, но их опыты не отличались той глубокой продуманностью и целенаправленностью, которые были характерны для исследований Менделя, в них отсутствовал строгий количественный учёт результатов.

Вторичное открытие законов Менделя принадлежит трём учёным – Г. де Фризу (Голландия), К. Корренсу (Германия), Э. Чермаку (Австрия). Практически они одновременно получили факты, полностью подтверждающие закономерности наследования признаков, открытые Менделем на горохе. Приоритет Менделя вскоре был восстановлен, и последующее десятилетие в истории генетики с полным правом может быть охарактеризовано как период торжества менделизма.

Название новой науки – генетика – было предложено в 1906 г. английским учёным В. Бэтсоном (от латинского genetikos – относящийся к происхождению, рождению). Датчанин В. Иоганнсен в 1909 г. утвердил в биологической литературе такие принципиально важные понятия, как ген (от греческого genos – род, рождение, происхождение), генотип, фенотип.

На этом этапе истории генетики была принята и получила дальнейшее развитие менделевская, по существу умозрительная, концепция гена как материальной единицы наследственности, ответственной за передачу отдельных признаков в ряду поколений организмов. Тогда же голландский учёный Г. де Фриз (1901) выдвинул теорию изменчивости, основанную на представлении о скачкообразности изменений наследственных свойств в результате мутаций.

В развитии генетики можно выделить 3 этапа:

  • Первый (с 1900 по 1925 г.) – этап классической генетики. В этот период были переоткрыты и подтверждены на многих видах растений и животных законы Г.Менделя, создана хромосомная теория наследственности (Т.Г.Морган). 
  • Второй (с1926 по 1953) – этап широкого развёртывания работ по искусственному мутагенезу (Г.Меллер и др.). в это время было показано сложное строение и дробимость гена, заложены основы биохимической, популяционной и эволюционной генетики, доказано, что молекула ДНК является носителем наследственной информации (О.Эвери), были заложены основы ветеринарной генетики.
  • Третий (начинается с 1953 г.) – этап современной генетики, для которого характерны исследования явлений наследственности на молекулярном уровне. Была открыта структура ДНК (Дж. Утсон), расшифрован генетический код (Ф.Крик), химическим путём синтезирован ген (Г. Корана).

Большой вклад в развитие генетики внесли отечественные учёные. Научные генетические школы созданы Вавиловым и др. Получили искусственным путём мутации – Филиппов. Вавилов сформулировал закон гомологических рядов наследственной изменчивости. Карпеченко предложил метод преодоления бесплодия у некоторых гибридов. Четвериков – основатель учения о генетике популяций. Серебровский – показал сложное строение и дробимость гена. 

vseobiology.ru

6. Краткая история генетики. Особенности развития отечественной генетики

Явления
наследственности и изменчивости
признаков были известны с древнейших
времен. Сущность этих явлений была
сформулирована в виде эмпирических
правил: «Яблочко от яблони недалеко
падает», «От худого семени не жди доброго
племени», «Не в мать, не в отца, а в
прохожего молодца» и т.д.

Натурфилософы
античного мира пытались объяснить
причины сходства и различия между
родителями и их потомками, между братьями
и сестрами, механизмы определения пола,
причины рождения близнецов. Преемственность
поколений описывалась терминами «генус»
(род), «геннао» (рождаю), «генетикос»
(имеющий отношение к происхождению),
«генезис» (происхождение).

В
Новое время в Англии (Т. Найт), Германии
(Й. Кёльрейтер), Франции (О. Сажрэ) были
разработаны методики постановки опытов
по гибридологическому анализу, были
открыты явления доминантности и
рецессивности, сформулированы
представления об элементарных наследуемых
признаках. Однако раскрыть механизмы
наследственности и изменчивости долгое
время не удавалось. Для объяснения
феноменов наследственности и изменчивости
использовались концепции наследования
благоприобретенных признаков, панспермии,
изменчивости признаков под прямым
влиянием среды и др.

В
основу современной генетики легли
закономерности наследственности,
обнаруженные Г. Менделем при скрещивании
различных сортов гороха (1865), а также
мутационная теория X. Де Фриза (1901–1903).
Однако рождение генетики принято
относить к 1900 г., когда X. Де Фриз, К.
Корренс и Э. Чермак вторично открыли
законы Г. Менделя.

В
1906 г. на основании корня «ген» У. Бэтсон
(Англия) предложил термин «генетика»,
а в 1909 г. В.Л. Иоганссен предложил термин
«ген».

Ещё
в 1883–1884 гг. В. Ру, О. Гертвиг, Э. Страсбургер,
а также А.Вейсман (1885) сформулировали
ядерную гипотезу наследственности,
которая в начале XX в. переросла в
хромосомную теорию наследственности
(У. Сеттон, 1902–1903; Т. Бовери, 1902–1907; Т.
Морган и его школа).

Т.
Морганом были заложены и основы теории
гена, получившей развитие в трудах
отечественных учёных школы А.С.Серебровского,
которые сформулировали в 1929–1931 гг.
представления о сложной структуре гена.
Эти представления были развиты и
конкретизированы в исследованиях по
биохимической и молекулярной генетике,
которые привели к созданию Дж. Уотсоном
и Ф. Криком (1953) модели ДНК, а затем и к
расшифровке генетического кода,
определяющего синтез белка.

Значительную
роль в развитии генетики сыграло открытие
факторов мутагенеза – ионизирующих
излучений (Г. А. Надсон и Г. С. Филиппов,
1925; Г. Мёллер, 1927) и химических мутагенов
(В. В. Сахаров и М.Е.Лобашёв, 1933–1934).
Использование индуцированного мутагенеза
способствовало увеличению разрешающей
способности генетического анализа и
представило селекционерам метод
расширения наследств, изменчивости
исходного материала.

Важное
значение для разработки генетических
основ селекции имели работы Н.И. Вавилова.
Сформулированный им в 1920 закон
гомологических рядов в наследственной
изменчивости позволил ему в дальнейшем
установить центры происхождения
культурных растений, в которых
сосредоточено наибольшее разнообразие
наследственных форм.

Работами
С. Райта, Дж. Б. С. Холдейна и Р. Фишера
(20–30-е гг.) были заложены основы
генетико-математических методов изучения
процессов, происходящих в популяциях.
Фундаментальный вклад в генетику
популяций внёс С. С. Четвериков (1926),
объединивший в единой концепции
закономерности менделизма и дарвинизма.

Особенности
развития отечественной генетики

Начало
развития генетики в нашей стране
приходится на первые годы Советской
власти. В 1919 г. в Петроградском университете
была создана кафедра генетики, которую
возглавил Юрий Александрович Филипченко
(1882–1930). В 1930 г. открылась Лаборатория
генетики Академии наук СССР под
руководством Николая Ивановича Вавилова
(с 1933 г. – Институт генетики).

В
1920–1930-е гг. наша страна лидировала по
всем разделам генетики

Кольцов
Николай Константинович (1872–1940) –
предсказал свойства носителей генетической
информации; разрабатывал теорию гена;
разрабатывал учение о социальной
генетике (евгенике).

Вавилов
Николай Иванович (1887–1943) – сформулировал
закон гомологических рядов, разработал
учение о виде как системе.

Мичурин
Иван Владимирович (1855–1935) – открыл
возможность управления доминированием.

Серебровский
Александр Сергеевич (1892–1948) – создал
учение о генофонде и геногеографии:
«Совокупность всех генов данного вида
я назвал генофондом, чтобы подчеркнуть
мысль о том, что в лице генофонда мы
имеем такие же национальные богатства,
как и в лице наших запасов угля, скрытых
в наших недрах».

Четвериков
Сергей Сергеевич (1880–1959) – в работе «О
некоторых моментах эволюционного
процесса с точки зрения современной
генетики» доказал генетическую
неоднородность природных популяций.

Дубинин
Николай Петрович (1907–) – доказал
делимость гена; независимо от западных
исследователей установил, что важную
роль в эволюции играют вероятностные,
генетико-автоматические процессы.

Шмальгаузен
Иван Иванович (1884–1963) – разработал
теорию стабилизирующего отбора; открыл
принцип интеграции биологических
систем.

Николай
Владимирович Тимофеев-Ресовский
(1900–1981) – заложил основы современной
генетики популяций.

На
августовской (1948 г.) сессии ВАСХНИЛ
власть в науке захватил президент
ВАСХНИЛ академик Т.Д. Лысенко. Научной
генетике он противопоставил лжеучение
под названием «мичуринская биология».
Многие ученые-генетики (Н. П. Дубинин,
И. А. Рапопорт) были лишены возможности
заниматься наукой. Только в 1957 г. М.Е.
Лобашев возобновил преподавание
генетики. В 1965 г. Т.Д. Лысенко под давлением
прогрессивной общественности
(ученых-математиков, химиков, физиков)
утратил монополию на научную истину.
Был создан Институт общей генетики АН
СССР, создано Общество генетиков и
селекционеров им. Н. И. Вавилова. В конце
1960-х гг. наша страна вновь обрела
утраченные позиции в мировой науке.

Рекомендуемая
литература

Основная
литература

  1. Генетика
    / Меркурьева Е.А., Абрамова З.В., Бакай
    А.В.и
    др. – М.: Агропромиздат, 1991 – 446 с.

  2. Генетика
    сільськогосподарських тварин / Коновалов
    В.С., Коваленко В.П., Недвига М.М. та інші.
    – К.: Урожай, 1996. – 432 с.

  3. Ларцева
    С.Х., Мурсинов М.К. Практикум по генетике.
    – М.: Агропромиздат, 1985. – 288 с.

  4. Проценко
    М.Ю. Генетика.-К.:Выща школа, 1994.-303 с.

  5. Алиханян
    С.И. Общая генетика: Учеб. для студ. биол.
    спец. ун-тов. – М.: Высш. шк., 1985. – 448 с.

  6. Ватти
    К.В., Тихомирова М.М. Руководство к
    практическим занятиям по генетике:
    Пособие для студентов биол. фак. пед.
    ин-тов. – М.: Просвещение, 1979. – 189 с.

  7. Инге-Вечтомов
    С.Г. Генетика с основами селекции: Учеб.
    для биол. спец. ун-тов. – М.: Высш. шк.,
    1989. – 591 с.

  8. Лобашев
    М.Е., Ватти К.В., Тихомирова М.М. Генетика
    с основами селекции: Учеб. пособие для
    студентов пед. ин-тов по биол. спец. –
    М.: Просвещение, 1979. – 304 с.

Дополнительная
литература

  1. Барабанщиков
    Б.И., Сапаев Е.А. Сборник задач по генетике.
    – Казань: Изд-во КГУ, 1988. – 192 с.

  2. Беркенблит
    М.Б., Жердев А.В. и др. Почти 200 задач по
    генетике. – М.: МИРОС, 1992. – 120с.

  3. Биологический
    энциклопедический словарь / Гл. ред.
    М.С. Гиляров. – М.: Сов. энциклопедия,
    1989. – 864 с.

  4. Большой
    практикум по генетике животных и
    растений. Сборник. – М.: Изд-во МГУ,
    1977. – 136 с.

  5. Генетика
    – Журнал РАН.

  6. Генетика
    / Б. Гуттман, Э. Гриффитс, Д. Сузуки, Т.
    Куллис. – М.: ФАИР-ПРЕСС, 2004. – 448с.

  7. Генетика
    человека / В.А. Шевченко, Н.А. Топорнина,
    Н.С. Стволинская. – М.: ВЛАДОС, 2004. – 240
    с.

  8. Геном,
    клонирование, происхождение человека
    / Под ред. Л.И. Корочкина. – Фрязино:
    «Век2», 2004. – 224 с.

  9. Гужов
    Ю.Л. Генетика и селекция – сельскому
    хозяйству: Кн. для учителя. – М.:
    Просвещение, 1984. – 240 с.

  10. Гуляев
    В.Г. Задачник по генетике. – М.: Колос,
    1980. – 76 с.

  11. Задачи
    по современной генетике / Под ред. М.М.
    Асланяна. – М.: КДУ, 2005. – 224 с.

  12. Кайданов
    Л.З. Генетика популяций: Учеб. для биол.,
    мед. и с.-х. спец. вузов. – М.: Высш. шк.,
    1996. – 320 с.

  13. Каминская
    Э.А. Сборник задач по генетике. – Минск:
    Вышэйшая школа, 1977. – 128 с.

  14. Крестьянинов
    В.Ю., Вайнер Г.Б. Сборник задач по генетике
    с решениями (методическое пособие для
    школьников, абитуриентов и учителей).
    – Саратов: «Лицей», 1998. – 156 с.

  15. Левитский
    Г.А. Цитогенетика растений. (Избранные
    труды). – М.: Наука, 1978. – 248 с.

  16. Орлова
    Н.Н. Сборник задач по общей генетике. –
    М.: Изд-во МГУ, 1982. – 127 с.

  17. Папорков
    М.А. и др. Учебно-опытная работа на
    пришкольном участке: Пособие для
    учителей. – М.: Просвещение, 1980. – 255 с.

  18. Решение
    задач по генетике / Кузьмина К.А., Бобров
    Л.А. и др.– Саратов: СМИ, 1991. – 52с.

  19. Соколовская
    Б.Х. 120 задач по генетике. – М.: Центр
    развития социально-педагогических
    инициатив, 1992. – 84 с.

  20. Леск
    А. Введение в биоинформатику. – М.:
    БИНОМ. Лаборатория знаний, 2009. – 318 с.

  21. Примроуз
    С., Твайвен Р. Геномика. Роль в медицине.
    – БИНОМ. Лаборатория знаний, 2010. – 277
    с.

  22. Лукашов
    В.В. Молекулярная эволюция и филогенетический
    анализ. – М.: БИНОМ. Лаборатория знаний,
    2009. – 256 с.

  23. Спицын
    В.А. Экологическая генетика человека.
    – М.: Наука, 2008. – 503 с.

studfiles.net

Краткая история генетики

Количество просмотров публикации Краткая история генетики — 1751

Методы биотехнологии,

Иммуногенетический,

сравнительно-морфологические и сравнительно-биохимические методы,

разнообразные математические методы и т. д.

Явления наследственности и изменчивости признаков были известны с древнейших времен. Сущность этих явлений была сформулирована в виде эмпирических правил: ʼʼЯблочко от яблони недалеко падаетʼʼ, ʼʼОт худого семени не жди доброго племениʼʼ, ʼʼНе в мать, не в отца, а в прохожего молодцаʼʼ и т.д.

Натурфилософы античного мира пытались объяснить причины сходства и различия между родителями и их потомками, между братьями и сестрами, механизмы определœения пола, причины рождения близнецов. Преемственность поколений описывалась терминами ʼʼгенусʼʼ (род), ʼʼгеннаоʼʼ (рождаю), ʼʼгенетикосʼʼ (имеющий отношение к происхождению), ʼʼгенезисʼʼ (происхождение).

В Новое время в Англии (Т. Найт), Германии (Й. Кёльрейтер), Франции (О. Сажрэ) были разработаны методики постановки опытов по гибридологическому анализу, были открыты явления доминантности и рецессивности, сформулированы представления об элементарных наследуемых признаках. При этом раскрыть механизмы наследственности и изменчивости долгое время не удавалось. Для объяснения феноменов наследственности и изменчивости использовались концепции наследования благоприобретенных признаков, панспермии, изменчивости признаков под прямым влиянием среды и др.

В основу современной генетики легли закономерности наследственности, обна­руженные Г. Менделœем при скрещивании различных сортов гороха (1865), а также мута­ционная теория X. Де Фриза (1901–1903). При этом рождение генетики принято относить к 1900 ᴦ., когда X. Де Фриз, К. Корренс и Э. Чермак вторично открыли законы Г. Мен­деля.

В 1906 ᴦ. на основании корня ʼʼгенʼʼ У. Бэтсон (Англия) предложил термин ʼʼгенетикаʼʼ, а в 1909 ᴦ. В.Л. Иоганссен предложил термин ʼʼгенʼʼ.

Ещё в 1883–1884 гᴦ. В. Ру, О. Гертвиг, Э. Страсбургер, а также А.Вейсман (1885) сформулировали ядерную гипо­тезу наследственности, которая в начале XX в. переросла в хромосомную теорию наследственности (У. Сеттон, 1902–1903; Т. Бовери, 1902–1907; Т. Морган и его школа).

Т. Морганом были заложе­ны и основы теории гена, получившей развитие в трудах отечественных учёных школы А.С.Серебровского, которые сформулировали в 1929–1931 гᴦ. представления о слож­ной структуре гена. Эти представления были развиты и конкретизированы в ис­следованиях по биохимической и моле­кулярной генетике, которые привели к созданию Дж. Уотсоном и Ф. Криком (1953) мо­дели ДНК, а затем и к расшифровке генетического кода, определяющего синтез белка.

Значительную роль в развитии генетики сыграло открытие фак­торов мутагенеза – ионизирующих излу­чений (Г. А. Надсон и Г. С. Филиппов, 1925; Г. Мёллер, 1927) и химических мутагенов (В. В. Сахаров и М.Е.Лобашёв, 1933–1934). Использование индуцирован­ного мутагенеза способствовало увеличе­нию разрешающей способности генетического анализа и представило селœекционерам метод расширения наследств, изменчиво­сти исходного материала.

Важное значе­ние для разработки генетических основ се­лекции имели работы Н.И. Вавилова. Сформулированный им в 1920 закон гомологических рядов в наследственной изменчивости позволил ему в дальнейшем установить центры происхождения культурных рас­тений, в которых сосредоточено наибольшее разнообразие наследственных форм.

Работами С. Райта͵ Дж. Б. С. Холдейна и Р. Фи­шера (20—30-е гᴦ.) были заложены осно­вы генетико-математических методов изучения процессов, происходящих в популяциях. Фундаментальный вклад в генетику популяций внёс С. С. Четвериков (1926), объединив­ший в единой концепции закономерности менделизма и дарвинизма.

referatwork.ru

Основные этапы истории генетики

Зачатки генетики можно проследить ещё в доисторические времена, когда одомашнивались животные и культивировались растения. Уже на вавилонских глиняных табличках указывали возможные признаки при скрещивании лошадей.

Различные умозрительные представления о наследственности и изменчивости высказывались античными философами и врачами. В большинстве своем эти представления были ошибочными, но иногда среди них появлялись и гениальные догадки. Так, римский философ и поэт Лукреций Кар писал в своей знаменитой поэме «О природе вещей» о «первоначалах» (наследственных задатках), определяющих передачу из поколения в поколение признаков от предков к потомкам, о происходящем при этом случайном комбинировании («жеребьевке») этих признаков, отрицал возможность изменения наследственных признаков под влиянием внешних условий.

Однако подлинно научное познание наследственности и изменчивости началось лишь спустя много столетий, когда было накоплено множество точных сведений о наследовании различных признаков у растений, животных и человека. Число таких наблюдений, проведенных преимущественно практиками-растениеводами и животноводами, особенно возросло в период с середины 18 до середины 19 века. Наиболее ценные данные были получены И. Кельрейтером и А. Гертнером (Германия), О. Сажрэ и Ш. Ноденом (Франция), Т. Найтом (Англия). На основании межвидовых и внутривидовых скрещиваний растений они обнаружили ряд важных факторов, касающихся усиления разнообразия признаков в потомстве гибридов, преобладания у потомков признаков одного из родителей и т. п. Сходные обобщения сделал во Франции П. Люка (1847-1850), собравший обширные сведения о наследовании различных признаков у человека. Тем не менее, четких представлений о закономерностях наследования и наследственности вплоть до конца 19 века не было за одним существенным исключением. Этим исключением была замечательная работа Г. Менделя установившего в опытах по гибридизации сортов гороха важнейшие законы наследования признаков, которые впоследствии легли в основу генетики, а сформулированные им закономерности наследования получили название законов Менделя . Однако работа Г. Менделя (доложена им в 1865 на заседании общества естествоиспытателей г. Брюнн (Брно) и напечатана на следующий год в трудах этого общества) не была оценена современниками и, оставаясь забытой 35 лет, не повлияла на распространенные в 19 веке представления о наследственности и изменчивости.

Появление эволюционных теорий Ж.Б. Ламарка , а затем Ч. Дарвина усилило во второй половине 19 века интерес к проблемам изменчивости и наследственности, т. к. эволюция возможна только на основе возникновения у живых существ изменений и их сохранения у потомков. Это побудило видных биологов того времени выдвинуть несколько гипотез о механизме наследственности, гораздо более детализированных, чем предлагавшиеся ранее. Хотя эти гипотезы были в значительной степени умозрительными и в дальнейшем были опровергнуты экспериментальными исследованиями, три из них наряду с ошибочными содержали также подтвердившиеся положения. Первая принадлежала Ч. Дарвину, назвавшему ее «временной гипотезой пангенезиса». В этой гипотезе была правильная догадка о том, что половые клетки содержат особые частицы, определяющие развитие признаков потомков. Во второй гипотезе, выдвинутой немецким ботаником К. Негели, содержалась верная мысль о том, что каждая клетка организма содержит особое вещество («идиоплазму»), определяющее наследственные свойства организма. Наиболее детализированной была третья гипотеза, предложенная немецким зоологом А. Вейсманом. Он тоже считал, что в половых клетках есть особое вещество — носитель наследственности («зародышевая плазма»). Опираясь на сведения о механизме деления клетки, Вейсман отождествлял это вещество с хромосомами. Предположение о ведущей роли хромосом в передаче наследственных свойств было правильным и Вейсмана справедливо считают предтечей хромосомной теории наследственности. Верными были также его утверждения о большом значении скрещиваний, как причины изменчивости, и отрицание наследования приобретенных признаков.

Как уже говорилось, датой рождения генетики принято считать 1900, когда три ботаника — Карл Корренс(Германия), Эрих фон Чермак (Австрия) и Гуго Де Фриз (Голландия), проводившие опыты по гибридизации растений, натолкнулись независимо друг от друга на забытую работу Г. Менделя, в которой были подтверждены основные выводы о независимом наследовании признаков и о численных соотношениях при «расщеплении» признаков в потомстве. Они были поражены сходством его результатов с полученными ими, оценили глубину, точность и значение сделанных им выводов и опубликовали свои данные, показав, что полностью подтверждают заключения Менделя.

Вскоре английский натуралист Уильям Бэтсон ввел в употребление название новой научной дисциплины: генетика (в 1905 г. в частном письме и в 1906 г. публично). В 1909 году датским ботаником Вильгельмом Йоханнсеном введён в употребление термин «ген». Дальнейшее развитие генетики связано с рядом этапов, каждый из которых характеризовался преобладающими в то время направлениями исследований. Границы между этими этапами в значительной мере условны — этапы тесно связаны друг с другом, и переход от одного этапа к другому становился возможным благодаря открытиям, сделанным в предыдущем. Наряду с разработкой наиболее характерных для каждого этапа новых направлений, продолжалось исследование тех проблем, которые были главными ранее, а затем в той или иной мере отодвинулись на второй план. С этой оговоркой можно разделить историю генетики на шесть основных этапов.

Первый этап (с 1900 приблизительно по 1912), получивший название менделизма, является периодом утверждения открытых Менделем законов наследования на основе гибридологических опытов, проведенных в разных странах на высших растениях и животных (лабораторные грызуны, куры, бабочки и др.), в результате чего выяснилось, что эти законы имеют универсальный характер. Название «генетика» развивающейся науке дал в 1906 английский ученый У. Бэтсон, а вскоре сложились и такие важные генетические понятия, как ген, генотип, фенотип, которые были предложены в 1909 датским генетиком В. Иогансеном. Наряду с наиболее характерными для этого начального этапа истории генетики работами, подтверждающими на разных объектах справедливость законов Менделя, в те же годы зародились и некоторые новые направления исследований, получивших свое развитие в последующие периоды. Во-первых, это синтез сведений о хромосомах, митозе и мейозе с данными генетики. Уже в 1902 Т.Бовери (Германия) и У. Сеттон (США) обратили внимание на полный параллелизм расхождения хромосом и их перекомбинирования при мейозе и оплодотворении с расщеплением и перекомбинированием наследственных признаков по законам Менделя, что послужило важной предпосылкой возникновения хромосомной теории наследственности.

Во-вторых, выяснилось, что, хотя большинство изученных к тому времени наследственных признаков самых разных организмов передавалось из поколения в поколение в полном соответствии с законами Менделя, были и исключения. Так, английские генетики У. Бэтсон и Р. Пеннет в 1906 в опытах с душистым горошком обнаружили явление сцепленного наследования некоторых признаков, а другой английский генетик Л. Донкастер в том же году в опытах с крыжовниковой пяденицей открыл сцепленное с полом наследование. И в том и в другом случае наследование признаков происходило иначе, чем предсказывали законы Менделя. Число примеров обоих типов отклонения от менделевского наследования стало затем быстро увеличиваться, но только на следующем этапе истории генетики выяснилось, что принципиального противоречия с менделизмом в этих случаях нет и что это кажущееся противоречие объяснимо в рамках хромосомной теории наследственности. В-третьих, началось изучение внезапно возникающих и стойко наследуемых изменений — мутаций. В этом особенно большие заслуги принадлежали Г. де Фризу (1901, 1903), а в России С. Н. Коржинскому (1892).

На первом этапе развития генетики появились также первые попытки рассмотреть в свете ее данных проблемы эволюционного учения. Три такие попытки, предпринятые У. Бэтсоном (Англия), Г. де Фризом и Я. Лотси (Голландия), отражали стремление авторов использовать основы генетики для ревизии положений дарвинизма. На несостоятельность этих попыток уже тогда указал в ряде критических статей К. А. Тимирязев, который одним из первых отметил, что менделизм не только не противоречит дарвинизму, но, наоборот, подкрепляет его, снимая некоторые важные возражения, выдвигавшиеся против теории Дарвина.

Отличительной чертой второго этапа развития генетики (приблизительно 1912-1925) было создание и утверждение хромосомной теории наследственности. Ведущую роль в этом сыграли экспериментальные работы американского генетика Томаса Ханта Моргана и его учеников (А. Стертевант, К. Бриджес и Г. Меллер), проведенные в период с 1909 по 1919 на плодовой мушке Drosophila melanogaster- дрозофиле.

Эти работы, подтвержденные затем в др. лабораториях и на др. организмах, показали, что гены лежат в хромосомах клеточного ядра и что передача наследственных признаков, в т. ч. и таких, наследование которых, на первый взгляд, не укладывается в законы Менделя, определяется поведением хромосом при созревании половых клеток и оплодотворении. Данный вывод вытекал из исследований, проводившихся двумя независимыми методами — гибридологическим и цитологическим, дававшими взаимно подтверждающие результаты. Изучение закономерностей сцепленного наследования позволило путем анализа результатов скрещиваний составить карты расположения генов в «группах сцепления» и сопоставить группы сцепления с хромосомами (1910—1913 гг.). Генетические работы школы Моргана показали возможность строить карты хромосом с указанием точного расположения различных генов.

На основе хромосомной теории наследственности был выяснен и доказан хромосомный механизм определения пола. Большие заслуги в этом принадлежали, кроме Моргана, американскому цитологу Э.Вильсону. Тогда же начались и другие работы по генетике пола, среди которых особое значение имели исследования немецкого генетика Р. Гольдшмидта. Хромосомная теория наследственности была крупнейшим достижением этого этапа развития генетики и во многом определила путь дальнейших генетических исследований.

Если в первые годы развития менделизма было распространено упрощенное представление, что каждый наследственный признак организма определяется особым геном, то в рассматриваемый период стало ясно, что любой такой признак определяется взаимодействием множества генов (эпистаз, полимерия и др.), а каждый ген в той или иной мере влияет на разные признаки (плейотропия). Кроме того, оказалось, что способность гена проявляться в фенотипе организма ( пенетрантность) и степень его действия на фенотип (экспрессивность) могут зависеть, иногда в большой степени, от влияния окружающей среды или действия др. генов. Представления о пенетрантности и экспрессивности генов были впервые сформулированы в 1925 Н. В. Тимофеевым-Ресовскимна основании результатов его опытов с дрозофилой.

В этот же период быстро развиваются некоторые направления генетики, важные для разработки генетических основ селекции, семеноводства и племенного дела: изучение закономерностей наследования количественных признаков (особенно важны исследования шведского генетика Г. Нильсона-Эле), выяснение природы гетерозиса (работы американских генетиков Э. Иста и Д. Джонса), исследования сравнительной генетики культурных растений (выдающиеся труды Н. И. Вавилова, которые легли в основу его закона гомологичных рядов в наследственной изменчивости), по межвидовой гибридизации плодовых растений (работы И. В. Мичурина в СССР, Л.Бербанка в США), по частной генетике возделываемых растений и домашних животных.

К рассматриваемому периоду относится и становление генетики в СССР, причем ее быстрое развитие началось в 1920-х годах, когда сложились три генетических школы, возглавляемые Н. К. Кольцовым в Москве, Ю. А. Филипченко и Н. И. Вавиловым в Ленинграде.

Следующий этап – третий (приблизительно 1925-1940) связан с открытием искусственного мутагенеза. До 1925 довольно широко было распространено мнение, восходившее к высказыванием Вейсмана и особенно к взглядам де Фриза, о том, что мутации возникают в организме самопроизвольно под влиянием каких-то чисто внутренних причин и не зависят от внешних воздействий. Эта ошибочная концепция была опровергнута в 1925 работами Г. А. Надсона и Г. С. Филиппова по искусственному вызыванию мутаций, а затем экспериментально доказана опытами Г.Меллера (1927) по воздействию рентгеновских лучей на дрозофилу. Работа Г.Меллера стимулировала многочисленные исследования по мутагенезу на разных объектах, которые показали, что ионизирующие излучения — универсальные мутагены. Благодаря этому началось изучение закономерностей мутагенного действия излучений; особенно ценными были исследования Н. В. Тимофеева-Ресовского и М. Дельбрюка, обнаруживших прямую зависимость частоты индуцированных мутаций от дозы радиации и предположивших в 1935, что эти мутации вызываются непосредственным попаданием в ген кванта или ионизирующей частицы (теория мишени). В дальнейшем показано, что мутагенным действием обладают ультрафиолетовые лучи, химические вещества. Первые химические мутагены были открыты в 1930-х годах в СССР В.В. Сахаровым, М.Е. Лобашевым и С.М. Гершензоном. Благодаря исследованиям И.А. Раппопорта в СССР и Ш. Ауэрбах и Дж. Робсона в Великобритании, в 1946 обнаружены супермутагены этиленимин и азотистый иприт.

Исследования в этой области привели к быстрому прогрессу в познании закономерностей мутационного процесса и к выяснению некоторых вопросов, касающихся тонкого строения гена. В конце 1920-х — начале 1930-х годов А. С. Серебровский и его ученики получили первые данные, указывающие на сложное строение гена из частей, способных мутировать порознь или вместе. Возможность индукции мутаций открыла новые перспективы практического использования достижений генетики. В разных странах начались работы по применению радиационного мутагенеза для получения исходного материала при создании новых форм культурных растений. В СССР инициаторами такой «радиационной селекции» были А.А. Сапегин и Л. Н. Делоне.

На этом же этапе развития генетики возникло направление, изучающее роль генетических процессов в эволюции. Основополагающими в этой отрасли знаний были теоретические работы английских генетиков Р. Фишера и Дж. Холдейна, американского генетика С. Райта и экспериментальные исследования С.С. Четверикова и его сотрудников, впервые исследовавших на нескольких видах дрозофил генетическую структуру природных популяций. В отличие от некоторых ранних менделистов, выступавших против дарвинизма, эти ученые, опираясь на большой фактический материал, накопленный с тех пор генетикой, убедительно показали, что генетические данные подтверждают и конкретизируют ряд основных принципов дарвинизма, способствуют выяснению соотносительного значения в эволюции естественного отбора, разных типов изменчивости, изоляции и т. д. Н. И. Вавиловым и его учениками продолжалось успешное изучение сравнительной генетики и эволюции возделываемых растений. Особенно яркой была работа его талантливого сотрудника Г.Д. Карпеченко, который на основе межродовой гибридизации получил плодовитый редечно-капустный гибрид. Он экспериментально доказал возможность преодоления бесплодия у отдаленных гибридов и воспроизвел один из способов образования новых видов у растений.

Большого расцвета в этот период достигла генетика в СССР. Помимо выдающихся работ, указанных выше, в разных областях генетики были получены важные результаты, признанные генетиками всего мира. Среди них работы Б. Л. Астаурова, который в опытах на тутовом шелкопряде разработанными им генетическими методами впервые доказал возможность регулировать частоту особей определенного пола у потомства, М. М. Завадовского по развитию половых признаков у позвоночных, Г. А. Левитского по классификации и изменчивости кариотипов и их эволюции. Широко известны в этот период исследования А. А. Сапегина, К. К. Мейстера, А. Р. Жебрака по частной генетике и генетическим основам селекции растений, работы А. С. Серебровского, С. Г. Давыдова, Д. А. Кисловского по частной генетике и генетическим основам селекции домашних животных. Н. К. Кольцов выдвинул в 1927 концепцию о том, что хромосома с генами представляет одну гигантскую органическую молекулу и что воспроизведение этой наследственной молекулы осуществляется матричным путем. То и другое было позже подтверждено, когда генетические процессы начали изучать на молекулярном уровне (правда оказалось, что генетическим материалом служит не белок, как считал Кольцов, а ДНК).

В конце 1920-х годов в СССР происходила оживленная дискуссия о том, могут ли наследоваться модификации (их тогда называли «приобретенными признаками»), т. е. фенотипические изменения, вызванные в теле организма воздействием внешних условий (пищей, температурой, влажностью, освещением и т. п.) и упражнением либо неупражнением органов. Представление о возможности наследования модификаций было в ту пору практически полностью отвергнуто в зарубежной генетике на основании многочисленных опытных данных, но в СССР некоторые биологи, особенно Е. С. Смирнов, Е. М. Вермель и А. М. Кузин, эту возможность разделяли и пропагандировали. Их поддерживали московские философы М. Б. Митин, П. Ф. Юдин и др., утверждавшие, что эта неоламаркистская концепция якобы соответствует философии диалектического материализма. Спор этот продолжался несколько лет, хотя ошибочность теории наследования модификаций была убедительно продемонстрирована и сов. генетиками Н. К. Кольцовым, Ю. А. Филипченко, А. С. Серебровским, С. С. Четвериковым и зоологами А. С. Северцовым и И. И. Шмальгаузеном. Последний позже выдвинул важные соображения о том, что размах и характер модификаций, хотя они и не наследуются, зависят не только от внешних воздействий, но и от «нормы реакции» организма, определяемой его генотипом. Ошибочной идее наследования приобретенных признаков суждено было впоследствии возродиться в антинаучных воззрениях Т. Д. Лысенко.

 

Наиболее характерными чертами четвертого этапа истории генетики (приблизительно 1940-1955) было бурное развитие работ по генетике физиологических и биохимических признаков, обусловленное вовлечением в круг генетических опытов новых для генетики объектов — микроорганизмов и вирусов. Возможность получения у этих объектов огромного по численности потомства за короткое время резко повысила разрешающую способность генетического анализа и позволила исследовать многие ранее недоступные стороны генетических явлений.

Изучение биохимических процессов, лежащих в основе формирования наследственных признаков разных организмов, в т. ч. дрозофилы и особенно плесени нейроспоры, пролило свет на то, как действуют гены и, в частности, как влияют генные мутации на синтезируемые в организме ферменты. Это привело к обобщению, сделанному в 1940-х годах американскими генетиками Дж. Бидлом и Э. Тейтемом, согласно которому всякий ген определяет синтез одного фермента (формула «один ген — один фермент» была впоследствии уточнена «один ген — один белок» или даже «один ген — один полипептид»).

В конце 30-х и начале 40-х годов работами американских генетиков М. Грина и Э. Льюиса в опытах на дрозофиле было четко доказано сложное строение и дробимость гена, т. е. подтверждены и углублены аналогичные данные, полученные А. С. Серебровским.

В 1944 американский генетик О. Эйвери с сотрудниками в работе по выяснению природы генетической трансформации у бактерий показала, что носителем наследственных потенций (генетической информации) организма служит дезоксирибонуклеиновая кислота (ДНК) хромосом. Это открытие послужило мощным толчком к изучению тонкого химического строения, путей биосинтеза и биологических функций нуклеиновых кислот и явилось отправной точкой, с которой началось развитие молекулярной генетики и всей молекулярной биологии. Наиболее важными достижениями конца четвертого периода является установление того факта, что инфекционным элементом вирусов служит их нуклеиновая кислота (ДНК или РНК), а также открытие в 1952 американскими генетиками Дж. Ледербергом и М. Зиндером трансдукции, т. е. переноса вирусами генов хозяина, и выяснение структуры молекул ДНК (т. н. двойной спирали) английским физиком Ф. Криком и американским генетиком Дж. Уотсоном в 1953. Последняя работа сыграла выдающуюся роль во всем последующем развитии генетики и всей биологии.

Благодаря прогрессу биохимической генетики большие успехи были достигнуты в генетических и цитологических исследованиях наследственных болезней человека. В результате сложилось новое направление — медицинская генетика.

Дальнейшее развитие получили работы по генетике природных популяций. Особенно интенсивно они проводились в СССР Н. П. Дубининым с сотрудниками и С. М. Гершензоном с сотрудниками, а в США Ф. Г. Добржанским. В ходе этих исследований показаны роль различных типов мутаций в эволюции, действие естественного отбора, изоляции и генетического дрейфа на генетическую структуру природных популяций. Открытие ряда сильных химических мутагенов послужило толчком к быстрому прогрессу химического мутагенеза. В эти же годы появились первые высокопродуктивные сорта культурных растений, созданные на основе мутаций, искусственно вызванных радиацией, началось применение с той же целью химических мутагенов; были внедрены в практику методы использования гетерозиса, особенно у кукурузы и тутового шелкопряда.

До 1940-х годов генетические исследования в СССР развивались в целом успешно и занимали одно из ведущих мест в мире. С установлением в сов. биологии полновластного господства Т. Д. Лысенко и его сподвижников, быстрое выдвижение которого началось в середине 1930-х годов и достигло апогея в 1948, генетика в СССР была фактически разгромлена.

Пятый этап истории генетики (приблизительно с середины 1950-х годов до начала 1970-х годов) характеризуется исследованием генетических явлений преимущественно на молекулярном уровне, что стало возможным благодаря быстрому внедрению в генетику, как и в др. области биологии, новых химических, физических и математических методов.

Было установлено, что гены представляют собой участки гигантских полимерных молекул ДНК и различаются числом и порядком чередования составляющих их пар нуклеотидов. Совместными усилиями генетиков, физиков и химиков было выяснено, что наследственная информация, передаваемая от родителей потомкам, закодирована последовательностью нуклеотидных пар в генах. С помощью ферментов она переписывается (транскрипция) в нуклеотидную последовательность однонитевых молекул матричных (информационных) РНК, определяющих аминокислотную последовательность синтезируемых белках (трансляция), обуславливающих основные свойства организма (у РНК-содержащих вирусов генетическая информация закодирована в нуклеотидной последовательности их РНК). В расшифровке генетического кода, оказавшегося универсальным для всех живых существ, главные заслуги принадлежат Ф.Крику, С. Бреннеру (Великобритания), С. Очоа и М. Ниренбергу (США).

В эти же годы благодаря открытию ряда ферментов (рестриктаз), разрезающих нить ДНК в определенных точках на мелкие фрагменты, научились выделять гены из ДНК хромосом. В 1969 в США Х. Г. Корана с сотрудниками осуществил химический синтез гена.

В 1961 французские генетики Ф. Жакоб и Ж. Моно открыли регуляторные механизмы включения и выключения работы некоторых генов белкового синтеза у кишечной палочки и разработали на основе этих данных концепцию оперона, которая позже была подтверждена и на др. организмах.

В результате выяснения молекулярных механизмов мутаций были достигнуты большие успехи в изыскании и изучении действия новых мощных химических мутагенов («супермутагенов») и в использовании их в селективной практике. Значительно продвинулись работы и во мн. других областях генетики — в разработке методов защиты генома человека от воздействия физических и химических мутагенов окружающей среды, в раскрытии молекулярно-генетических механизмов регуляции индивидуального развития организмов, в исследовании ранее малоизученных явлений внеядерной наследственности, осуществляемой через пластиды, митохондрии, плазмиды. К концу этого периода относится широкое возрождение генетических исследований в СССР (начиная с 1965).

 

На современном этапе истории генетики, начавшемся в начале 1970-х годов, наряду с прогрессом почти всех ранее сложившихся направлений, особенно интенсивно развивалась молекулярная генетика, что привело к фундаментальным открытиям и, как следствие, к возникновению и успешной разработке принципиально новых форм прикладной генетики.

Так, еще в 1960-х годах в СССР С. М. Гершензон с сотрудниками, изучавшими репродукцию одного из вирусов насекомых, получили новые данные в пользу того, что генетическая информация может передаваться от РНК к ДНК (обратная транскрипция), а не только от ДНК к РНК, что ранее считалось единственным путем транскрипции. В 1970 американские генетики Г. Темин и Д. Балтимор в опытах с некоторыми РНК-содержащими опухолеродными вирусами животных доказали существование обратной транскрипции, выявили ее молекулярный механизм и выделили осуществляющий ее фермент — обратную транскриптазу (ревертазу), кодируемую вирусным геном. Открытие обратной транскрипции позволило искусственно синтезировать многие физиологически активные гены на основе их матричной РНК и создавать банки генов, как искусственно синтезированных, так и естественных. Большинство этих генов уже секвенированы, т. е. в них определена последовательность нуклеотидных пар. Полученные при секвенировании данные привели к открытию интрон-экзонной структуры большинства генов эукариот.

Выяснение того, что репродукция РНК-содержащих онкогенных вирусов происходит с использованием обратной транскрипции (такие вирусы стали называть ретровирусами), сыграло важную роль в создании современной молекулярно-генетической концепции онкогенеза— возникновения злокачественных опухолей. Вирусогенетическая природа возникновения опухолей была выдвинута еще в сер. 1940-х годов советским вирусологом Л. А. Зильбером, работавшим с ДНК-содержавшим онкогенным вирусом. Однако ее признанию в те годы помешало то, что она не могла объяснить, как РНК-содержащие вирусы вызывают злокачественные опухоли. После открытия обратной транскрипции стало ясно, что вирусогенетическая теория применима к ретровирусам в такой же мере, как и к ДНК-содержащим онкогенным вирусам. В дальнейшем вирусогенетическая теория злокачественного роста стала развиваться гл. обр. на основе гипотезы онкогенов, впервые выдвинутой американскими учеными Р. Хюбнером и Дж. Тодаро и подтвержденной затем многочисленными экспериментальными исследованиями.

Фундаментальное значение для развития генетики имело также открытие и исследование мобильных генетических элементов, впервые предсказанных Б. Мак-Клинток еще в конце 1940-х годов на основе генетических экспериментов на кукурузе. Эти данные не были должным образом оценены до тех пор, пока в конце 1960-х годов широко развернувшиеся работы по генетике бактерий не привели к открытию у них двух классов мобильных генетических элементов. Десятилетие спустя Д. Хогнесс с сотрудниками (США) и независимо от них Г. П. Георгиев с сотрудниками (СССР) выявили мобильные генетические элементы, получившие название мобильных диспергированных генов (МДГ) у дрозофилы. Вскоре было установлено, что подвижные генетические элементы имеются и у других эукариот.

Некоторые мобильные генетические элементы способны захватывать близлежащие гены и переносить их в др. места генома. Такая способность мобильного Р-элемента дрозофилы была использована американскими генетиками Г. Рубиным и А. Спрэдлингом для разработки техники переноса любого выделенного с помощью рестриктаз гена или его части в несвойственное ему место хромосом. Этот метод стал широко применяться для изучения роли регуляторных генов в работе структурных генов, для конструирования мозаичных генов и т. д.

Молекулярно-генетический подход углубил понимание механизма синтеза антител (иммуноглобулинов). Выявление структурных генов, кодирующих константные и вариабельные цепи молекул иммуноглобулинов, и регуляторных генов, обеспечивающих согласованное действие этих структурных генов, позволило объяснить, как обеспечивается возможность синтеза огромного числа различных иммуноглобулинов на основе ограниченного набора соответствующих генов.

Уже на начальных этапах развития генетики сложилось представление о двух основных типах изменчивости: наследственной, или генотипической, изменчивости, обусловленной генными и хромосомными мутациями и рекомбинацией генов, и ненаследственной, или модификационной, обусловленной воздействиями на признаки развивающегося организма различных факторов окружающей среды. В соответствии с этим было принято рассматривать фенотип организма как результат взаимодействия генотипа и факторов окружающей среды. Однако, эта концепция потребовала существенного дополнения. Еще в 1928 Б. Л. Астауров на основании изучения изменчивости некоторых мутантных признаков дрозофилы высказал мысль, что одной из причин изменчивости могут быть случайные отклонения в ходе развития тех или иных признаков (органов). В 1980-е годы эта мысль получила дополнительные подтверждения. Опытами Г. Стента (США) и В. А. Струнникова (СССР), проведенными на разных животных (нематодах, пиявках, дрозофиле, тутовом шелкопряде), было показано, что выраженная изменчивость структурных и физиологических признаков наблюдается даже среди генетически идентичных (изогенных) особей, воспитываемых в идеально однородных условиях среды. Эта изменчивость, очевидно, обусловлена случайными отклонениями в протекании различных внутриклеточных и межклеточных онтогенетических процессов, т. е. тем, что можно охарактеризовать , как «онтогенетический шум». В связи с этим В. А. Струнников развил представление о «реализационной изменчивости», которая участвует в формировании фенотипа наряду с генотипической и модификационной.

Большой вклад в развитие мировой науки внесла наша отечественная генетика. Крупнейшие советские генетики и цитологии открыли ряд важнейших закономерностей наследственности и изменчивости. Такие ученые, как И.Д.Чистяков, описавший деление клетки, С.Г. Навашин, открывший двойное оплодотворение у цветковых растений, Н.И.Вавилов, сформулировавший закон гомологических рядов наследственной изменчивости, И.В.Мичурин, создавший новые методы селекции плодовых растений, Г.Д. Карпеченко – автор метода преодоления бесплодия отдаленных гибридов, С.С.Четвериков – основатель популяционной генетики, Ю.А.Филипченко – зачинатель изучения частной генетики, А.С.Серебровский – пионер изучения тонкого слоя гена, Н.К.Кольцов, развивший концепцию о химической природе гена и заложивший основы селекции. В.С.Кирпичников – генетические основы селекции рыб и ряд других, создали свои научные школы и разработали целые направления, которые заняли почетное место в истории мировой генетики.

Похожие статьи:

poznayka.org

Исторические этапы развития генетики как науки.




Стр 1 из 7Следующая ⇒

Исторические этапы развития генетики как науки.

Первый этап ознаменовался открытием Г. Менделем (1865) дискретности (делимости) наследственных факторов и разработкой гибридологического метода, изучения наследственности, т. е. правил скрещивания организмов и учета признаков у их потомства.
Менделевские законы наследственности заложили основу теории гена — величайшего открытия естествознания XX в., а генетика превратилась в быстро развивающуюся отрасль биологии. В 1901 —1903 гг. де Фриз выдвинул мутационную теорию изменчивости, которая сыграла большую роль в дальнейшем развитии генетики.
Важное значение имели работы датского ботаника В. Иоганнсена, который изучал закономерности наследования на чистых линиях фасоли. Он сформулировал также понятие «популяциям» (группа организмов одного вида, обитающих и размножающихся на ограниченной территории), предложил называть менделевские “наследственные факторы” словом ген, дал определения понятий “генотип” и “фенотип”.

Второй этап характеризуется переходом к изучению явлений наследственности на клеточном уровне (питогенетика). Т. Бовери (1902—1907), У. Сэттон и Э. Вильсон (1902—1907) установили взаимосвязь между менделевскими законами наследования и распределением хромосом в процессе клеточного деления (митоз) и созревания половых клеток (мейоз). В этом периоде было установлено, что гены расположены в хромосомах в линейном порядке, образуя группы сцепления. Число групп сцепления генов соответствует числу пар гомологичных хромосом, и гены одной группы сцепления могут перекомбинироваться в процессе мейоза благодаря явлению кроссинговера. Также были установлены закономерности наследования признаков, сцепленных с полом.

Третий этап в развитии генетики отражает достижения молекулярной биологии и связан с использованием методов и принципов точных наук — физики, химии, математики, биофизики и др.—в изучении явлений жизни на уровне молекул. Объектами генетических исследований стали грибы, бактерии, вирусы. На этом этапе были изучены взаимоотношения между генами и ферментами и сформулирована теория “один ген — один фермент” (Дж. Бидл и Э. Татум, 1940): каждый ген контролирует синтез одного фермента; фермент в свою очередь контролирует одну реакцию из целого ряда биохимических превращений, лежащих в основе проявления внешнего или внутреннего признака организма. Эта теория сыграла важную роль в выяснении физической природы гена как элемента наследственной информации.


В последнее десятилетие возникло новое направление в молекулярной генетике —генная инженерия — система приемов, позволяющих биологу конструировать искусственные генетические системы. Генная инженерия основывается на универсальности генетического кода.

Таким образом, третий, современный этап развития генетики открыл огромные перспективы направленного вмешательства в явления наследственности и селекции растительных и животных организмов, выявил важную роль генетики в медицине, в частности, в изучении закономерностей наследственных болезней и физических аномалий человека.

 

2.2 История изучения ДНК

ДНК была открыта Иоганном Фридрихом Мишером в 1869 году. Из остатков клеток, содержащихся в гное, он выделил вещество, в состав которого входят азот и фосфор. Вначале новое вещество получило название нуклеин, а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, оно получило название нуклеиновая кислота. Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Даже в начале XX века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию.

Постепенно было доказано, что именно ДНК является носителем генетической информации. Одно из первых решающих доказательств принесли эксперименты О. Эвери, Колина Мак-Леода и Маклин Мак-Карти (1944 г.) по трансформации бактерий. Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечают выделенные из пневмококков ДНК.



Вплоть до 50-х годов XX века точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.

Химическая организация гена

Исследования, направленные на выяснение химической природы наследственного материала, доказали, что материальным субстратом наследственности и изменчивости являются нуклеиновые кислоты, которые были обнаружены Ф. Мишером (1868) в ядрах клеток гноя. Нуклеиновые кислоты являются макромолекулами, т.е. отличаются большой молекулярной массой. Это полимеры, состоящие из мономеров — нуклеотидов, включающих три компонента: сахар (пентозу), фосфат и азотистое основание (пурин или пиримидин). К первому атому углерода в молекуле пентозы С-1 присоединяется азотистое основание (аденин, гуанин, цитозин, тимин или урацил), а к пятому атому углерода С-5 с помощью эфирной связи — фосфат; у третьего атома углерода С-3 всегда имеется гидроксильная группа — ОН.

Соединение нуклеотидов в макромолекулу нуклеиновой кислоты происходит путем взаимодействия фосфата одного нуклеотида с гидроксилом другого так, что между ними устанавливается фосфодиэфирная связь. В результате образуется полинуклеотидная цепь. Остов цепи состоит из чередующихся молекул фосфата и сахара. К молекулам пентозы в положении С-1 присоединено одно из перечисленных выше азотистых оснований.

Сборка полинуклеотидной цепи осуществляется при участии фермента полимеразы, который обеспечивает присоединение фосфатной группы следующего нуклеотида к гидроксильной группе, стоящей в положении 3, предыдущего нуклеотида. Благодаря отмеченной специфике действия названного фермента наращивание полинуклеотидной цепи происходит только на одном конце: там, где находится свободный гидроксил в положении 3. Начало цепи всегда несет фосфатную группу в положении 5. Это позволяет выделить в ней 5 и 3 -концы.

Способ записи генетической информации в молекуле ДНК. Биологический код и его свойства.

Генетический код (он же биологический)способ записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности образующих эти кислоты нуклеотидов.

Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T). Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом. В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

 

Генетический код

Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.

Свойства

1. Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

2. Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.

3. Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

4. Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты — цистеин и селеноцистеин)[1]

5. Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.

6. Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии).

7. Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.

Механизм репарации в ДНК.

Система защиты клетки включает различные типы репарации поврежденной молекулы ДНК. Этот процесс может быть одноэтапным и многоэтапным, происходить как на свету, nак и в темноте. Например, при эксцизионной репарации, специальный фермент делает надрез возле поврежденного участка, а затем этот участок удаляется. На месте образовавшейся бреши происходит репаративный синтез ДНК по матрице неповрежденной цепи. Ферменты репликации в редких случаях ошибочно вставляют вдочернюю цепь не комплементарное основание. Ошибки репликации исправляют специальные ферменты с корректирующей функцией; они находят и удаляют некомплементарное основание. Затем происходит замена на основание, соответствующее правилу комплементарноста (А- Т, G — С).

 

Анализирующее скрещивание.

По фенотипу особи далеко не всегда можно определить ее генотип. У самоопыляющихся растений генотип можно определить в следующем поколении. Для видов, использующих другие системы полового размножения, применяют так называемое анализирующее скрещивание. Скрещивание гибридной особи с особью, гомозиготной по рецессивным аллелям, называется анализирующим. При анализирующем скрещивании особь, генотип которой следует определить, скрещивают с особями, гомозиготными по рецессивному гену, т.е. имеющими генотип аа. Анализирующее скрещивание – один из основных методов, позволяющих установить генотип особи, по этой причине оно широко используется в генетике и селекции.

Неполное доминирование.

Далеко не всегда гетерозиготные организмы по фенотипу точно соответствуют родителю, гомозиготному по доминантному гену. Случаи, когда гетерозиготные потомки имеют промежуточный фенотип, называют неполным доминированием. Неполное доминирование ни в коей степени не отменяет закон расщепления, но при неполном доминировании в потомстве гибрида (F2) расщепление по фенотипу и генотипу совпадает, поскольку гетерозиготные особи (Аа) отличаются по внешнему виду от гомозигот (АА). Неполное доминирование или, как еще говорят, промежуточное проявление признака широко распространено в природе.
Причины, приводящие к доминированию одного аллеля над другим, до сих пор еще не ясны. Однако ясно, что это не только следствие свойств гена, но и результат действия внешних условий, которые могут повлиять на степень доминирования.

 

Эпистаз.

Эпистатическое взаимодействие неаллельных генов в определенном смысле противоположно комплементарному действию генов. Сущность эпистаза сводится к подавлению проявления генов одной аллельной пары генами другой. Гены, подавляющие действие других неаллельных генов, называются супрессорами или подавителями. Они могут быть как доминантными, так и рецессивными, например А — В- или bbA — . Наследование окраски у свиней демонстрирует доминантный Эпистаз. При скрещивании черных и белых свиней из разных пород в F1 появляются белые потомки. Их скрещивание между собой приводит к появлению белых (12/16), черных (3/16) и красных (1/16) поросят. Все белые поросята имеют минимум один доминантный генподавитель I. Черные поросята гомозиготны по рецессивному аллелю i, не препятствующему формированию окраски, и несут доминантный аллель Е, детерминирующий образование черного пигмента. Красные поросята (eeii) лишены доминантного геноподавителя I и доминантного гена, определяющего черную окраску.

Полимерия.

В некоторых случаях установлено, что проявление конкретного признака зависит от количества доминантных генов, вносящих вклад в его развитие. Например, при скрещивании краснозерных пшениц с белозерными было установлено, что растения с генотипом А1А1А2А2 имеют красные зерна, растения а1а1а2а2 – белые зерна, растения с тремя доминантными генами – красноватую окраску, а растения с двумя и одним геном – более бледную окраску. Таким образом, накопление определенных аллелей в генотипе может вести к изменению выраженности признаков.

 

Плейотропное действие генов

— это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена. В дрозофилы ген белого цвета глаз одновременно влияет на цвет тела, длины, крыльев, строение полового аппарата, снижает плодовитость, уменьшает продолжительность жизни. У человека известна наследственная болезнь — арахнодактилия («паучьи пальцы»-очень тонкие и длинные пальцы), или болезнь Марфана. Ген, отвечающий за эту болезнь, вызывает нарушение развития соединительной ткани и одновременно влияет на развитие нескольких признаков: нарушение строения хрусталика глаза, аномалии в сердечно-сосудистой системе.
Плейотропное действие гена может быть первичным и вторичным. При первичнойплейотропииген проявляет свой множественный эффект. Например, при болезни Хартнупа мутация гена приводит к нарушению всасывания аминокислоты триптофана в кишечнике и его реабсорбции в почечных канальцах. При этом поражаются одновременно мембраны эпителиальных клеток кишечника и почечных канальцев с расстройствами пищеварительной и выделительной систем.
При вторичной плейотропии есть один первичный фенотипний проявление гена, вслед за которым развивается ступенчатый процесс вторичных изменений, приводящих к множественным эффектам. Так, при серповидно клеточной анемии у гомозигот наблюдается несколько патологических признаков: анемия, увеличенная селезенка, поражение кожи, сердца, почек и мозга. Поэтому гомозиготы с геном серповидно клеточной анемии гибнут, как правило, в детском возрасте. Все эти фенотипные проявления гена составляют иерархию вторичных проявлений. Первопричиной, непосредственным фенотипним проявлением дефектного гена является аномальный гемоглобин и эритроциты серповидной формы. Вследствие этого происходят последовательно другие патологические процессы: слипание и разрушение эритроцитов, анемия, дефекты в почках, сердце, мозге — эти патологические признаки вторичны.
При плейотропии, ген, воздействуя на какой то один основнй признак, может также менять, модифицировать проявление других генов, в связи с чем введено понятие о генах-модификаторах. Последние усиливают или ослабляют развитие признаков, кодируемых «основным» геном.
Показателями зависимости функционирования наследственных задатков от характеристик генотипа является пенетрантность и экспрессивность.
Рассматривая действие генов, их аллелей необходимо учитывать и модифицирующее влияние среды, в которой розвивается организм. Если растения примулы скрещивать при температуре 15-20 ° С, то в F1 согласно менделивской схеме, все поколения будут иметь розовые цветы. Но когда такое скрещивание проводить при температуре 35 °С, то все гибриды будут иметь цветы белого цвета. Если же осуществлять скрещивания при температуре около 30 ° С, то возникает разное соотношение (от 3:1 до 100%) растений с белыми цветами.
Такое колебание классов при расщеплении в зависимости от условий среды получило название пенетрантность — сила фенотипного проявления. Итак, пенетрантность- это частота проявления гена, явление появления или отсутствия признака у организмов, одинаковых по генотипу.
Пенетрантность значительно колеблется как среди доминантных, так и среди рецессивных генов. Наряду с генами, фенотип которых появляется только при сочетании определенных условий и достаточно редких внешних условий (высокая пенетрантность), у человека есть гены, фенотипное проявление которых происходит при любых соединениях внешних условий (низкая пенетрантность). Пенетрантностью измеряется процентом организмов с фенотипным признаком от общего количества обследованных носителей соответствующих аллелей.
Если ген полностью, независимо от окружающей среды, определяет фенотипное проявление, то он имеет пенетрантность 100 процентов. Однако некоторые доминантные гены проявляются менее регулярно. Так, полидактилия имеет четкое вертикальное наследования, но бывают пропуски поколений. Доминантная аномалия — преждевременное половое созревание — присуще только мужчинам, однако иногда может передаться заболевания от человека, который не страдал этой патологией. Пенетрантностью указывает, в каком проценте носителей гена оказывается соответствующий фенотип. Итак, пенетрантность зависит от генов, от среды, от того и другого. Таким образом, это не константное свойство гена, а функция генов в конкретных условиях среды.
Экспрессивность(лат. ехргеssio — выражение) — это изменение количественного проявления признака в разных особей-носителей соответствующего аллелей.
При доминантных наследственных заболеваниях экспрессивность может колебаться. В одной и той же рсемье могут проявляться наследственные болезни от легких, едва заметных до тяжелых: различные формы гипертонии, шизофрении, сахарного диабета и т.д. Рецессивные наследственные заболевания в пределах семьи проявляются однотипно и имеют незначительные колебанийния экспрессивности.

Множественные аллели

Три или большее число генов, которые могут находиться в одном и том же локусе, т. е. занимать одно и то же положение в гомологичных хромосомах, называют серией множественных аллелей. Все они обусловливают различные фенотипы. Каждая особь в популяции может иметь любые два из таких аллелей, но никак не больше, а каждая гамета, разумеется, содержит только один из них. Однако в популяции в целом соответствующий локус может быть представлен тремя или большим числом аллелей.

По типу множественных аллелей наследуются группы крови О, А, В и АВ у человека. Ген IA содержит код для синтеза в эритроцитах специфического белка — агглютиногена А; ген IB вызывает синтез другого белка — агглютиногена В, ген i не продуцирует никакого агглютиногена. Ген i рецессивен по отношению к двум другим, но ни ген IA, ни ген IB не доминируют друг над другом. (Символы IA, IB и i указывают на то, что все эти три гена — аллели одного и того же локуса.) Таким образом, генотипы IA IA и IA i обусловливают группу крови А, генотипы IB IB и IB i — группу В, а генотип ii — группу О. Если же у человека имеются оба нерецессивных гена IA и IB, то у него образуются оба агглютиногена и он имеет группу крови АВ.

Поскольку группы крови обусловлены генетически и не изменяются в течение всей жизни, их определение может помочь установить истину в случаях спорного отцовства. Однако на основании группы крови нельзя доказать, что данный человек действительно является отцом данного ребенка; можно лишь установить, что он мог бы быть его отцом, или же, исключить такую возможность. Подумайте: может ли мужчина с группой крови АВ быть отцом ребенка с группой О? Может ли ребенок с группой АВ быть сыном мужчины с группой О? Может ли ребенок с группой В иметь мать с группой А и отца с группой А или О?

Наряду с системой АВО существует еще с десяток других систем групп крови, в том числе система MN и серия аллелей Rh; они определяются другими генами и наследуются независимо от групп АВО. Определение всех этих групп дозволяет иногда выяснять родственные отношения, которые нельзя было бы достоверно установить на основании одних лишь групп системы АВО.

 

Бомбейский феномен

Бомбейский феномен заключается в том, что у ребенка определяется группа крови, которой по правилам у него быть не может — т.е. у ребенка выявляется антиген, которого нет ни у одного из родителей. Например, у родителей 00 и 00 (1-ая группа крови у обоих) вдруг рождается ребенок В0 (3-ья группа крови). Или у родителей с 00(1-ая гр.кр.) и B0/BB (3-ья гр.кр.) рождается ребенок с A0(2-ая гр.кр.) или AB (4-ая гр.кр.)

Наследование резус-фактора

Рождение ребенка с отрицательным резус-фактором в семье с резус- положительными родителями в лучшем случае вызывает глубокое недоумение, в худшем – недоверие. Упреки и сомнения в верности супруги. Как ни странно, ничего исключительного в этой ситуации нет. Существует простое объяснение такой щекотливой проблемы.

Резус-фактор — это липопротеид, расположенный на мембранах эритроцитов у 85% людей ( они считаются резус-положительными ). В случае его отсутствия говорят о резус-отрицательной крови. Эти показатели обозначаются латинскими буквами Rh со знаком «плюс» или «минус» соответственно. Для исследования резуса, как правило, рассматривают одну пару генов.

  • Положительный резус-фактор обозначается DD или Dd и является доминантным признаком, а отрицательный – dd, рецессивным. При союзе людей с гетерозиготным наличием резуса ( Dd ) у их детей будет положительный резус в 75% случаев и отрицательный в оставшихся 25%.

Родители: Dd x Dd. Дети: DD, Dd, dd. Гетерозиготность возникает как результат рождения резус-конфликтного ребенка у резус-отрицательной матери или может сохраняться в генах на протяжении многих поколений.

Наследование группы крови системы Rh ребенком в зависимости от групп крови его родителей:

 

Группа крови матери Группа крови отца
  Rh(+) rh(-)
Rh(+) Любой Любой
rh(-) Любой Резус-отрицательный

 

2.33 Моногибридное скрещивание

Моногибридное скрещивание — скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков. При этом скрещиваемые предки являются гетерозиготными по положению хромосомы в аллели.

Рисунок 1 : Шаблон, показывающий наследование доминантных (красного) и рецессивного (белый) фенотипов, когда каждый родитель (1) гомозиготен для доминантного либо рецессивного признака. Все члены I поколения гетерозиготны и имеют один и тот же общий для всех фенотип (2), в то время как поколение II показывает соотношение 3:1 доминантного к рецессивному фенотипам (3).

 

Моногибридное наследование представляет собой пример наследования единственного признака (гена), различные формы которого называют аллелями. Например, при моногибридном скрещивании между двумя чистыми линиями растений, гомозиготных по соответствующим признакам — одного с жёлтыми семенами (доминантный признак), а другого с зелёными семенами (рецессивный признак), можно ожидать, что первое поколение будет только с жёлтыми семенами, потому что аллель жёлтых семян доминирует над аллелью зелёных. При моногибридном скрещивании сравнивают только один характерный признак.

 

Метод дерматоглифики

Сущность метода состоит в анализе кожных узоров (рисунков) на ладонях и стопах. Метод наиболее информативен при хромосомных синдромах, когда выявляются дистальный осевой трирадиус, избыток дуг на пальцах, отсутствие дистальной межфаланговой складки, радиальные петли на I, IV и V пальцах, четырехпальцевая (обезьянья) складка (при болезни Дауна на коже ладоней у ребенка отмечается в 40-60% случаев).
В настоящее время метод применяется в основном в судебной медицине.

Аномалии числа хромосом

Генетическая рекомбинация.

Примером является мейотическая рекомбинация (кроссинговер) у эукариот, которая происходит в клетках после репликации, в профазе первого мейотического деления. Во время лептотены хромосомы конденсируются и становятся видимыми, В каждой из них после репликации дуплексная ДН К представлена двумя сестринскими хроматидами. Под электронным микроскопом видно, что на стадии лептотены пара сестринских хроматид каждой хромосомы формирует единый осевой элемент. Установлено, что у млекопитающих он состоит из белков SCP2 и SCP3 (от англ. synaptonemal complex proteins). На следующей стадии, зиготене, гомологичные хромосомы начинают соприкасаться друг с другом (конъюгировать) на отдельных, пока еще коротких участках. Одновременно осевые элементы гомологичных хромосом начинают соединяться попарно с помощью белка SCP1, который протягивается поперек между ними в виде субмикроскопических волокон (филамент). По завершении конъюгации, на стадии пахитены гомологичные хромосомы оказываются объединенными в биваленты по всей длине за счет специфической структуры, состоящей из двух продольных белковых тяжей. Это — так называемые латеральные элементы, в состав которых входят осевые элементы с прикрепленными к ним, петлеобразно уложенными фибриллами хроматина сестринских хроматид. Латеральные элементы соединены между собой поперечными белковыми волокнами, которые в совокупности формируют третью продольную структуру — центральный элемент. Из двух латеральных и одного центрального элемента образуется электроноплотная трехполосная структура, так называемый, синаптонемный комплекс, в котором гомологичные хромосомы прилегают к латеральным элементам с двух сторон, и этот контакт происходит «точечно» (в местах прикрепления петель к синаптонемному комплексу по всей era длине). Функциональное значение этой структуры, напоминающей застежку «молнию», состоит в том, что, с одной стороны, она не дает конъюгирующим хромосомам необратимо слипнуться, а с другой стороны — закрепляет их в строго гомологичном относительно локализованных на них генах взаиморасположении. В зависимости от размера генома у разных видов могут варьировать размеры синаптонсмного комплекса: общая ширина его трехполосной ленты составляет от 76 до 240 нм, а длина соответствует также видоспецифичной длине бивалентов в профазе 1 мейоза.

На стадии диплотены гомологичные хромосомы бивалентов начинают расходиться, но обнаруживается, что несестринские хроматиды в биваленте остаются сцепленными в некоторых точках, образуя фигуру, получившую название хиазмы. На стадии диакинеза хромосомы конденсируются путем спирализации, а хиазмы вследствие отталкивания гомологов начинают сдвигаться к краям хромосом. В этот момент все четыре хроматиды становятся видимыми. Это — прямые наблюдения, и они позволяют сделать некоторые предположения о процессе рекомбинации.

Профаза первого деления мейоза — единственный момент, когда гомологичные хромосомы образуют комплекс друг с другом, что, является условием, необходимым для осуществления рекомбинации. Можно полагать, что именно в обеспечении рекомбинации и состоит суть синапса—образование синаптонемногокомгаткса, временной структуры, которая формируется на стадии зиготены и разрушается в диплотене. Согласно мнению авторов приведенной выше гипотетической схемы, синаптонемный комплекс «…необходим для организации хроматина ввиде серии латеральных петель, основания которых собраны в линейную последовательность на поверхности его латеральных элементов и доступны для узнавания гомологичных локусов и кроссинговера». Существует очень правдоподобная, но до настоящего времени не всеми исследователями разделяемая гипотеза, что хиазмы представляют собой места прохождения рекомбинаций- ведь количество тех и других примерно совпадает. Это позволяет локализовать время происхождения процесса рекомбинаций, и считать, что даже на стадии диакинеза в местах рекомбинации хромосомы все еще остаются связанными посредством нитей ДНК.

2.50. Генотипическая изменчивость. Хромосомные аберрации, примеры

Наследственная (генотипическая) изменчивость составляет часть общей (фенотипической) изменчивости, которая определяется генетическими различиями между особями или группами особей. Ведущую роль в процессах генотипической И. играет изменение генотипа в результате изменения репродуцирующихся структурных элементов ядра (ДНК хромосом) — мутации. Генотипы являются не чем иным, как комбинациями генов. Поэтому биологическое значение полового размножения заключается именно в том, что образование разнообразных генотипов при таком размножении значительно ускоряется. Наряду с мутациями источником генотипической И. являются рекомбинации генов (так называемая рекомбинационная И.). На степень генотипической И. в популяции влияет также приток генов из других популяций. Изменения генотипа приводят к изменению характера развития того или иного признака в данных условиях окружающей среды, изменению наследственной нормы реакции и появлению различных отклонений (наследственные аномалии развития). Сходство врожденных пороков развития, возникающих в результате действия повреждающих факторов окружающей среды, и наследственных аномалий объясняется тем, что при мутациях и под влиянием тератогенов в клетках формирующихся тканей и органов нарушаются одни и те же звенья биохимических процессов.

Хромосомные аберрации (хромосомные мутации, хромосомные перестройки) — тип мутаций, которые изменяют структуру хромосом. Классифицируют делеции (утрата участка хромосомы),инверсии (изменение порядка генов участка хромосомы на обратный), дупликации (повторение участка хромосомы), транслокации (перенос участка хромосомы на другую), а также дицентрические и кольцевые хромосомы. Известны такжеизохромосомы, несущие два одинаковых плеча. Если перестройка изменяет структуру одной хромосомы, то такую перестройку называют внутрихромосомной (инверсии, делеции, дупликации, кольцевые хромосомы), если же двух разных, то межхромосомной (дупликации, транслокации, дицентрические хромосомы). Хромосомные перестройки подразделяют также на сбалансированные и несбалансированные. Сбалансированные перестройки (инверсии, реципрокные транслокации) не приводят к потере или добавлению генетического материала при формировании, поэтому их носители, как правило, фенотипически нормальны. Несбалансированные перестройки (делеции и дупликации) меняют дозовое соотношение генов, и, как правило, их носительство сопряжено с клиническими отклонениями от нормы.

Хромосомные перестройки играют определенную роль в эволюционном процессе и видообразовании, в нарушении фертильности, в онкологических и врождённых наследственных заболеваниях человека.

Хромосомные перестройки были открыты у дрозофил при помощи генетического анализа. В некоторых скрещиваниях соотношение числа потомков в разных классах сильно отличалось от ожидаемого, и это объяснили наличием перестроек в хромосомах родителей. Делеции, дупликации и транслокации обнаружил К. Бриджес в 1916, 1919 и 1923 годах, соответственно. Первую инверсию описал А. Стёртевант в 1921 году, сравнивая порядок генов в хромосоме 3 у D.melanogaster и D.simulans. Первые наблюдения хромосомных перестроек были сделаны на политенных хромосомах слюнных желез. Лишь спустя некоторое время существование перестроек было доказано цитологически на митотических хромосомах. Однако проще всего перестройки можно увидеть в политенных хромосомах у гетерозиготных особей, благодаря образованию петель и крестообразных структур. Также перестройки можно увидеть в профазе мейоза при образовании синаптонемных комплексов, где, благодаря синапсису гомологичных хромосом, также образуются петли и крестообразные структуры.

Классификация

Делеции

Некоторые типы хромосомных перестроек

Различают терминальные (утрата концевого участка хромосомы) и интеркалярные (утрата участка на внутреннем участке хромосомы) делеции. Если после образования делеции хромосома сохранила центромеру, она аналогично другим хромосомам передается при митозе, участки же без центромеры, как правило, утрачиваются. При конъюгации гомологичных хромосом во время мейоза у нормальной хромосомы на месте, соответствующем интеркалярной делеции у дефектной хромосомы, образуется делеционная петля, которая компенсирует отсутствие делетированного участка.

Врождённые делеции у человека редко захватывает протяженные участки хромосом, обычно такие аберрации приводят к гибели эмбриона на ранних этапах развития. Самым хорошоизученным заболеванием, обусловленным достаточно крупной делецией, является синдром кошачьего крика, описанный в 1963 годуЖеромом Леженом. В его основе лежит делеция участка короткого плеча 5 хромосомы. Для больных характерен ряд отклонений от нормы: нарушение функцийсердечно-сосудистой, пищеварительной систем, недоразвитие гортани (с характерным криком, напоминающим кошачье мяуканье), общее отставание развития,умственная отсталость, лунообразное лицо с широко расставленными глазами. Синдром встречается у 1 новорожденного из 50000.

Современные методы выявления хромосомных нарушений, прежде всего флуоресцентная гибридизация in situ, позволили установить связь между микроделециями хромосом и рядом врождённых синдромов. Микроделециями, в частности, обусловлены давно описанные синдром Прадера-Вилли исиндром Вильямса.

Дупликации

Дупликации представляют собой класс перестроек, который объединяет как внутри- , так и межхромосомные перестройки. Вообще, любая дупликация — это появление дополнительной копии участка хромосомы, которая может располагаться сразу за тем районом, который дуплицирован, тогда это тандемная дупликация, либо в новом месте или в другой хромосоме. Новая копия может образовать отдельную маленькую хромосому со своими собственными теломерами и центромерой, тогда это свободная дупликация[1]:2. Тандемные дупликации появляются в половых клетках при мейозе в результате неравного кроссинговера (в этом случае второй гомолог несет делецию) или в соматических клетках в результате неаллельной гомологичной рекомбинации при репарации двунитевого разрыва ДНК. В процессе кроссинговера у гетерозиготы при конъюгации хромосомы с тандемной дупликацией и нормальной хромосомы, как и при делеции, формируется компенсационная петля.

Практически у всех организмов в норме наблюдается множественность генов, кодирующих рРНК (рибосомальную РНК). Это явление назвали избыточностью генов. Так у E. coli на рДНК (ДНК, кодирующее рРНК) приходится 0,4 % всего генома, что соответствует 5-10 копиям рибосомальных генов.

Другой пример дупликации — мутация Bar у Drosophila, обнаруженная в 20-х годах XX века Т. Морганом и А. Стёртевантом. Мутация обусловлена дупликацией локуса 57.0 X-хромосомы. У нормальных самок (B+/B+) глаз имеет 800 фасеток, у гетерозиготных самок (B+/B) глаз имеет 350 фасеток, у гомозиготпо мутации (B/B) — всего 70 фасеток. Обнаружены также самки с трижды повторенным геном — double Bar (BD/B+).

В 1970 году Сусумо Оно в монографии «Эволюция путем дупликации генов» разработал гипотезу об эволюционной роли дупликаций, поставляющих новые гены, не затрагивая при этом функций исходных генов. В пользу этой идеи говорит близость ряда генов по нуклеотидному составу, кодирующих разные продукты. Это трипсин и химотрипсин, гемоглобин и миоглобин и ряд д



Рекомендуемые страницы:

lektsia.com

Отправить ответ

avatar
  Подписаться  
Уведомление о