Как формулируется закон ома для участка цепи – Сформулируйте закон Ома для участка цепи, содержащего сопротивление и источник ЭДС.

Содержание

Как формулируется Закон Ома? – Полезная информация для всех

  • Так звучит закон Ома для участка цепи, и проходят его в 8 классе на уроке физики. Мне лично в моей последующей работе пригодился этот закон. Однако в школе не считал нужным вникнуть в его понятие. Поэтому со временем пришлось заново изучить, вроде простой но очень важный закон для электрических цепей.

  • Все формулировки, которые здесь (и в учебниках) приведены, страдают недостатком: при попытке измерить что-то практически на основании этого закона получаются расхождения. И физики давно поняли, что формулировку закона Ома необходимо исправить и уточнить. Например, так. Если взять тщательно отожженные и химически исключительно однородные проводники, очень хороший источник постоянного напряжения (типа элемента Вестона) и высококлассные цифровые приборы для измерения напряжения и тока, то у физика-экспериментатора с большим опытом работы отношение разности потенциалов на концах испытуемого проводника к силе протекающего через него тока будет равно, после введения соответствующих поправок, постоянной величине.

  • Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. А еще говорят: quot;Закон Ома: quot;нет ума – сиди домаquot;.

  • В водопроводной трубе вс обстоит так, что чем выше давление воды, тем относительно большая доля энергии расходуется на преодоление сопротивления в трубах, поскольку в них усиливается турбулентность потока. Из этого исходил Ом, приступая к опытам по измерению зависимости силы тока от напряжения. И очень скоро выяснилось, что ничего подобного в электрических проводниках не происходит: сопротивление вещества электрическому току вовсе не зависит от приложенного напряжения. В этом, по сути, и заключается закон Ома, который (для отдельного участка цепи) записывается очень просто:

    V = IR

    где V напряжение, приложенное к участку цепи, I сила тока, а R электрическое сопротивление участка цепи.

  • Закон Ома часто выражется формулой I = U/R, где I- сила тока в участке цепи, U – напряжение на концах этого участка, R – сопротивление участка цепи (размерности ампер, вольт, ом). Но есть и его следствия, которые можно использовать при решении разного рода задач, например, таких:

    найти мощность потребителя электроэнергии, если известно, что его напряжение равно 200 В, а сопротивление равно 100 Ом. Если принять во внимание, что мощность определяется формулой P = I*U, то выразив из формулы закона Ома значение для тока, получим

    P = U^2/R. Подставляя в нее заданные значения, находим, что P = 200^2/100 = 400 Вт. Другим интересным следствием является возможность определить мощности, потребляемые, например, последовательно включенными сопротивлениями. Пусть есть два сопротивления R1 = 100 ом и R2 =10 ом, которые включены последовательно и вся цепь подключена к источнику напряжения 220 В. Какие мощности будут выделяться, т.е. потребляться каждым из сопротивлений? Находим общее сопротивление все цепи. Оно равно сумме сопротивлений R1 и R2, т.е. 110 ом. Находим ток в цепи, он равен 220/110 = 2 А. Этот ток течет через оба сопротивления, поэтому он создаст на каждом из них падение напряжения, равное U1 = 2 * R1 = 200 В, U2 = 2 * R2 = 20 В. После этого найденные напряжения нужно подставить в формулу P=U*I, и получить P1 = U1 * 2 = 400 Вт, P2 = U2 * 2 = 40 Вт. Общая мощность потребления составит 440 Вт.

  • Правильная формулировка закона Ома: Сила тока в проводнике прямо пропорциональна приложенному к проводнику напряжению, причем коэффициент пропорциональности зависит от материала и геометрических размеров проводника и называется проводимостью. Чаще применяют величину, обратную проводимости – сопротивление.

  • info-4all.ru

    Закон Ома для участка цепи

    Разделы: Физика


    Тип урока: Комбинированный.

    Вид урока: Изучение нового материала.

    Цели урока:

    Образовательная: установить зависимость между силой тока, напряжением на однородном участке электрической цепи и сопротивлением этого участка.

    Развивающая:

    • развивать умения наблюдать, сопоставлять, сравнивать и обобщать результаты экспериментов;
    • продолжить формирование умений пользоваться теоретическими и экспериментальными методами физической науки для обоснования выводов по изучаемой теме и для решения задач.

    Воспитательная: развивать познавательный интерес к предмету, тренировка рационального метода запоминания формул.

    Задачи урока.

    • Усвоить, что сила тока прямо пропорциональна напряжению на концах проводника, если при этом сопротивление проводника не меняется;
    • Усвоить, что сила в участке цепи обратно пропорциональна его сопротивлению, если при этом напряжение остается постоянным;
    • Знать закон Ома для участка цепи;
    • Уметь определять силу тока; напряжения по графику зависимости между этими величинами и по нему же – сопротивление проводника;
    • Уметь наблюдать, сопоставлять, сравнивать и обобщать результаты демонстрационного эксперимента;
    • Уметь применять закон Ома для участка цепи при решении задач;
    • Отрабатывать навыки проверки размерности;
    • Отрабатывать навыки соотношения полученных результатов с реальными значениями величин.

    Оборудование.

    Демонстрационные амперметр и вольтметр, источник тока В-24, ключ, соединительные провода, демонстрационный магазин сопротивления, ТСО, экран, магнитная доска, магниты, портрет Ома, таблицы с формулами.

    Ход урока

    1. Организационный момент.

    Учитель: Здравствуйте, садитесь (дежурный, отсутствующие).

    2. Этап актуализации знаний.

    С целью проверки качества усвоения знаний проводится дидактическая игра “Проверь себя!”. Игра состоит из двух частей. В первой части работы дети выбирают обозначение, формулу, единицы измерения, прибор для измерения одной из основных характеристик тока. Во второй части учащиеся заполняют пропуски в таблице. Класс делится на три варианта. Каждому варианту дается определенное задание. Оценивание работ проводится методом взаимопроверки.

    3. Мотивационный этап.

    На предыдущих занятиях мы рассмотрели три величины, с которыми мы имеем дело в любой электрической цепи, – это … (Сила тока, напряжение и сопротивление). Но в жизни и на практике недостаточно знать в отдельности физические величины, характеризующие электрические цепи, их надо рассматривать во взаимозависимости. Вот взаимозависимость мы и будем раскрывать сегодня на уроке.

    Запишите тему нашего урока: “Закон Ома для участка цепи”.

    О значении исследований Георга Ома точно сказал профессор физики Мюнхенского университета Ломмель Эуген Корнелиус Йозеф при открытии памятника ученому в 1895 году “Открытие Ома было ярким факелом, осветившим ту область электричества, которая до него была окутана мраком. Ом указал единственно правильный путь через непроходимый лес непонятных фактов. Замечательные успехи в развитии электротехники, за которыми мы с удивлением наблюдали в последние десятилетия, могли быть достигнуты только на основе открытия Ома. Лишь тот в состоянии господствовать над силами природы и управлять ими, кто сумеет разгадать законы природы. Ом вырвал у природы так долго скрываемую тайну и передал ее в руки современников”.

    Вопрос: Какую так долго скрываемую тайну Ом вырвал у природы и передал ее в руки современников? Давайте же выясним это.

    4. Этап изучения нового материала.

    На сегодняшнем уроке нам необходимо решить следующую задачу: выяснить, как зависит сила тока на участке цепи от приложенного напряжения и величины сопротивления одновременно. Это является главной целью нашего урока.

    Итак, работу на сегодняшнем уроке будем проводить по этапам.

    1) Сначала установим зависимость силы тока от напряжения, запишем математически эту зависимость и проверим на опыте.

    2) Установим зависимости между силой тока и сопротивлением, при постоянном напряжении; запишем результаты в таблицу, сделаем вывод о характере этой зависимости.

    3) Сделаем общий вывод о том, как зависит сила тока одновременно от напряжения и сопротивления, т.е. решим основную задачу урока.

    Этапы:

    1. Установим зависимость силы тока от напряжения на опыте.

    а) На демонстрационной доске собрана цепь: источник тока, реостат, амперметр, резистор, вольтметр, ключ.

    б) Чертим схему цепи на доске.

    в) Включаю цепь. Вольтметр показывает 2В. Какую силу тока показывает амперметр? 0,4А.

    Увеличиваю напряжение до – 3В. Изменились ли показания амперметра? Да, сила тока в цепи 0,6А.

    Увеличиваю напряжение до – 4В. Как изменилась сила тока? Увеличилась, сила тока в цепи 0,8А.

    Запишем полученные результаты в таблицу и начертим график:

    U, В

    I, А

    0,4А

    0,6А

    0,8А

    Увеличивается напряжение, сила тока тоже увеличивается – I U.

    Изменилось ли сопротивление проводника? Нет, оно постоянно: R= cons t.

    Вывод 1. При R=const, I ~ U.

    2.

    Установим зависимость между силой тока и сопротивлением.

    а) Подумайте и скажите: будет ли одинаковой сила тока в проводнике с большим сопротивлением и в проводнике с маленьким сопротивлением? Сила тока будет разная. А в каком случае сила тока будет меньше? Где больше R.

    б) Итак, давайте убедимся в этом на опыте. На столе собрана цепь: источник тока, магазин сопротивлений, амперметр, вольтметр, ключ.

    б) Чертим схему цепи на доске.

    в) Установим зависимость между I и R, при U=const. Начертим таблицу в тетрадь и будем ее заполнять по ходу опыта.

    U, В

    R, Ом

    4Ом

    2Ом

    1Ом

    I, А

    Сейчас общее сопротивление составляет 4 Ом, подано напряжение 5В. Какой ток в цепи? I = 1 А

    Уменьшаем сопротивление до 2 Ом, не меняя напряжение, какой ток в цепи сейчас?

    I = 2 А. Теперь сопротивление равно1 Ом, напряжение по прежнему не меняем. Как изменилась сила тока? I = 4 А

    Итак, глядя на таблицу, что можно сказать о зависимости между силой тока и сопротивлением? Начертим график.

    Вывод 2: При U= const I 1/R

    3.

    Сделаем общий вывод о том, как зависит сила тока I одновременно от U и R.

    Мы уже знаем две зависимости. И теперь мы объединим эти зависимости в одну формулу. Мы получим с вами один из основных законов электрического тока, который называется законом Ома:

    Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна сопротивлению этого же участка.

    “Ом вырвал у природы так долго скрываемую тайну и передал ее в руки современников” в 1827 году. Ему было 38 лет.

    Пользуясь этим законом, мы можем рассчитать силу тока, зная напряжение и сопротивление, то есть, зная две величины, мы всегда можем найти третью.

    5. Этап применения нового знания

    Итак, ребята, между какими величинами устанавливает зависимость закон Ома?

    • между силой тока, напряжением и сопротивлением.

    Как зависит сила тока от напряжения?

    • Прямо пропорционально.

    Как зависит сила тока от сопротивления?

    • обратно пропорционально.

    Как формулируется закон Ома?

    Давайте решим задачи:

    • на графики зависимости;
    • комбинированная задача.

    1.

    2. 

    6. Первичная проверка полученных знаний

    С целью проверки усвоения первичных знаний используются две задачи. Класс делится на два варианта. На доске высвечиваются условия задач. Проверка производится методом взаимопроверки.

    7. Домашнее задание:

    1. §§43, 44. Прочитать;

    2. Упр. 20 (1, 2, 3) стр.88; Упр. 21 (2, 4, 6, 7) стр. 91.

    3. Подготовить историческую справку об ученых, чьи имена очень тесно связаны с законом Ома.

    Литература:

  • А.В. Пёрышкин //Учебник для образовательных учреждений//Физика 8 класс//Москва, Дрофа, 2004.
  • А.В. Усова//Самостоятельная работа учащихся по физике в средней школе//Москва, Просвещение, 1981.
  • Р.Д. Минькова, Е.Н. Панаиоти//Теоритическое и поурочное планирование по физике//Москва, Экзамен, 2004.
  • Л.И. Резников//Графический метод в преподавании физики//Учпедгиз//1960.
  • В.П. Орехова, А.В. Усова//Преподавание физики//Москва, Просвещение, 1998.
  • М.Е. Тульчинский. Качественные задачи по физике в 6 – 7 классах. Пособие для учителей. – М.:Просвещение, 1976. – 127 с.
  • http://scilib.narod.ru/Technics/Ilyin_1953/Ilyin1953.htm
  • http://rumahkimia.wordpress.com
  • http://nauka.relis.ru/40/0103/hitr-2.GIF
  • http://tvnovotech.ru/elka72/news.php?post=389
  • http://diod.ucoz.ru/load
  • http://www.edu.delfa.net/Interest/biography/l/lommel.htm
  • Презентация

    xn--i1abbnckbmcl9fb.xn--p1ai

    Закон Ома для активного и пассивного участка линейной электрической цепи

    Закон Ома для пассивного участка электрической цепи. 

    При протекании электрического тока через сопротивление R, напряжение U и ток I на этом участке связаны между собою согласно закону Ома:

    Сопротивление R – это коэффициент пропорциональности между током и напряжением. Чтобы найти сопротивление, нужно напряжение на участке электрической цепи разделить на ток, протекающий на этом же участке.

    Закон Ома можно записать через разность потенциалов:

    Закон Ома для активного участка электрической цепи.

    Закон Ома для активного участка цепи между точками а и в имеет вид:

    Напряжение на участке электрической цепи Uab и ЭДС берутся со знаком «плюс», если их направление совпадает с направление протекания тока. Напряжение (разность потенциалов) и источник электродвижущей силы берутся со знаком «минус», если их направление не совпадает с направлением протекания тока.

    Пример составления уравнения по закону Ома 

    Рассмотрим пример решения задачи на составления уравнения по закону Ома для участка линейной электрической цепи с двумя источниками ЭДС.

    Пусть в данной электрической цепи направление тока будет из точки “a” в точку “b”. Напряжение Uab Направляется всегда из первой буквы (“a”) к последней (“b”).

    Согласно правилу составления уравнения по закону Ома источник ЭДС E1 берем со знаком “плюс”, т.к. его направление (направление стрелочки) совпадает с направлением протекающего тока.

    Источник ЭДС E2 берем со знаком “минус”, т.к. его направление (направление стрелочки) не совпадает с направлением протекающего тока.

    Напряжение Uab или разность потенциалов φa – φb берем со знаком “плюс”, т.к. его направление совпадает с направление протекающего тока.

    Сопротивление R1 и R1 соединены последовательно. При последовательном соединении сопротивлений их эквивалентное значение равно сумме. 

    В результате составленное уравнение по закону Ома будет иметь вид:

    Пусть потенциал в данной задаче потенциал точки “а” равен 10 вольт, потенциал точки “b” = 7 вольт, E1=25 В, E2=17 В, R1=5 Ом, R2=10 Ом. Рассчитаем величину тока:

     

    Полученный ток равен 1 Ампер.

    www.kurstoe.ru

    Закон Ома для участка цепи: от истории к формуле

    Закон Ома для участка цепи – основная формула, которую преподаватели используют для борьбы с непослушными студентами. Посмотрим, что до потомков хотел донести Георг Ом, когда формулировал закон:

    I = U/R. Где I – сила тока, измеряемая в амперах; U – напряжение, в вольтах; а R – активное сопротивление в омах.

    История создания закона Ома для участка цепи

    В сочетании со знанием того, что напряжение параллельных цепей одинаково, как ток в последовательных, закон Ома для участка цепи становится мощным инструментом для решения любых задач. Будучи выведена в 1827 году, формула на несколько десятилетий опередила работы Кирхгофа. Георг Ом экспериментировал с активными сопротивлениями и целых два года бился над тем, на что сегодня рядовому студенту хватит получаса. Все от недостатка материальной базы.

    Учёный Георг Ом

    В 1600 году Вольта представил на суд публики батарею, исследователи стали искать, куда приспособить инновацию. Стало очевидно, что возможно передавать информацию быстро и на большие расстояния при помощи телеграфа. Но измерять оказывалось нечего. Явно не ток и напряжение, связанные позднее законом Ома для участка цепи. Затруднение маячило на горизонте лишь в период возникновения необходимости проведения ремонтных работ. После сорока лет от появления на свет закона Ома, когда в 1866 году оказался проложен трансатлантический телеграф, в виде приёмных устройств применяли зеркальный гальванометр Кельвина.

    За 8 лет до описанного будущий лорд взял патент на изобретение. В первоначальном виде прибор – катушка из проволоки, с подвижным зеркалом внутри. В момент, когда регистрировался ток в цепи, огонёк отражался в нужную сторону, оператор видел происходящее собственными глазами. Согласитесь, при помощи подобного устройства сложно провести измерения. Кельвин внёс поправки, произошло это на 40 лет позднее, чем оказалось желательно для Георга Ома.

    Изобретатель первого точного амперметра, Эдвард Вестон, родился в 1850 году. Прибор изготовился к 1886 году и обеспечивал точность в 0,5%. Очевидно, Георг Ом не пользовался устройством при отыскании закона для участка цепи. Однако вывел знаменитую формулу. Как? Он слыл великолепным математиком и в исследованиях использовал идеи Фурье о теплопроводности.

    Работу The galvanic circuit investigated mathematically легко скачать в формате pdf с хранилища Гугл. Правда, перевода на русский язык не отыскать даже в центральной библиотеке имени Ленина.

    Предыстория открытий Георга Ома

    Ранее в топиках уже упоминался Фалес Милетский, в рубрике про закон Ома для участка цепи лишь добавим, что притяжение шерсти янтарём замечено его дочерью. Человечество в области электричества многим обязано женщинам и их любопытству, заставившему дочку попросить у папы Фалеса объяснения непонятному явлению.

    Потом электричество оказалось забыто на века. Первым серьёзным трудом в указанной области считаются работы Вильяма Гильберта, незадолго до собственной кончины успевшего выпустить в свет трактат, название которого в вольном переводе можно передать, как «О магните, магнитных телах и о большом магните – Земле». Невозможно пройти мимо Отто фон Герике, при помощи генератора статического заряда собственной конструкции сумевшего установить ряд любопытных закономерностей:

    1. Заряды одинакового знака отталкиваются, противоположных притягиваются. Фон Герике обратил внимание на эти противоположности.
    2. При замыкании зарядов разных знаков проводником течёт ток. В то время понятия не существовало, но факт исчезновения сил взаимодействия между телами оказался подмечен.

    Опыты Шарль Дюфе

    Отметил наличие знаков у зарядов Шарль Дюфе: о «стеклянном» и «смоляном» электричестве уже писали.

    Как Георг Ом вывел закон математически

    Авторы сделали небольшой перевод целой (!) книги о математическом исследовании электрической цепи. Ом пишет, что труд создал на основе лишь трёх постулатов:

    • Распространение электричества внутри твёрдого тела (проводника).
    • Движение электричества за пределами твёрдого тела (рискнём предположить, что речь идёт о магнитном поле).
    • Явление возникновения электричества при контакте разнородных проводников (сейчас называется термопарой).

    Учёный пишет, что опирался на воздух, последние два постулата к тому времени не носили форму законов, присутствовали лишь частичные экспериментальные наработки. Исследования основывались на опытах Шарля Кулона, который экспериментировал с действиями зарядов друг на друга дистанционно. Уже тогда Ом предположил, что два контактирующих разнородных проводника образуют разность потенциалов. А теперь удивительные открытия Ома:

    Крутильные весы

    1. Как упомянуто выше, в то время не существовало измерительных приборов. Ом знал по научным публикациям, что текущий по проводу ток отклоняет в сторону магнитную стрелку. Непросто оказывалось соотнести угол с величиной электричества, но учёный пошёл на хитрость: при помощи крутильных весов начал определять усилие, при котором показания компаса и направление металлической жилы совпадали. А в ньютонах это крайне малое значение. Так Ом научился измерять точно силу тока – величину, неизвестную научному сообществу, введённую в обиход гением науки.
    2. В ходе опытов замечено, что вольтов столб не даёт постоянного напряжения. Эксперименты в таких условиях Георг Ом продолжать не мог. И стал использовать… термо-ЭДС (по совету физика И. Х. Поггендорфа). Это потрясающе, потому что малые напряжения — разность потенциалов между двумя разнородными проводниками (медь и висмут) токи вызывают незначительные. Ом справился с задачей при помощи крутильных весов и стрелки компаса. А незначительное снижение температуры на стыке быстро компенсировалось. Первый конец термопары учёный помещал в сосуд с кипящей водой, второй – в ёмкость со льдом. Неизвестным оставалось непостоянство температур по шкале. К примеру, кипение начинается неодинаково, на процесс влияет давление атмосферы. Но термопара показала себя с первого теста намного лучше гальванического элемента.

    Кулон со своим изобретением

    Добавим, крутильные весы, принцип действия которых основан на модуле упругости тонкой проволоки, сконструировал Кулон. Применял для статических зарядов. Таким образом и вывел знаменитый закон. Магнитная стрелка описана в работах Эрстеда (1820 года). Учёный заметил, что отклонение пропорционально тому, что сейчас называем силой тока. В том году Ампер сформулировал собственный знаменитый закон, сообщил, что соленоид с разностью потенциалов на своих выводах ориентируется в магнитном поле Земли. Открытия следовали одно за другим, и книга Георга Ома по математическому исследованию гальванической цепи стала очередной из ряда.

    Магнитную стрелку учёный располагал по направлению магнитного меридиана. Чтобы исключить влияние магнитного поля Земли. При помощи крутильных весов измерял силу, требуемую для возврата системы в исходное состояние. Ом вывел ряд причин недовольства гальваническим элементом как источника питания:

    1. Постепенно, как любой аккумулятор, вольтов столб терял напряжение. Ом заметил это в ходе исследования теплового эффекта на куске обычной проволоки. Постепенно температура неумолимо падала. Стоило привести систему в начальное состояние (зарядить), как нагрев усиливался. Следовательно, гальванический элемент в ходе исследований вносил погрешность. Термо-ЭДС обладала большей стабильностью и меньшей величиной, что снижало нагрев проводников, нивелируя температурную погрешность.

      Подготовка к эксперименту

    2. Ом ставил опыты на небольшой длины отрезах проволоки из различного материала. Сопротивление кусков оказывалось меньше, нежели внутреннее сопротивление источника. В результате образования резистивного делителя ток с изменением материала проводника менялся крайне слабо. Внутренний импеданс гальванического элемента вносил большие погрешности. И здесь термопара проявилась наилучшим образом. Внутреннее сопротивление подобного источника чрезвычайно мало.

    Вдобавок чистота материалов исследуемых образцов даже у Ома вызывала сомнения. Не существовало удобоваримого инструмента для оценки диаметра (и площади сечения). Все это говорит, сколько трудностей пришлось преодолеть школьному учителю (талантливому математику).

    По мере ознакомления с работой становилось понятно, почему целых два года ушло на вывод простой формулы. В довершение учёный не обнаружил поддержки, в первую очередь, материальной, от учёных кругов и государственных институтов. А уравнение долгое время потом подвергалось критике – масла в огонь добавила неточность в первоначальной формулировке уравнения. Подытоживая:

    1. Путём абстракции однородного, симметричного кольца из проводника учёный дедуктивным методом показал, что в каждом сечении ток одинаков. Полагаем, Ому активно помогала стрелка, усилие кручения которой на протяжённости окружности сохранялось постоянным.
    2. Составляя кольцо из сегментов, Ом создавал разные геометрические абстракции, вытягивал в линию, рисовал и ввёл понятие разницы потенциалов. И все, чтобы увидеть математическое выражение закона.

    Как пишет Ом, работа на тот момент считалась сложнейшей математической задачей, добавим, текст её даст сто очков форы любой современной шараде. Когда кольцо представляют в виде прямой линии, это выглядит странно, текст не поясняет это действие (хотя там терпеливо обрисовывается назначение линий). Не берёмся выяснять суть абстракций, просто указываем форму уравнения, к которой пришёл учёный:

    Х = а/b + x,

    где Х – сила, действующая на магнитную стрелку, a – длина исследуемого проводника, b и х – некие произвольные константы. К примеру, Ом предлагал взять, соответственно, b единым числом 20,25 и х – диапазон значений от 7285 до 6800. В этом случае, пользуясь указанным выше выражением, удавалось заранее по длине и материалу проводника предсказать магнитную силу, действующую на стрелку. Что сочтено подтверждением верности происходящего.

    Вместо заключения

    Над простой зависимостью два века назад талантливый математик трудился несколько лет. В этом первые помогали советом, вторые мешали. Достаточно сказать, что конечный вариант установки собирался специально для целей нахождения зависимости. Все детали, включая термопару, показывали чётко определённые размеры. Установку накрыли колпаком для исключения влияния на крутильные весы воздушных турбулентностей.

    В конечном итоге это снизило погрешности до 5 – 10%. Что позволило вывести соотношение, известное сегодня как закон Ома для участка цепи.

    vashtehnik.ru

    Закон Ома для участка цепи — Мегаобучалка

    Немецкий ученый Георг Ом в 1826 году провел серию опытов и получил зависимость, которую впоследствии назвали законом Ома.

     

    Для разных проводников он строил так называемые вольт-амперные характеристики – графики зависимости силы тока от напряжения.

    В результате была обнаружена линейная связь силы тока с напряжением: увеличивая напряжение, увеличиваем и силу тока, это увеличение происходит прямо пропорционально: .

    Однако, как видно из графиков, для каждого проводника коэффициент пропорциональности разный. Это означало, что каждый проводник обладает некоторой мерой проводимости тока, и для разных проводников она разная. Эту величину назвали электрическим сопротивлением. Обозначение сопротивления – R.

    При одном и том же напряжении проводники с меньшим сопротивлением будут пропускать ток большей силы.

    Используя опытные результаты, Омом был сформулирован закон, впоследствии названный законом Ома для участка цепи. Закон Ома для участка цепи:сила тока для однородного проводника на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению проводника.

    Закон Ома – один из основополагающих законов физики. Открытие его в свое время позволило сделать огромный скачок в науке. В настоящее время невозможно себе представить любой самый элементарный расчет основных электрических величин для любой цепи без использования закона Ома. Из формулы для закона Ома можно рассчитать также величины напряжения и сопротивления участка цепи:

    U=IR и R=U/I

    Закон Ома для полной цепи.

    Полная цепь – цепь, содержащая источник тока, или же цепь, содержащая ЭДС. Для наглядного примера возьмем самый простой вариант – цепь с одним источником и одним потребителем.

    Внешняя цепь (участок полной цепи без источника) характеризуется своим сопротивлением – R. Источник же характеризуется своей ЭДС, а также внутренним сопротивлением – r.

    ЭДС равна сумме падений напряжения на внешней цепи и на самом источнике: Здесь: – напряжение, подаваемое во внешнюю цепь; – падение напряжения на источнике.



    Внешняя цепь, конечно же, является участком цепи, поэтому для нее справедлив закон Ома:

    Через источник проходит точно такой же ток, поэтому:

    Подставив последние два выражение в первое, получим: Или же:

    Сила тока в цепи постоянного тока прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению электрической цепи.Это и называется законом Ома для полной цепи.

     

    megaobuchalka.ru

    § 7. Закон Ома

    Закон Ома для электрической цепи. Согласно этому закону сила тока I в электрической цепи равна э. д. с. Е источника, поде­ленной на сопротивление цепи Rц, т. е.

    I = E / Rц (7)

    Полное сопротивление замкнутой электрической цепи (рис. 13) можно представить в виде суммы сопротивления внешней цепи R (например, какого-либо приемника электрической энергии) и внут­реннего сопротивления Ro источника. Поэтому сила тока

    I = E / (R+Ro) (8)

    Чем больше э. д. с. Е источника и чем меньше сопротивление электрической цепи, тем больший ток проходит по этой цепи.

    Из формулы (7) следует, что э. д. с. источника электри­ческой энергии равна произведению силы тока на полное сопротивле­ние электрической цепи:

    E = IRц (7)

    Закон Ома для участка электрической цепи. Закон Ома может быть применен не только ко всей цепи, но и к любому ее участку, например между точками а и б (см. рис. 13). В этом случае э. д. с. Е источника в формуле (7) должна быть заменена разностью потенциалов между началом и концом рассматриваемого участка, т. е. напряжением U, а вместо сопротивления всей цепи в формулу должно быть подставлено сопротивление R данного участка. В этом случае закон Ома формулируется следующим образом. Сила тока I на данном участке электрической цепи равна напряжению U, приложенному к участку, поделенному на сопротивление R этого участка:

    I = U / R (9)

    Рис. 13. Схема простейшей электрической цепи

    Рис 14. Прохождение электрического тока по проводникам аналогично прохождению воды по трубам

    Прохождение электрического тока по проводникам полностью аналогично прохождению воды по трубам (рис. 14). Чем больше разность уровней воды при входе и выходе из трубы (напор) и чем больше поперечное сечение трубы, тем больше воды протекает сквозь трубу в единицу времени. Точно так же, чем больше разность электрических потенциалов (напряжение) на зажимах источника или приемника электрической энергии и чем меньше его сопротивление (т. е. чем больше площадь поперечного сечения проводника), тем больший ток проходит по нему.

    Из формулы (9) следует, что напряжение U, действующее на некотором участке цепи, равно произведению силы тока I на сопротивление R этого участка:

    U = IR (10)

    Так как потенциал электрического поля в начале участка электрической цепи больше, чем в конце, разность потенциалов, или напряжение U, приложенное к участку электрической цепи, часто называют падением напряжения на данном участке.
    Сопротивление R участка цепи равно напряжению, приложенному к данному участку, поделенному на силу тока на этом участке, т. е.

    R = U / I (11)

    Если сопротивление R не зависит от проходящего по нему тока и приложенного к нему напряжения, то его вольт-амперная характеристика, т. е. зависимость силы тока I от напряжения U, представляет собой прямую линию 1 (рис. 15). Такие сопротивления называют линейными, а электрические цепи, в которых включены подобные сопротивления,— линейными цепями.
    Однако в электротехнике широко применяют и такие устройства, сопротивление которых резко изменяется в зависимости от силы или направления проходящего через них тока либо приложенного напряжения. Подобные сопротивления имеют вольт-амперную характеристику, отличающуюся от прямой (кривая 2 на рис. 15), и называются поэтому нелинейными сопротивлениями. Простейшим нелинейным сопротивлением является электрическая лампа накаливания. При протекании тока по металлической нити лампа нагревается и сопротивление ее возрастает. Следовательно, при увеличении приложенного к лампе напряжения сила тока будет возрастать не прямо пропорционально напряжению, а в несколько меньшей степени.
    В принципе большинство электрических устройств может быть представлено в виде нелинейного сопротивления, так как при изменении силы тока меняется температура данного устройства, а следовательно, и его сопротивление. Однако у многих из них вольт-амперные характеристики в рабочем диапазоне изменений напряжения и тока мало отличаются от прямой, поэтому приближенно можно их считать линейными сопротивлениями.
    К сопротивлениям с нелинейной вольт-амперной характеристикой относятся электрические лампы накаливания, термисторы (полупроводниковые резисторы, сопротивление которых сильно изменяется при изменении температуры), полупроводниковые диоды, тиристоры и транзисторы, электронные лампы и пр. Нелинейные сопротивления широко используют в электротехнике для автоматического регулирования силы тока и напряжения в электрических цепях, электрических измерений, выпрямления тока и пр.

    Рис. 15. Вольт-амперные характеристики линейных и нелинейных сопротивлений

    electrono.ru

    Закон Ома формула и определение

    Для того, чтобы определить взаимосвязь между такими величинами, как сила тока, напряжение и сопротивление, существует закон Ома, формула которого точно отображает взаимодействие этих величин.

    Закон ома определение для участка цепи

    Для начала, в обычной электрической цепи, необходимо выделить участок, имеющий определенное сопротивление R и находящийся под определенным напряжением U.

    Закон Ома, в конечном итоге, будет выглядеть следующим образом: сила тока на данном участке электрической цепи представляет собой отношение напряжения к сопротивлению для этого участка цепи. Взаимосвязь всех трех категорий можно выразить и по-другому: сила тока на данном участке электрической цепи имеет прямую пропорциональную связь с напряжением и обратно пропорциональную связь с сопротивлением.

    Формула

    Основную формулу закона Ома можно представить в математическом варианте. При помощи закона Ома вполне возможно определить, какие изменения произойдут с силой тока на определенном участке цепи, при изменениях напряжения и сопротивления на этом же участке:

    • Согласно приведенной формуле, при увеличении напряжения на концах участка электрической цепи, сила тока на этом участке также будет возрастать. Во сколько раз может уменьшиться или увеличиться напряжение, во столько же уменьшается или увеличивается сила тока. Такие изменения возможны при условии постоянного сопротивления.
    • В том случае, когда напряжение остается неизменным, сила тока переходит в зависимость от значения сопротивления. То есть, при возрастании сопротивления на каком-либо определенном участке цепи начинает пропорционально уменьшаться. Если сопротивление уменьшается, то сила тока, соответственно, возрастает.

    В случае превышения допустимого значения для конкретного участка цепи все приборы, включенные в эту цепь, могут выйти из строя. При этом, провода раскаляются, вплоть до возгорания. Данная ситуация является классической при возникновении короткого замыкания, когда две точки цепи, находящиеся под напряжением, соединяются проводником, имеющим очень небольшое сопротивление.

    Формула закона Ома позволяет избежать подобных ситуаций, предполагая предварительное определение сопротивления для того или иного участка электрической цепи. Для того, чтобы определить это значение, необходимо измерить на данном участке сначала напряжение, а, затем силу тока. После этого, первую величину необходимо разделить на вторую. Полученный результат и будет тем значением сопротивления.

    При определении напряжения на концах цепи, нужно значение силы тока умножить на значение напряжения.

    electric-220.ru

    Оставить комментарий