Как выглядит трансформатор – Для чего нужны трансформаторы 🚩 как выбрать трансформатор напряжения 🚩 Разное

Содержание

Устройство трансформатора зависит от его предназначения и режима работы

При работе любой электрической схемы требуется изменение значений напряжения и тока. Если разница между величинами небольшая, задача решается с помощью резисторов.
Однако при сильном разбросе параметров, выделяется значительное количество тепла. К тому же такой способ приводит к потерям мощности, КПД прибора снижается.

Эффективным преобразователем тока или напряжения является трансформатор. Изменение величины напряжения происходит практически без потерь, энергия передается линейно, с сохранением входной и выходной мощности.

Важно! Преобразование может происходить в любую сторону. Существуют понижающие и повышающие трансформаторы.

Для чего нужен трансформатор?

  1. Основное назначение – снижение напряжения при организации питания электроприборов. Централизованное энергоснабжение дает на входе величину 220 или 380 вольт.Строить электрические схемы при таких величинах нерационально и опасно. Требуется организация защиты, размер элементов и проводников будет слишком большим. Поэтому на входе в большинстве приборов монтируется блок питания с понижающим трансформатором.
  2. Еще одно применение – транспортировка электроэнергии. По закону Ома, чем выше напряжение в проводнике, тем меньше величина тока, протекающего по цепи (при сохранении мощности). Меньше нагрев проводов, соответственно меньше потерь.По линиям электропередач передается напряжение в десятки киловольт. С помощью понижающих трансформаторов на подстанциях, эта величина снижается до приемлемых 600 В.

Затем происходит вторая ступень преобразования – три фазы 380 В и однофазное питание 220 В.

С помощью трансформатора (снова вспоминаем закон Ома) можно работать с большими токами, при невысокой входной мощности. Пример – сварочный аппарат.

При входной мощности 5 кВт (это достаточно много) и напряжении 220 вольт, сила тока может достигать 20 ампер. Для сварочных работ этого недостаточно.

Если преобразовать напряжение до величины 18-24 вольта, сила тока (при сохранении мощности) достигнет 200 ампер. Такие токи могут образовывать сварочную дугу и плавить металл.

Устройство и назначение силового трансформатора — видео.

Зачем еще нужен трансформатор?

Для поддержания заданной величины напряжения. Всем знакомо такое явление, как «просады» электроэнергии. При увеличении нагрузки, генерирующая система снижает величину выходного напряжения. Это можно скомпенсировать автотрансформатором.

Наглядное видео — как работает трансформатор.

Устройство и принцип действия трансформатора

Прибор работает исключительно по законам физики, на основе простых явлений. Никаких сложных схем управления и контроллеров, чистая механика. Именно простота физических процессов делает это устройство таким надежным.

Из чего состоит трансформатор?

  • Магнитопровод. Фактически он является рамой, или корпусом прибора. Представляет собой замкнутую структуру из ферромагнитного материала, в которой можно индуцировать магнитное поле.
  • Обмотка. Для работы прибора их требуется минимум две. На одну подается исходное напряжение, со второй (или с нескольких) снимается преобразованная величина (величины).

Важно! Исходное напряжение может быть только переменным. Постоянные токи не могут возбудить в магнитопроводе магнитное поле.

Разберем компоненты подробнее:

Магнитопровод

Для его изготовления требуется материал с хорошей магнитной проводимостью. Это может быть сталь с высоким содержанием кремния, либо феррит.
Конструктивно этот элемент может быть:

  • Пластинчатым. Сечение набирается из тонких пластин одинакового размера.


В зависимости от инженерных расчетов, пластины могут иметь электрический контакт между собой, или быть изолированными с помощью электрокартона или лака. Для прочности листы стягиваются с помощью шпилек, или просто склеиваются между собой. Конструкция позволяет перебрать блок, меняя конфигурацию.

  • Ленточным. Для создания объема, стержни магнитопровода наматываются из непрерывных полос железа.


Конструкция получается очень прочной, магнитный поток более стабильный, в сравнении с пластинами.

  • Монолитным. Изготавливается из т.н. феррита – материала, состоящего из окислов железа в сочетании с другими материалами.


Метод изготовления – порошковое прессование. Высочайшая магнитопроводимость, хорошее рассеивание тепла.

По форме исполнения магнитопроводы бывают:

  • Броневые. Выполнены в форме восьмерки закругленной формы, либо с прямыми углами

  • Обмотки располагаются на центральном стержне. Отличное взаимодействие между витками, высокая мощность и громоздкие размеры. Магнитопровод такой формы является разборным, что упрощает установку обмоток.
  • Стержневые. Выполнены в виде прямоугольника, квадрата или буквы «О» с прямыми стенками.


Обмотки могут наматываться как одна на другую, так и порознь – на разные стороны магнитопровода. Также бывают разборными, более компактные и менее мощные.

  • Тороидальные. Неразборный сердечник выполнен в виде тора. Для обмоток используется вся площадь, за счет чего размеры поскромнее, при той же мощности. Потерь в магнитопроводе практически нет. Обеспечивают хороший теплоотвод с обмоток.


Единственный недостаток – трудно мотать обмотки. Для этого необходимо использовать специальные станки.

Обмотка

На первый взгляд все просто. Берем обычные провода, формируем катушку, надеваем на сердечник. Такие схемы применяются, на мощных трансформаторах. Проводник покрыт изоляцией, как правило бумажной, или с применением иного материала, который не размягчается при нагреве.

Например, в сварочных аппаратах, вторичная обмотка сильно нагревается, и пластиковая изоляция может расплавиться. Однако такие обмотки очень громоздкие, да и не всегда требуется такая высокая мощность. Чаще всего на первом месте стоит компактность.

Самый распространенный проводник – тонкая медная проволока, покрытая лаком. Отличная изоляция (при условии отсутствия повреждений) и размер обмотки зависит лишь от сечения проводника, толщина лака минимальна.

Система работает следующим образом:

На первичную обмотку подается переменное напряжение. Переменный ток возбуждает в сердечнике магнитное поле, которое в свою очередь индуцирует переменный ток на вторичной обмотке.

Преобразование происходит по закону Максвелла: разница величин напряжения прямо пропорциональна количеству витков. То есть, если на первичной обмотке 1000 витков и напряжение 220 вольт, то на вторичной обмотке в 100 витков индуцируется напряжение 22 вольта.

Это условная величина, работающая лишь в теории. На практике необходимо делать поправку на потери (тепло, сопротивление, несовершенство магнитопровода).

Обозначение трансформатора на схеме как раз демонстрирует его конструкцию.

Существуют варианты изготовления с несколькими вторичными обмотками, для экономии места.

Что из себя представляет трансформатор и как его проверить. Подробности в этом видео материале.

Итог:
Назначение трансформатора определяет его устройство. Универсальных конструкций нет, поэтому при выборе готового (или самостоятельном изготовлении) трансформатора, в первую очередь рассчитайте параметры и согласуйте их с условиями применения. Невозможно собрать мощный сварочник из компактного тора, равно как и мощный броневой преобразователь не уместится в блок питания для ноутбука.

Похожие статьи

obinstrumente.ru

Как работает трансформатор – Всё о электрике в доме

Что такое трансформатор – это устройство, способное изменять напряжение переменного тока

Вопрос, что такое трансформатор, для опытных и даже начинающих электриков совершенно простой. Но обычные обыватели, которые с электрикой не дружат, даже и не представляют, как выглядит трансформатор, для чего он необходим, а тем более, не осведомлены о его конструкции и принципе работы. Поэтому в этой статье будем разбираться с этим прибором, рассмотрим вопрос, а можно ли сделать трансформатор своими руками, и так далее. Итак, трансформатор – это электромагнитное устройство, которое может изменять напряжение переменного тока (увеличивать или уменьшать).

Устройство и принцип работы

Итак, конструкция трансформатора достаточно проста и состоит из сердечника и двух катушек из медной проволоки. В основе принципа работы лежит электромагнитная индукция. Чтобы вы поняли, как работает этот прибор, рассмотрим, как магнитное поле, образуемое в катушках (обмотках) устройства, изменяет показатель напряжения.

Подаваемый на первую обмотку электрический ток (он переменный, поэтому изменяется по направлению и величине) образует в катушке магнитное поле (оно также переменное). В свою очередь магнитное поле образует во второй катушке электрический ток. Такой своеобразный обмен параметрами. Но просто так изменение напряжения не произойдет, оно зависит от того, сколько витков медной проволоки в каждой обмотке. Конечно, величина изменения магнитного поля (скорость) также влияет на величину напряжения.

Что касается количества витков, то получается так:

  • если число витков в первичной катушке больше, чем во вторичной, то это понижающий трансформатор;
  • и, наоборот, если количество витков во вторичной обмотке больше, чем в первичной, то это повышающий трансформаторный прибор.

Поэтому существует формула, которая определяет так называемый коэффициент трансформации. Вот она:

k=w1/w2, где w – это число витков в катушке с соответствующим номером.

Внимание! Любой трансформатор может быть и понижающим, и повышающим, все зависит от того, к какой обмотке (катушке) подсоединяется питающий кабель сети переменного тока.

И еще один момент, касающийся устройства. Это сердечник трансформатора. Все дело в том, что существуют разные виды этого устройства, в которых сердечник присутствует или отсутствует.

  • Так вот, в тех видах, где сердечник трансформатора отсутствует или изготовлен из феррита или альсифера называются высокочастотными (выше 100 кГц).
  • Приборы с сердечником из стали, феррита или пермаллои – низкочастотные (ниже 100 кГц).

Первые используются в радио- и электросвязи. Вторые в для усиления звуковых частот, к примеру, в телефонии. Со стальным сердечником используется в электротехнике (в бытовых приборах в том числе).

Условные обозначения и параметры

Приобретая трансформатор, необходимо понимать, что написано на его корпусе или в сопроводительных документах. Ведь существует определенная маркировка трансформаторов, которые определяют его назначение. Основное, на что необходимо обратить внимание, до какого показателя этот прибор может снизить напряжение. К примеру, 220/24 говорит о том, что на выходе получится ток напряжением 24 вольта.

А вот буквенные обозначения чаще всего говорят о типе устройства. Кстати, имеется в виду буквы, стоящие после цифр. К примеру, О или Т – одно- или трехфазный соответственно. То же самое можно сказать о количестве обмоток, о типе охлаждения, о способе и месте установки (внутренние, наружные и прочее).

Расшифровка маркировки трансформатора

Что касается параметров трансформатора, то существует определенный стандартный ряд, который и определяет характеристики прибора. Их несколько:

  • Напряжение в первичной катушке.
  • Напряжение во вторичной катушке.
  • Первичная сила тока.
  • Вторичная сила тока.
  • Общая мощность аппарата.
  • Коэффициент трансформации.
  • КПД.
  • Коэффициент мощности и нагрузки.

Есть так называемая внешняя характеристика трансформатора. Это зависимость вторичного напряжения от вторичной силы тока, при условии, что сила тока первичной обмотки будет номинальной, а cos φ= const. По-простому – чем выше сила тока, тем ниже напряжение. Правда, второй параметр изменяется всего лишь на несколько процентов. При этом внешняя характеристика трансформатора определяется относительными характеристиками, а именно коэффициентом загрузки, который определяется по формуле:

Обозначение на схемах

K=I2/I2н, где второй показатель силы – это сила тока при номинальном напряжении.

Конечно, характеристики трансформатора – это достаточно большой ряд всевозможных показателей, от которых зависит сама работа прибора. Здесь и мощность потерь, и внутреннее сопротивление в обмотке.

Как сделать самостоятельно

Итак, как сделать трансформатор самому? Зная, принцип работы установки и его конструктивные особенности, можно собрать своими руками простейший аппарат. Для этого вам понадобится любое металлическое кольцо, на котором надо накрутить два участка обмотки. Самое важно – обмотки не должны касаться друг друга, а место их намотки не зависит конкретно от их расположения. То есть, они могут быть размещена напротив друг друга или рядом. Важно – даже небольшое расстояние между ними.

Внимание! Трансформатор работает только от сети переменного тока. Так что не стоит подключать к вашему устройству батарейку или аккумулятор, где присутствует ток постоянный. Работать от этих источников электроэнергии он не будет.

Как уже было сказано выше, количество витков в обмотках определяет, какой прибор вы собираете – понижающий или повышающий. К примеру, если вы на первичной обмотке соберете 1200 витков, а на вторичной всего лишь 10, то на выходе вы получите напряжение 2 вольта. Конечно, при подключении первичной катушки к напряжению 220-240 вольт. Если фазировка трансформатора будет заменена, то есть, провести подсоединение 220 вольт к вторичной обмотке, то на выходе первичной получится ток напряжением 2000 вольт. То есть, к назначению трансформатора надо подходить осторожно, учитывая тот самый коэффициент трансформации.

Как правильно подключить

Что касается монтажа трансформатора, особенно его понижающего типа в быту дома, то необходимо знать некоторые нюансы проводимого процесса.

  • Во-первых, это касается самого устройства. При монтаже трансформатора иногда появляется необходимость подключения не одного потребителя, а сразу нескольких. Поэтому обращайте внимание на количество выходных клемм. Конечно, необходимо знать, что суммарная потребляемая мощность потребителей не должна быть больше мощности самого трансформаторного устройства. Во всяком случае, специалисты рекомендуют, чтобы второй показатель был всегда больше первого на 15-20%.
  • Во-вторых, подключение трансформатора производится электрической проводкой. Так вот ее длина и до прибора, и после не должна быть очень большой. К примеру, понижающий аппарат для светодиодного освещения предполагает наличие проводки от него до светильников не больше двух метров. Это позволит избежать больших потерь мощности.

Схема подключения понижающего трансформатора

Внимание! Нельзя процесс монтажа трансформатора проводить и в том случае, если потребляемая мощность потребителей будет меньше мощности самого агрегата.

  • В-третьих, место установки электрического понижающего прибора должно быть выбрано правильно. Самое важное, чтобы до него всегда можно было бы добраться просто, особенно когда есть необходимость провести демонтаж со следующей заменой и монтажом трансформатора. Поэтому перед тем как подключить трансформатор, необходимо определиться с его местом установки.

Схема замещения

Буквально несколько слов о том, что такое схема замещения трансформатора. Начнем с того, что две катушки соединены между собой магнитным полем, поэтому проанализировать работы трансформатора, а тем более его характеристики, очень сложно. Поэтому для этих целей сам прибор заменяют моделью, которая и называется схема замещения трансформатора.

По сути, все переводится на математический уровень, а точнее, в уравнения (токов и электрического состояния). Здесь важно, чтобы все уравнения, касающиеся прибора и его модели, совпадали. Кстати, для многих схема замещения трансформатора достаточно сложна, поэтому существует упрощенный вариант, в котором нет тока холостого хода, ведь на него приходится незначительная часть.

Фазировка трансформатора – это испытание его выходов, когда в одну цепь подключены несколько приборов параллельно. Ведь обязательное условие эффективной работы цепи с отсутствием больших потерь мощности – это правильное соединение фаз между собой, чтобы образовался замкнутый контур.

Если фазы не совпадут, то падает мощности и растет нагрузка. Если не совпадает чередование фаз, то произойдет короткое замыкание.

Заключение по теме

Итак, был сделан небольшой обзор всего, что касается трансформаторных установок, поэтому будем считать, что вопрос, зачем нужны трансформаторы, исчерпан, хотя и не полностью. Об этом приборе можно говорить долго. К примеру, самые простые варианты: как разобрать трансформатор, как прозвонить его, как подключить или демонтировать самому дома.

Упрощенный вид расчета трансформатора

  • Разделительный трансформатор 220 на 220 вольт и понижающий 220 на 110 – принцип работы и устройство

  • Что такое понижающий трансформатор

    Как работает трансформатор

    Трансформатор, устройство, которое передает электрическую энергию от одной части схемы к другой за счет магнитной индукции и, как правило, с изменением величины напряжения. Трансформаторы работают только с переменным электрическим током (AC).

    Трансформаторы имеют важное значение в распределении электроэнергии. Они повышают напряжение, вырабатываемое на электростанциях до высоких значений с целью эффективной передачи электроэнергии. Другие трансформаторы понижают это напряжение в местах потребления.

    Многие бытовые приборы оборудованы трансформаторами, для того чтобы по мере необходимости повысить или понизить напряжение поступающее из домашней электросети. Например, для работы телевизора и аудиоусилителя необходимо повышение напряжения, а для работы дверного звонка или термостата низкое напряжение.

    Как работает трансформатор

    Как правило, простой трансформатора состоит из двух катушек намотанных изолированным проводом. В большинстве трансформаторов, провода намотаны на стержень из железа, называемый сердечником.

    Одна из обмоток, ее еще называют первичной обмоткой, подключается к источнику переменного тока, что в свою очередь приводит к появлению постоянно переменного магнитного поля вокруг обмотки. Это переменное магнитное поле, в свою очередь, создает переменный ток в другой обмотке (вторичной обмотке).

    Величина, определяемая как отношение числа витков в первичной обмотке к числу витков во вторичной обмотке, определяет масштаб понижения или повышения напряжения во вторичной обмотки. Данную величину еще называют коэффициентом трансформации.

    Например, если у трансформатора имеется 3 витка первичной обмотке и 6 витков во вторичной обмотки, то напряжение во вторичной обмотке будет в 2 раз больше, чем в первичной. Такой трансформатор называется повышающий трансформатор.

    И на оборот, если есть 6 витков в первичной обмотке и 3 виток во вторичной, то напряжение снимаемое с вторичной обмотки будет в 2 раз ниже чем в первичной обмотке. Этот вид трансформатора носит название понижающий трансформатор.

    Так же следует иметь ввиду, что соотношение тока в обеих катушках находится в обратной зависимости к соотношению их напряжений. Таким образом, электрическая мощность (напряжение умноженное на силу тока) является одинаковой в обеих катушек.

    Импеданс (сопротивление потоку переменного тока) первичной катушки зависит от импеданса вторичной цепи и коэффициента трансформации. При правильном соотношении витков трансформатора можно добиться практически одинакового сопротивления обоих контуров.

    Согласованные сопротивления имеют важное значение в стерео системах и других электронных систем, потому это позволяет передавать максимальное значение энергии от одного блока схемы другому.

    Как работает трансформатор

    Трансформаторами в электротехнике называют такие электротехнические устройства, в которых электрическая энергия переменного тока от одной неподвижной катушки из проводника передается другой неподвижной же катушке из проводника, не связанной с первой электрически.

    Звеном, передающим энергию от одной катушки другой, является магнитный поток, сцепляющийся с обеими катушками и непрерывно меняющийся по величине и по направлению.

    Принцип действия и устройство однофазного трансформатора

    На рис. 1а изображен простейший трансформатор, состоящий из двух катушек I и II, расположенных коаксиально одна над другой. К катушке I подводится переменный ток от генератора переменного тока Г. Эта катушка называется первичной катушкой или первичной обмоткой. С катушкою II, называемой вторичной катушкой или вторичной обмоткой, соединяется цепь приемниками электрической энергии.

    Принцип действия трансформатора

    Действие трансформатора заключается в следующем. При прохождении тока в первичной катушке ею создается магнитное поле, силовые линии которого пронизывают не только создавшую их катушку, но частично и вторичную катушку. Примерная картина распределения силовых линий, создаваемых первичною катушкою, изображена на рисунке.

    Как видно из рисунка, все силовые линии замыкаются вокруг проводников катушки, но часть их на рис. 1б силовые линии 1, 2, 3, 4 замыкаются также вокруг проводников катушки. Таким образом катушка I является магнитно связанной с катушкою II при посредстве магнитных силовых линий.

    Степень магнитной связи катушек I и II, при коаксиальном расположении их, зависит от расстояния между ними: чем дальше катушки друг от друга, тем меньше магнитная связь между ними, ибо тем меньше силовых линий катушки I сцепляется с катушкою II.

    Так как через катушку I проходит, как мы предполагаем, переменный ток, т. е. ток, меняющийся во времени по какому-то закону, например по закону синуса, то и магнитное поле, им создаваемое, также будет меняться во времени по тому же закону.

    Например, когда ток в катушке I проходит через наибольшее значение, то и магнитный поток, им создаваемый, также проходит через наибольшее значение; когда ток в катушке I проходит через нуль, меняя свое направление, то и магнитный поток проходит через нуль, также меняя свое направление.

    В результате изменения тока в катушке I обе катушки I и II пронизываются магнитным потоком, непрерывно меняющим свою величину и свое направление. Согласно основному закону электромагнитной индукции при всяком изменении пронизывающего катушку магнитного потока в катушке индуктируется переменная электродвижущая сила. В нашем случае в катушке I индуктируется электродвижущая сила самоиндукции, а в катушке II индуктируется электродвижущая сила взаимоиндукции.

    Если концы катушки II соединить с цепью приемников электрической энергии (см. рис. 1а), то в этой цепи появится ток; следовательно приемники получат электрическую энергию. В то же время к катушке I от генератора направится энергия, почти равная энергии, отдаваемой в цепь катушкой II. Таким образом электрическая энергия от одной катушки будет передаваться в цепь второй катушки, совершенно не связанной с первой катушкой гальванически (металлически). Средством передачи энергии в этом случае является только переменный магнитный поток.

    Изображенный на рис. 1а трансформатор весьма несовершенен, ибо между первичной катушкой I и вторичной катушкой II магнитная связь невелика.

    Магнитная связь двух обмоток, вообще говоря, оценивается отношением магнитного потока, сцепляющегося с обеими обмотками, к потоку, создаваемому одной катушкой.

    Из рис. 1б видно, что только часть силовых линий катушки I замыкается вокруг катушки II. Другая часть силовых линий (на рис. 1б — линии 6, 7, 8) замыкается только вокруг катушки I. Эти силовые линии в передаче электрической энергии от первой катушки ко второй совершенно не участвуют, они образуют так называемое поле рассеяния.

    Для того чтобы увеличить магнитную связь между первичной и вторичной обмотками и одновременно уменьшить магнитное сопротивление для прохождения магнитного потока, обмотки технических трансформаторов располагают на совершенно замкнутых железных сердечниках.

    Первым примером выполнения трансформаторов может служить схематически изображенный на рис. 2 однофазный трансформатор так называемого стержневого типа. У него первичные и вторичные катушки c1 и с2 расположены на железных стержнях а — а, соединенных с торцов железными же накладками b — b, называемыми ярмами. Таким образом два стержня а, а и два ярма b, b образуют замкнутое железное кольцо, в котором и проходит магнитный поток, сцепляющийся с первичной и вторичной обмотками. Это железное кольцо называется сердечником трансформатора.

    Вторым примером выполнения трансформаторов может служить схематически изображенный на рис. 3 однофазный трансформатор так называемого броневого типа. У этого трансформатора первичные и вторичные обмотки с, состоящие каждая из ряда плоских катушек, расположены на сердечнике образуемом двумя стержнями двух железных колец а и б. Кольца а и б, окружая обмотки, покрывают их почти целиком как бы бронею, поэтому описываемый трансформатор и называется броневым. Магнитный поток, проходящий внутри обмоток с, разбивается на две равные части, замыкающиеся каждое в своем железном кольце.

    Применением железных замкнутых магнитных цепей у трансформаторов добиваются значительного снижения потока рассеяния. У таких трансформаторов потоки, сцепляющиеся с первичною и вторичною обмотками, почти равны друг другу. Предполагая, что первичная и вторичная обмотки пронизываются одним и тем же магнитным потоком, мы можем на основании общего закола индукции для мгновенных значений электродвижущих сил обмоток написать выражения:

    выражениях w1 и w2 — числа витков первичной и вторичной обмоток, a dФt — величина изменения пронизывающего катушки магнитного потока за элемент времени dt, следовательно есть скорость изменения магнитного потока. Из последних выражений можно получить следующее отношение: e1/e2 = w1/w2

    т. е. индиктируемые в первичной, и вторичной катушках I и II мгновенные электродвижущие силы относятся друг к другу так же, как числа витков катушек. Последнее заключение справедливо не только по отношению к мгновенным значениям электродвижущих сил, но и к их наибольшим и действующим значениям.

    Электродвижущая сила, индуктируемая в первичной, катушке, будучи электродвижущей силой самоиндукции, почти целиком уравновешивает приложенное к той же катушке напряжение. Если через E1 и U1 обозначить действующие значения электродвижущей силы первичной катушки и приложенного к ней напряжения, то можно написать: Е1 = U1

    Электродвижущая сила, индуктируемая во вторичной катушке, равна в рассматриваемом случае напряжению на концах этой катушки.

    Если, аналогично предыдущему, через E2 и U2 обозначить действующие значения электродвижущей силы вторичной катушки и напряжения на ее концах, то можно написать: Е2 = U2

    Следовательно, приложив к одной катушке трансформатора некоторое напряжение, можно на концах другой катушки получить любое напряжение, стоит только взять подходящее отношение между числами витков этих катушек. В этом и заключается основное свойство трансформатора.

    Отношение числа витковпервичной обмотки к числу витков вторичной обмотки называется коэффициентом трансформации трансформатора. Коэффициент трансформации мы будем обозначать kт.

    Следовательно можно написать: Е1/Е2 = U1/U2 = w1/w2 = kт

    Трансформатор, у которого коэффициент трансформации меньше единицы, называется повышающим трансформатором, ибо у него напряжение вторичной обмотки, или так называемое вторичное напряжение, больше напряжения первичной обмотки, или так называемого первичного напряжения. Трансформатор, у которого коэффициент трансформации больше единицы, называется понижающим трансформатором, ибо у него вторичное напряжение меньше первичного.

    Работа однофазного трансформатора под нагрузкою

    При холостой работе трансформатора магнитный поток создается током первичной обмотки или, вернее, магнитодвижущей силой первичной обмотки. Так как магнитная цепь трансформатора выполняется из железа и потому имеет небольшое магнитное сопротивление, а число витков первичной обмотки берется обычно большим, то ток холостой работы трансформатора невелик, он составляет 5—10% нормального.

    Если замкнуть вторичную обмотку на какое-либо сопротивление, то с появлением тока во вторичной обмотке появится и магнитодвижущая сила этой обмотки.

    Согласно закону Ленца магнитодвижущая сила вторичной обмотки действует против магнитодвижущей силы первичной обмотки

    Казалось бы, что магнитный поток в этом случае должен уменьшаться, но если к первичной обмотке подведено постоянное по величине напряжение, то уменьшения магнитного потока почти не произойдет.

    В самом деле, электродвижущая сила, индуктируемая в первичной обмотке, при нагрузке трансформатора почти равна приложенному напряжению. Эта электродвижущая сила пропорциональна магнитному потоку. Следовательно, если первичное напряжение постоянно по величине, то и электродвижущая сила при нагрузке должна остаться почти той же, какой она была при холостой работе трансформатора. Это обстоятельство имеет следствием почти полное постоянство магнитного потока при любой нагрузке.

    Работа однофазного трансформатора под нагрузкоюИтак, при постоянном по величине первичном напряжении магнитный поток трансформатора почти не меняется с изменением нагрузки и может быть принят равным магнитному потоку при холостой работе.

    Магнитный поток трансформатора может сохранить свою величину при нагрузке лишь потому, что с появлением тока во вторичной обмотке увеличивается и ток в первичной обмотке и при том настолько, что разность магнитодвижущих сил или ампервитков первичной и вторичной обмоток остается почти равной магнитодвижущей силе или ампервиткам при холостой работе. Таким образом появление во вторичной обмотке размагничивающей магнитодвижущей силы или ампервитков сопровождается автоматическим увеличением магнитодвижущей силы первичной обмотки.

    Так как для создания магнитного потока трансформатора требуется, как было указано выше, небольшая магнитодвижущая сила, то можно сказать, что увеличение вторичной магнитодвижущей силы сопровождается почти таким же по величине увеличением первичной магнитодвижущей силы.

    Следовательно, можно написать: I2w2 = I1w1

    Из этого равенства получается вторая основная характеристика трансформатора, а именно, отношение: I1/I2 = w2/w1 = 1/kт, где kт — коэффициент трансформации.

    Таким образом, отношение токов первичной и вторичной обмоток трансформатора равно единице, деленной на его коэффициент трансформации.

    Итак, основные характеристики трансформатора заключаются в отношениях Е1/Е2 = w1/w2 = kт и I1/I2 = w2/w1 = 1/kт

    Если перемножить левые части отношений между собой и правые части между собой, то получим I1E1/I2E2 = 1 и I1E1 = I2E2

    Последнее равенство дает третью характеристику трансформатора, которую можно выразить словами так: отдаваемая вторичной обмоткой трансформатора мощность в вольт-амперах, почти равна мощности, подводимой к первичной обмотке также в вольт-амперах.

    Если пренебречь потерями энергии в меди обмоток и в железе сердечника трансформатора, то можно сказать, что вся мощность, подводимая к первичной обмотке трансформатора от источника энергии, передается вторичной обмотке его, причем передатчиком служит магнитный поток.

    Источники: http://onlineelektrik.ru/eoborudovanie/transformatori/chto-takoe-transformator-eto-ustrojstvo-sposobnoe-izmenyat-napryazhenie-peremennogo-toka.html, http://fornk.ru/1877-kak-rabotaet-transformator/, http://howitworks.iknowit.ru/paper1207.html

  • electricremont.ru

    Как устроен трансформатор | Двигатель прогресса

    May 22, 2015

    Трансформатор (от лат. transformare , изменить, преобразовать) представляет собой электромагнитное устройство, которое преобразует электрическую энергию от одной системы к другой при помощи электромагнитной индукции без изменения частоты, является неотъемлемой частью электрических систем. Трансформаторы могут быть самых разных размеров от малого, внутри электронного прибора, до огромных, используемых в электросетях, мощностью до нескольких мегаватт.

    История

    Закон электромагнитной индукции, на котором основана работа трансформатора, был открыт Фарадеем в 1831 году. В том же году Фарадей представил «кольцо индукции», первый прототип трансформатора. Он использовал его для демонстрации принципа электромагнитной индукции и не видел в нем практического применения.

    Первая «индукционная катушка» была изобретена Николаем Иосифом Каллан в Ирландском национальном университете Мейнут в 1836 году. Каллан был одним из первых исследователей, который понял, что увеличение витков вторичной обмотки по отношению к количеству витков в основной обмотке увеличивает напряжение.

    Между 1830 и 1870 годами исследования индукционных катушек, в основном методом проб и ошибок, позволили определить принципы работы трансформатора. В 1848 году французский инженер Г. Румкорф представил индукционную катушку особой конструкции, которая стала прообразом трансформатора. Устройства пригодного для практического применения не появлялось до 1880 года, но в течение следующих десяти лет трансформаторы сыграли важнейшую роль в развитии электричества.

    В 1876 году российский инженер Павел Николаевич Яблочков изобрел систему освещения на основе набора катушек индуктивности. Первичная обмотка катушек подключалась к источнику питания переменного тока, а вторичная к нескольким лампам. Катушки, используемые в системе, работали по принципу трансформатора. В патенте указывалось «источник различных точек света с различной интенсивностью от одного источника питания».

    В 1882 году в Лондоне Люсьен Галард и Джон Гиббс впервые представили «вторичный генератор» – устройство с металлическим сердечником, а затем продали идею американской компании Westinghouse Electric. Подобная система была разработана в Турине, Италия, где она использовалась в системах электрического освещения.

    В 1883 году группа инженеров венгерской компании «Ganz & K» разработала и запустила в производство трансформатор с замкнутым магнитопроводом, который сыграл важную роль в дальнейшем развитии конструкций трансформаторов. Они использовались для производства осветительного оборудования в Австрии и Венгрии.

    В конце 1880-х годов инженеры Westinghouse Electric разработали масляную систему охлаждения трансформатора. Основные элементы трансформатора помещались в емкости с маслом для охлаждения, что позволило существенно повысить эффективность изоляции обмоток. Эта же американская компания начала использовать трансформатор в коммерческих целях, что привело к дополнительному интересу к этому устройству множества ученых. В последующие 40 лет, устройство трансформатора неоднократно усовершенствовалось: изобретение трехфазного трансформатора, добавление кремния в состав используемых материалов и другие.

    Принцип работы и основные элементы

    Трансформатор представляет собой устройство, которое преобразует напряжение переменного тока определенного уровня в напряжение переменного тока другого уровня. Работа трансформатора основана на двух базовых принципах: электромагнетизм и электромагнитная индукция. Трансформатор, как правило, состоит из двух изолированных друг от друга катушек проводящего материала, намотанной на том же ядре. Ядро, как правило но из электротехнической стали – сплава оптимизирующего магнитный поток. На первичную обмотку подаётся напряжение от внешнего источника. Переменный ток в первичной обмотке создает магнитный поток. Этот поток будет вызывать электромагнитную индукцию, появление электродвижущей силы во вторичной обмотке. Напряжение во вторичной обмотке, непосредственно зависит от отношения количества витков к числу витков первичной обмотки.

    Основными компонентами трансформатора являются: магнитопровод, обмотка, каркас обмотки, изоляция, система охлаждения, прочие вспомогательные элементы.

    Магнитная система трансформатора(магнитопровод) изготовлена из кремнийсодержащих ферритных сплавов стали с высокой магнитной проницаемостью. Предназначается для локализации магнитного потока в пределах трансформатора. Конструкция может состоять из набора тонких пластин с изоляционным слоем между каждой, тонкой ленты, нескольких «подков» и др. Магнитная система в сочетании со всеми деталями необходимыми для скрепления всех узлов в единую конструкцию называется остовом трансформатора.

    Обмотка – совокупность электрических проводников обернутых вокруг сердечника (витков) образующих электрическую цепь. Суммарный электрический ток каждого витка определяет суммарную электродвижущую силу трансформатора. Большее число витков вызывает более высокое напряжение. Обмотка трехфазного трансформатора представляет собой совокупность обмоток каждой из трех фаз соединенных между собой. В качестве материала, используемого в обмотке трансформатора с учетом его применения, используется проводящие металлы и сплавы.

    Обычно используется проводящий элемент квадратного сечения (жила). Для более мощных трансформаторов, с целью улучшения функционирования обмотки, сечение жилы может быть разделено на несколько параллельных проводящих элементов. Каждая жила изолируется при помощи тонкой (несколько микрометров) промасленной бумаги или эмали.

    Чтобы избежать избыточного нагрева и потерь в трансформаторе применяется система охлаждения. В низковольтных трансформаторах применяется «сухая» система охлаждения с применением изолирующих синтетических смол. В более высоковольтных трансформаторах для отвода избыточного тепла используется масло, как правило минеральное.

    Основные виды трансформаторов

    Силовой трансформатор используется для преобразования электроэнергии в электрических сетях. Название «силовой» подразумевает возможность работы с напряжением большой мощности. Их применение необходимо для доставки конечному потребителю электроэнергии необходимой мощности. Напряжение в линиях электропередач может достигать 750 кВ, тогда как напряжение требуемое для работы электроприборов в сети конечного потребления колеблется от 220 до 380 В. Для обеспечения работы применяется одна или несколько вторичных обмоток. Часто используется предохранитель предотвращающий возникновению пожара при перегреве трансформатора.

    Автотрансформатор – вариант с последовательным соединением первичной и вторичной обмоток. За счет этого связь между обмотками не только электромагнитная, но и электрическая. Такой трансформатор меньше и дешевле, используется для преобразования напряжения с незначительной разницей между входящим и выходным. Имеет высокий КПД. Недостатком является отсутствие гальванической развязки между обмотками.

    Трансформатор тока используется для снижения первичного тока источника до величины требуемой для защиты, измерения, сигнализации и др. Первичная обмотка подсоединяется в цепь переменного тока который необходимо измерить или защитить, а вторичная к измерительному прибору.

    Трансформатор напряжения, по области применения, схож с трансформатором тока. Применяется для преобразования высокого напряжения в измерительных цепях. Также существуют: импульсные трансформаторы, разделительные, согласующие, пик-трансформатор, трансфлюксор.

    lab-37.com

    Что такое трансформатор | Практическая электроника

    Что такое трансформатор? Как он работает и для чего он вообще нужен? Давайте разберемся… 

    Слово «трансформатор» образуется от английского слова «transform»  — преобразовавывать, изменяться. Надеюсь все помнят фильм «Трансформеры». Там машинки лекго преобразовывались в трансформеров и обратно. Но… трансформатор у нас не преобразовывается по внешнему виду. Он обладает еще более удивительным свойством — преобразовывает переменное напряжение одного значения в переменное напряжение другого значения!  Это свойство трансформатора очень широко используется в радиоэлектронике и электротехнике.

    Трансформаторы бывают однофазные и трехфазные. Что это означает? Да все просто! Есть ток, который течет по четырем проводам  — три фазы и ноль — это и есть трехфазный электрический ток. А есть ток, который течет по двум проводам — фаза и ноль — это однофазный ток. Для того, чтобы из трехфазного сделать однофазный, достаточно взять один провод трехфазного и его другой провод — ноль. Однофазный электрический ток поступает в Ваши дома. В вашей розетке переменный однофазный электрический ток 220 Вольт. Думаю, не будем сильно углубляться в подробности и рассмотрим в нашей статье однофазный трансформатор бытового назначения.

    Рассмотрим вот такую картинку:

    1 — первичная обмотка трансформатора

    2 — магнитопровод

    3 — вторичная обмотка трансформатора

    Ф — направление магнитного потока

    U1 — напряжение на первичной обмотке

    U2  — напряжение на вторичной обмотке

    На картинке показан самый обычный однофазный трансформатор. Давайте разберемся что у нас там накаверкано. 2 — это у нас магнитопровод. Он состоит из пластинок стали, по нему течет магнитный поток Ф  (показано стрелками). Этот магнитный поток создается переменным  напряжением, поданым на провод, намотанный на этот самый магнитопровод Ф. А снимается напряжение с провода, намотанного на другой стороне магнитопровода. Откуда берется напряжение во вторичной обмотке? Оно ведь никак не связано проводами? Все дело в магнитном потоке, который создает первичная обмотка. А вторичная обмотка его ловит и преобразовывает в переменное напряжение с такой же частотой.

    Вот здесь точно такой же трансформатор, но в другом конструктивном виде.

    Такой конструктивный вид обладат такими плюсами, как малые габариты и удобство использования.

    Так от чего же зависит напряжение, которое выдает нам трансформатор на вторичной обмотке? А зависит оно от витков, которые намотаны на первичной и вторичной обмотке ! Вот она, вот она, формула моей мечты! ВОТ ОНА!

    где

    U2  — напряжение на вторичной обмотке

    U1 — напряжение на первичной обмотке

    N1 — количество витков первичной обмотки

    N2 — количество витков  вторичной обмотки

    I1 — сила тока первичной обмотки

    I2 —  сила тока вторичной обмотки

    В трансформаторе соблюдается закон сохранения энергии, то есть  какая мощность в транс заходит, такая и выходит.

    Если подзабыли, что такое мощность, тогда читаем статью работа и мощность постоянного тока. Для переменного тока она определяется также, но только вместо постоянного напряжения берется среднеквадратичное напряжение.

    Итак, у нас в гостях трансформатор от выжигательного прибора по дереву:

    Его первичная обмотка  — это цифры 1,2. Вторичная обмотка — цифры 3,4. N1  — 2650 витков, N2 — 18 витков. Транс построен по упрощенной конструкции:

            

    Его внутренности выглядят вот так:

    Подключаем первичную обмотку транса к 220 Вольтам

    Ставим крутилку на мультике на измерения переменного тока и замеряем напряжение на первичной обмотке (напряжение сети).

    Замеряем напряжение на вторичной обмотке.

    Настало время проверить наши формулы

    1.54/224=0.006875 (коэффициент отношения напряжения)

    18/2650=0.006792 (коэффициент отношения обмоток)

    Сравниваем числа… погрешность вообще копейки! Формула работает, ура! Погрешность связана с потерями на нагрев обмоток транса и магнитопровода, а также погрешность измерения мультика. Насчет силы тока есть одно простое правило для транса: понижая напряжение, повышаем силу тока и наоборот, повышая напряжение трансом, понижаем силу тока.

    Трансформатор, который преобразовывает большее напряжение в меньшее, называется понижающим, а который преобразовывает меньшее напряжение в  большее напряжение, называется повышающим. Также есть трансы, которые выдают такое же напряжение на выходе, как и на входе. Их чаще всего называют разделительными или развязывающими. У понижающего трансформатора вторичная обмотка выполнена из провода больше диаметра, потому что через нее потечет большая сила тока при низкоомной нагрузке. Если провод во вторичной обмотке будет малого диаметра, то согласно закону Джоуля-Ленца у нас он просто напросто нагреется  и спалит весь транс.

    Основные неисправности транса могут заключаться в обрыве или в коротком замыкании обмоток. Хоть  на трансе они прилегают очень пллотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка транса. Если где-то возникло короткое замыкание, то транс будет сильно греться или издавать сильный гул при работе. Все зависит от того, где коротнули обмотки.

    При  обрыве все намного проще. Для этого с помощью мультика мы проверяем целостность первичной и вторичной обмотки. На фото ниже я проверяю целостность первичной обмотки, которая состоит из 2650 витков. Сопротивление есть? Значит все ОК. Обмотка не в обрыве. Если бы была в обрыве, мультик показал бы на дисплее «1».

    Таким же способом проверяем и вторичную обмотку, которая состоит из 18 витков

    В заключении хотелось бы добавить, что некоторые электронщики сами мотают  трансы.  С помощью формулы транса они могут получить напряжение какое захотят. Кто-то с нуля мотает транс, а кто то переделывает под себя, добавляя обмотки или наоборот убирая лишние.

    www.ruselectronic.com

    Как выглядит трансформатор — Генераторы

    Как выглядит трансформатор — Генераторы [an error occurred while processing the directive]

    Инструкция

    Трансформатор представляет собой электрический прибор, предназначенный для преобразования переменного напряжения одной величины в напряжение другой величины (понижение или повышение). Состоит он из металлического сердечника и обмоток из проволоки разного сечения. Поскольку обмотки устройства наматываются на сердечник, выполненный из специальной электротехнической стали, вес устройства, как правило, весьма внушителен по отношению к своим габаритам. Размеры трансформатора могут меняться в зависимости от его мощности.

    Трансформатор может быть однофазным или трехфазным. Разобраться в этом вопросе очень просто. Если ток протекает по четырем проводникам – трем фазам и нулю – ток здесь трехфазный. Если же проводов два – фаза и ноль – это однофазный ток. Для превращения трехфазного трансформатора в однофазный достаточно взять любую из фаз и ноль. Именно такой ток поступает в жилые дома и квартиры. В обычной бытовой розетке с напряжением 220 вольт протекает переменный однофазный электрический ток.

    Однофазный трансформатор имеет несложную конструкцию, основными элементами которой являются:
    1 — первичная обмотка;
    2 – магнитопровод;
    3 — вторичная обмотка;
    Ф – направленность магнитного потока;
    U1 – напряжение в первичной обмотке;
    U2 – напряжение во вторичной обмотке.

    Так как же работает однофазный трансформатор? После подачи напряжения на первичную обмотку в ней образуется магнитный поток, который движется по сердечнику, возбуждая такой же поток на вторичной обмотке и преобразовывая его в напряжение. Величина напряжения зависит от количества витков в обмотке и диаметра провода, из которого она выполнена. Это позволяет проектировать повышающие и понижающие напряжение приборы, без которых передача энергии в любых направлениях просто невозможна. Так, например, для повышения напряжения в сети используются силовые трансформаторы. Это обусловлено характеристиками электрической энергии. Чем выше показатель напряжения, тем меньше его потери в сети и тем легче и проще в исполнении воздушные и кабельные линии. После доставки электроэнергии потребителю ее значение понижают до номинального напряжения электроприборов (печей СВЧ, нагревателей, утюгов и т. д.), для того чтобы потребитель мог ее использовать.

    Трансформаторы могут быть выполнены в следующих модификациях: автомобильные трансформаторы, трансформаторы тока, трансформаторы напряжения, импульсные и разделительные трансформаторы и т. д.



    Source: www.kakprosto.ru

    Почитайте еще:

    Навигация по записям

    generator.uef.ru

    Трансформаторы, виды трансформаторов и их описание

    Электрические трансформаторы, как таковые, разрабатывались, и в большинстве своем применяются, для изменения напряжения в цепях переменного тока. Классический трансформатор состоит из двух обмоток, электрически друг с другом никак не связанных. Обе обмотки должны быть намотаны на один магнитопровод.
    Передача энергии, между обмотками (катушками) происходит при помощи магнитного поля. Согласно закону Ленца для электромагнитной индукции, при пересечении проводника магнитными силовыми линиями, в нем возникает электродвижущая сила заставляющая заряды перемещаться внутри проводника. (Давайте вспомним простой опыт из курса физики, который наглядно  демонстрирует это закон).

    На этом законе основана работа всех трансформаторов. Если через одну из обмоток трансформатора пропустить постоянный ток, то во вторичной обмотке не возникнет электродвижущая сила и, следовательно, ток (не считая момента включения). А все потому, что магнитные силовые линии, вызванные в магнитопроводе  током первичной обмотки, не будут пресекать витки вторичной катушки. Нет пересечения – нет тока. По этой причине постоянный ток не трансформируется. Вообще, слово «трансформатор» очень точно характеризует процессы происходящие внутри этого электроприбора. Первоначально электрический ток трансформируется в магнитное поле, а затем это поле преобразуется (трансформируется) опять в электрический ток. Только ток этот должен быть переменным, то возрастающим, то убывающим, или, на крайний случай, пульсирующим.

    Для предотвращения потерь энергии в силовых трансформаторах используется система охлаждения. На них сверху устанавливается расширительный бачок и заливается масло.

    Бывают трансформаторы, у которых первичная и вторичная обмотки являются, как бы частью одной и той же катушки индуктивности. Такие устройства называются автотрансформаторами.

    Итак, трансформаторы обычно классифицируются по следующим признакам:

    По назначению они бывают:По способу установки:
    –      силовые–      стационарные
    –      измерительные–      переносные
    –      защитные–      наружные
    –      лабораторные–      внутренние
    –      трансформаторы тока–      шинные
    –      трансформаторы напряжения–      опорные.
    –      промежуточные.
    По числу ступеней различают:По используемому напряжению:
    –      одноступенчатые–      высоковольтные
    –      каскадные (многоступенчатые).–      низковольтные.
    По типу изоляции:По количеству фаз
    –      с сухой изоляцией–      однофазные
    –      с бумажно-масляной изоляцией–      трехфазные.
    –      с компаундной изоляцией.

    Для нас, потребителей, наиболее важными из перечисленных, являются силовые высоковольтные стационарные трехфазные трансформаторы, с компаундной изоляцией. Они устанавливаются внутри тяговых подстанций. Именно от их работы зависит, будет ли в нашем доме электричество или нет. Подходящее к тяговой подстанции напряжение, обычно в 10000 вольт, преобразуется в 220 и подается потребителям, то есть нам с вами.

    Знать какие бывают трансформаторы и зачем они нужны жизненно необходимо не только электрикам, но и простым гражданам, хотя бы для того, что бы предотвратить техногенные катастрофы. Так, в случае возникновения дыма из высоковольтного трансформатора, или просто громкой его работы (при обычной работе ни не гудят), необходимо срочно позвонить в службу энергосбыта, это, возможно, предотвратит аварию и отключения большого количества потребителей от электроснабжения. Недаром говорили древние: «Знающий человек предупрежден, а предупрежден, значит вооружен».


     

    volt-index.ru

    Как прозвонить трансформатор или как определить обмотки трансформатора

    Здравствуйте, уважаемые читатели сайта sesaga.ru. На первых порах занятий радиоэлектроникой у начинающих радиолюбителей, да и не только у радиолюбителей, возникает очень много вопросов, связанных с прозвонкой или определением обмоток трансформатора. Это хорошо, если у трансформатора всего две обмотки. А если их несколько, да и еще у каждой обмотки несколько выводов. Тут просто караул кричи. В этой статье я расскажу Вам, как можно определить обмотки трансформатора визуальным осмотром и с помощью мультиметра.

    Как Вы знаете, трансформаторы предназначены для преобразования переменного напряжения одной величины в переменное напряжение другой величины. Самый обычный трансформатор имеет одну первичную и одну вторичную обмотки. Питающее напряжение подается на первичную обмотку, а ко вторичной обмотке подключается нагрузка. На практике же большинство трансформаторов может иметь несколько обмоток, что и вызывает затруднение в их определении.

    1. Определение обмоток визуальным осмотром.

    При визуальном осмотре трансформатора обращают внимание на его внешний защитный слой изоляции, потому как у некоторых моделей на внешнем слое изображают электрическую схему с обозначением всех обмоток и выводов; у некоторых моделей выводы обмоток только маркируют цифрами. Также можно встретить старые отечественные трансформаторы, на внешнем слое которых указывают маркировку в виде цифрового кода, по которому в справочниках для радиолюбителей есть вся информация о конкретном трансформаторе.

    Если трансформатор попался без опознавательных знаков, то обращают внимание на диаметр обмоточного провода, которым намотаны обмотки. Диаметр провода можно определить по выступающим выводам концов обмоток, выпущенных для закрепления на контактных лепестках, расположенных на элементах каркаса трансформатора. Как правило, первичную обмотку мотают проводом меньшего сечения, по отношению к вторичной. Диаметр провода вторичной обмотки всегда больше.

    Исключением могут быть повышающие трансформаторы, работающие в схемах преобразователей напряжения и тока. Их первичная обмотка выполнена толстым проводом, так как генерирует высокое напряжение во вторичной обмотке. Но такие трансформаторы встречаются очень редко.

    При изготовлении трансформаторов первичную обмотку, как правило, мотают первой. Ее легко определить по выступающим концам выводов обмотки, расположенных ближе к магнитопроводу. Вторичную обмотку наматывают поверх первичной, и поэтому концы ее выводов расположены ближе к внешнему слою изоляции.

    В некоторых моделях сетевых трансформаторов, используемых в блоках питания бытовой радиоаппаратуры, обмотки располагают на пластмассовом каркасе, разделенном на две части: в одной части находится первичная обмотка, а в другой вторичная. К выводам первичной обмотки припаивают гибкий монтажный провод, а выводы вторичной обмотки оставляют в виде обмоточного провода.

    2. Определение обмоток по сопротивлению.

    Когда предварительный анализ обмоток произведен, необходимо убедиться в правильности сделанных выводов, а заодно прозвонить обмотки на отсутствие обрыва. Для этого воспользуемся мультиметром. Если Вы не знаете как измерить сопротивление мультиметром, то прочитайте эту статью.

    Вначале прозвоним обычный сетевой трансформатор, у которого всего две обмотки.
    Мультиметр переводим в режим «Прозвонка» и производим измерение сопротивления предполагаемых первичной и вторичной обмоток. Здесь все просто: у какой из обмоток величина сопротивления больше, та обмотка и является первичной.

    Это объясняется тем, что в маломощных трансформаторах и трансформаторах средней мощности первичная обмотка может содержать 1000…5000 витков, намотанных тонким медным проводом, и при этом может достичь сопротивления до 1,5 кОм. Тогда как вторичная обмотка содержит небольшое количество витков, намотанных толстым проводом, и ее сопротивление может составлять всего несколько десятков ом.

    Теперь прозвоним трансформатор, у которого несколько обмоток. Для этого воспользуемся листком бумаги, ручкой и мультиметром. На бумаге будем зарисовывать и записывать величины сопротивлений обмоток.

    Делается это так: одним щупом мультиметра садимся на любой крайний вывод, а вторым щупом по очереди касаемся остальных выводов трансформатора и записываем полученное значение сопротивлений. Выводы, между которыми мультиметр покажет сопротивление, и будут являться выводами одной обмотки. Если обмотка без средних отводов, то сопротивление будет только между двумя выводами. Если же обмотка имеет один или несколько отводов, то мультиметр покажет сопротивление между всеми этими отводами.

    Например. Первичная обмотка может иметь несколько отводов, когда трансформатор рассчитан на работу в сети с напряжениями 110В, 127В и 220В. Вторичная обмотка также может иметь один или несколько отводов, когда хотят от одного трансформатора получить несколько напряжений.

    Идем дальше. Когда первая обмотка и ее выводы будут найдены, то переходим к поиску следующей обмотки. Щупом опять садимся на следующий свободный вывод, а другим поочередно касаемся оставшихся выводов и записываем результат. И таким образом производим измерение, пока не будут найдены все обмотки.

    Например. Между выводами с номерами 1 и 2 величина сопротивления составила 21 Ом, тогда как между остальными выводами мультиметр показал бесконечность. Из этого следует, что мы нашли обмотку, у которой выводы обозначены номерами 1 и 2. Нарисуем ее так:

    Теперь щупом садимся на вывод 3, а другим щупом поочередно касаемся выводов с номерами от 4 до 10. Мультиметр показал сопротивление только между выводами 3, 4 и 5. Причем между выводами 3 и 4 величина сопротивления составила 6 Ом, а между парой выводов 3, 5 и 4, 5 получилось по 3 Ома. Отсюда делаем вывод, что эта обмотка с отводом посередине, т.е. пары 3, 5 и 4, 5 намотаны равным количеством витков, и что с этой обмотки снимается два одинаковых напряжения относительно общего вывода 5. Рисуем так:

    Производим измерение далее.
    Между выводами 6 и 7 величина сопротивления составила 16 Ом. Рисуем так:

    Ну и между выводами 9 и 10 сопротивление составило 270 Ом.
    А так как среди всех обмоток эта оказалась с самой большой величиной сопротивления, то она и является первичной. Рисуем так:

    Вывод 8, к которому припаяна желто-зеленая жилка, ни как не звонился, поэтому смело утверждаем, что это экранирующая обмотка (экран), которую наматывают поверх первичной, чтобы устранить влияние ее магнитного поля на другие обмотки. Как правило, экранирующую обмотку соединяют с корпусом радиоаппаратуры.

    В итоге у нас получилось четыре обмотки, из которых одна сетевая и три понижающих. Экранирующая обмотка обозначается пунктирной линией и располагается параллельно с сердечником. И вот на основе полученных результатов нарисуем электрическую схему трансформатора.

    Теперь остается подать напряжение на первичную обмотку и измерить выходящие напряжения. Однако тут есть один момент, который необходимо знать, если Вы сомневаетесь в правильности определения первичной (сетевой) обмотки.

    Здесь все просто: чтобы не сжечь обмотку трансформатора и ограничить через нее нежелательный ток нужно последовательно с этой обмоткой включить лампу накаливания на напряжение 220В и мощностью 40 – 100 Вт. Если обмотка определена правильно, то нить накала лампы должна не гореть или еле тлеть. Если же лампа будет гореть достаточно ярко, то есть вероятность того, что сетевая обмотка трансформатора рассчитана на питающее напряжение 110 — 127В или Вы ее прозвонили неправильно.

    Второй момент, по которому можно судить о правильности подключения трансформатора к сети — это сама работа трансформатора. При правильном включении работа трансформатора практически беззвучна и сопровождается слегка ощутимой вибрацией. Если же он будет громко гудеть и сильно вибрировать, и при этом будет нагреваться обмотка и из нее может пойти дым, то трансформатор однозначно включен неправильно. В этом случае тут же отключайте трансформатор от сети, чтобы не повредить обмотку.

    Однако и тут есть пару нюансов, которые необходимо учитывать, потому как у некоторых трансформаторов каркас с обмотками может неплотно прилегать к сердечнику и от этого работа трансформатора может сопровождаться некоторым гудением и вибрацией, но при этом обмотка греться не будет. В этом случае в зазор между сердечником и каркасом можно вставить кусочек дерева, пластмассы или кусок провода в изоляции и, тем самым, плотно зафиксировать каркас.

    Также характерный гул и вибрацию может вызвать плохая стяжка пластин, из которых собран сердечник магнитопровода. Как правило, стягивание сердечника производится металлической скобой, специальными планками, болтами или стяжками, которые обеспечивают необходимую механическую прочность и жесткое соединение деталей сердечника.

    Ну вот в принципе и все, что хотел сказать о прозвонке и определению обмоток трансформатора. Если у Вас возникли вопросы по этой теме, то задавайте их в комментариях к статье. Также, в дополнение к статье, можете посмотреть видеоролик.

    Удачи!

    sesaga.ru

    Оставить комментарий