Какие существуют силы в физике – Как выучить и знать все силы в физике? Список физических сил для запоминания

Содержание

Сила и понятия связанные с ней

Статистика

Онлайн всего: 1

Гостей: 1

Пользователей: 0

1.Си́ла — векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивному телу сила является причиной изменения егоскорости или возникновения в нём деформаций и напряжений.

Сила как векторная величина характеризуется модулемнаправлением и «точкой» приложения силы. Последним параметром понятие о силе, как векторе в физике, отличается от понятия о векторе ввекторной алгебре, где равные по модулю и направлению векторы, независимо от точки их приложения, считаются одним и тем же вектором . В физике эти векторы называются свободными векторами. В механике чрезвычайно распространено представление о связанных векторах, начало которых закреплено в определённой точке пространства или же может находиться на линии, продолжающей направление вектора (скользящие векторы).

Также используется понятие линия действия силы, обозначающее проходящую через точку приложения силы прямую, по которой направлена сила.

Второй закон Ньютона гласит, что в инерциальных системах отсчета ускорение материальной точки по направлению совпадает с равнодействующей всех сил, приложенных к телу, а по модулю прямо пропорционально модулю силы и обратно пропорционально массе материальной точки. Или, что эквивалентно, скорость изменения импульса материальной точки равна приложенной силе.

При приложении силы к телу конечных размеров в нём возникают механические напряжения, сопровождающиеся деформациями.

С точки зрения Стандартной модели физики элементарных частиц фундаментальные взаимодействия (гравитационное, слабое, электромагнитное, сильное) осуществляются посредством обмена так называемыми калибровочными бозонами. Эксперименты по физике высоких энергий, проведённые в 70−80-х гг. XX в. подтвердили предположение о том, что слабое и электромагнитное взаимодействия являются проявлениями более фундаментального электрослабого взаимодействия[8].

Размерность силы — LMT−2, единицей измерения в Международной системе единиц (СИ) является ньютон (N, Н), в системе СГС — дина.

2.Первый закон Ньютона.

Первый закон Ньютона утверждает, что существуют системы отсчета, в которых тела сохраняют состояние покоя или равномерного прямолинейного движения при отсутствии действий на них со стороны других тел или при взаимной компенсации этих воздействий. Такие системы отсчета называются инерциальными. Ньютон предположил, что каждый массивный объект имеет определенный запас инерции, который характеризует «естественное состояние» движения этого объекта. Эта идея отрицает взгляд Аристотеля, который рассматривал покой «естественным состоянием» объекта. Первый закон Ньютона противоречит аристотелевской физике, одним из положений которой является утверждение о том, что тело может двигаться с постоянной скоростью лишь под действием силы. Тот факт, что в механике Ньютона в инерциальных системах отсчёта покой физически неотличим от равномерного прямолинейного движения, является обоснованием принципа относительности Галилея. Среди совокупности тел принципиально невозможно определить какие из них находится «в движении», а какие «покоятся». Говорить о движении можно лишь относительно какой-либо системы отсчета. Законы механики выполняются одинаково во всех инерциальных системах отсчета, другими словами все они механически эквивалентны. Последнее следует из так называемых преобразований Галилея.

3.Второй закон Ньютона.

Второй закон Ньютона в современной формулировке звучит так: в инерциальной системе отсчета скорость изменения импульса материальной точки равна векторной сумме всех сил, действующих на эту точку.

где  − импульс материальной точки,  − суммарная сила, действующая на материальную точку. Второй закон Ньютона гласит, что действие несбалансированных сил приводит к изменению импульса материальной точки.

По определению импульса:

где  − масса,  − скорость.

В классической механике при скоростях движения много меньше скорости света масса материальной точки считается неизменной, что позволяет выносить её при этих условиях за знак дифференциала :

Учитывая определение ускорения точки, второй закон Ньютона принимает вид:

Считается, что это «вторая самая известная формула в физике», хотя сам Ньютон никогда явным образом не записывал свой второй закон в этом виде. Впервые данную форму закона можно встретить в трудах К.Маклорена иЛ.Эйлера.

Поскольку в любой инерциальной системе отсчёта ускорение тела одинаково и не меняется при переходе от одной системы к другой, то и сила инвариантна по отношению к такому переходу.

Во всех явлениях природы сила, независимо от своего происхождения, проявляется только в механическом смысле, то есть как причина нарушения равномерного и прямолинейного движения тела в инерциальной системе координат. Обратное утверждение, т.е установление факта такого движения, не свидетельствует об отсутствии действующих на тело сил, а лишь о том, что действия этих сил взаимно уравновешиваются. Иначе: их векторная сумма есть вектор с модулем, равным нулю. На этом основано измерение величины силы, когда она компенсируется силой, величина которой известна .

Второй закон Ньютона позволяет измерять величину силы. Например, знание массы планеты и ее центростремительного ускорения при движении по орбите позволяет вычислить величину силы гравитационного притяжения, действующую на эту планету со стороны Солнца.

4.Третий закон Ньютона.

Для любых двух тел (назовем их тело 1 и тело 2) третий закон Ньютона утверждает, что сила действия тела 1 на тело 2 сопровождается появлением равной по модулю, но противоположной по направлению силы, действующей на тело 1 со стороны тела 2. Математически закон записывается так:

Этот закон означает, что силы всегда возникают парами «действие-противодействие». Если тело 1 и тело 2 находятся в одной системе, то суммарная сила в системе, обусловленная взаимодействием этих тел равна нулю:

Это означает, что в замкнутой системе не существует несбалансированных внутренних сил. Это приводит к тому, что центр масс замкнутой системы (то есть той, на которую не действуют внешние силы) не может двигаться с ускорением. Отдельные части системы могут ускоряться, но лишь таким образом, что система в целом остается в состоянии покоя или равномерного прямолинейного движения. Однако в том случае, если внешние силы подействуют на систему, то ее центр масс начнет двигаться с ускорением, пропорциональным внешней результирующей силе и обратно пропорциональным массе системы.

5.Гравитация.

Гравитация (сила тяготения) — универсальное взаимодействие между любыми видами материи. В рамках классической механики описывается законом всемирного тяготения, сформулированным Исааком Ньютоном в его труде «Математические начала натуральной философии». Ньютон получил величину ускорения, с которым Луна движется вокруг Земли, положив при расчете, что сила тяготения убывает обратно пропорционально квадрату расстояния от тяготеющего тела. Кроме этого, им же было установлено, что ускорение, обусловленное притяжением одного тела другим, пропорционально произведению масс этих тел. На основании этих двух выводов был сформулирован закон тяготения: любые материальные частицы притягиваются по направлению друг к другу с силой , прямо пропорциональной произведению масс ( и ) и обратно пропорциональной квадрату расстояния  между ними:

Здесь  − гравитационная постоянная, значение которой впервые получил в своих опытах Генри Кавендиш. Используя данный закон, можно получить формулы для расчета силы тяготения тел произвольной формы. Теория тяготения Ньютона хорошо описывает движение планет Солнечной системы и многих других небесных тел. Однако, в ее основе лежит концепция дальнодействия, противоречащая теории относительности. Поэтому классическая теория тяготения неприменима для описания движения тел, перемещающихся со скоростью, близкой к скорости света, гравитационных полей чрезвычайно массивных объектов (например, черных дыр), а также переменных полей тяготения, создаваемых движущимися телами, на больших расстояниях от них.

Более общей теорией гравитации является общая теория относительности Альберта Эйнштейна. В ней гравитация не характеризуется инвариантной силой, не зависящей от системы отсчёта. Вместо этого свободное движение тел в гравитационном поле, воспринимаемое наблюдателем как движение по искривленным траекториям в трехмерном пространстве-времени с переменной скоростью, рассматривается как движение по инерции по геодезической линии в искривлённом четырехмерном пространстве-времени, в котором время в разных точках течет по-разному. Причем эта линия в некотором смысле «наиболее прямая» — она такова, что пространственно-временной промежуток (собственное время) между двумя пространственно-временными положениями данного тела максимален. Искривление пространства зависит от массы тел, а также от всех видов энергии, присутствующих в системе.

6.Электростатическое поле (поле неподвижных зарядов).

Развитие физики после Ньютона добавило к трём основным (длина, масса, время) величинам электрический заряд с размерностью C. Однако, исходя из требований практики, в качестве основной единицы измерения стали использовать не единицу заряда, а единицу силы электрического тока. Так, в системе СИ основной единицей является ампер, а единица заряда — кулон — производная от него.

Поскольку заряд, как таковой, не существует независимо от несущего его тела, то электрическое взаимодействие тел проявляется в виде той же рассматриваемой в механике силы, служащей причиной ускорения. Применительно к электростатическому взаимодействию двух точечных зарядов величинами  и , располагающихся в вакууме, используется закон Кулона. В форме, соответствующей системе СИ, он имеет вид:

где  — сила, с которой заряд 1 действует на заряд 2,  — вектор, направленный от заряда 1 к заряду 2 и по модулю равный расстоянию между зарядами, а  — электрическая постоянная, равная ≈ 8,854187817•10−12 Ф/м. При помещении зарядов в однородную и изотропную среду сила взаимодействия уменьшается в ε раз, где ε — диэлектрическая проницаемость среды.

Сила направлена вдоль линии, соединяющей точечные заряды. Графически электростатическое поле принято изображать в виде картины силовых линий, представляющих собой воображаемые траектории, по которым бы перемещалась лишённая массы заряженная частица. Эти линии начинаются на одном и заканчиваются на другом заряде.

7.Электромагнитное поле (поле постоянных токов).

Существование магнитного поля признавалось ещё в средние века китайцами, использовавшим «любящий камень» — магнит, в качестве прообраза магнитного компаса. Графически магнитное поле принято изображать в виде замкнутых силовых линий, густота которых (так же, как и в случае электростатического поля) определяет его интенсивность. Исторически наглядным способом визуализации магнитного поля были железные опилки, насыпаемые, например, на лист бумаги, положенный на магнит.

Эрстед установил, что текущий по проводнику ток вызывает отклонение магнитной стрелки.

Фарадей пришёл к выводу, что вокруг проводника с током создаётся магнитное поле.

Ампер высказал гипотезу, признаваемую в физике, как модель процесса возникновения магнитного поля, заключающуюся в существовании в материалах микроскопических замкнутых токов, обеспечивающих совместно эффект естественного или наведённого магнетизма.

Ампером было установлено, что в находящейся в вакууме системе отсчёта, по отношению к которой заряд находится в движении, то есть ведёт себя как электрический ток, возникает магнитное поле, интенсивность которого определяется вектором магнитной индукции, лежащим в плоскости, расположенной перпендикулярно по отношению к направлению движения заряда.

Единицей измерения магнитной индукции является тесла: 1 Тл = 1 Т кг с−2 А−2
Количественно задача была решена Ампером, измерявшим силу взаимодействия двух параллельных проводников с текущими по ним токами. Один из проводников создавал вокруг себя магнитное поле, второй реагировал на это поле сближением или удалением с поддающейся измерению силой, зная которую и величину силы тока можно было определить модуль вектора магнитной индукции.

Силовое взаимодействие между электрическими зарядами, не находящимися в движении относительно друг друга описывается законом Кулона. Однако заряды, находящиеся в движении относительно друг друга создают магнитные поля, посредством которых созданные движением зарядов токов в общем случае приходят в состояние силового взаимодействия.

Принципиальным отличием силы, возникающей при относительном движении зарядов от случая их стационарного размещения, является различие в геометрии этих сил. Для случая электростатики сил взаимодействия двух зарядов направлена по линии, их соединяющей. Поэтому геометрия задачи двумерна и рассмотрение ведётся в плоскости, проходящей через эту линию.

В случае токов сила, характеризующая магнитное поле, создаваемое током, расположена в плоскости, перпендикулярной току. Поэтому картина явления становится трёхмерной. Магнитное поле, создаваемое бесконечно малым по длине элементом первого тока, взаимодействуя с таким же элементом второго тока, в общем случае создаёт силу, действующую на него. При этом для обоих токов эта картина полностью симметрична в том смысле, что нумерация токов произвольна.

Закон взаимодействия токов используется для эталонирования постоянного электрического тока.

8.Сильное взаимодействие.

Сильное взаимодействие — фундаментальное короткодействующее взаимодействие между адронами и кварками. В атомном ядре сильное взаимодействие удерживает вместе положительно заряженные (испытывающие электростатическое отталкивание) протоны, происходит это посредством обмена пи-мезонами между нуклонами (протонами и нейтронами). Пи-мезоны живут очень мало, времени жизни им хватает лишь на то, чтобы обеспечить ядерные силы в радиусе ядра, потому ядерные силы называют короткодействующими. Увеличение количества нейтронов «разбавляет» ядро, уменьшая электростатические силы и увеличивая ядерные, но при большом количестве нейтронов они сами, будучи фермионами, начинают испытывать отталкивание вследствие принципа Паули. Также при слишком сильном сближении нуклонов начинается обмен W-бозонами, вызывающее отталкивание, благодаря этому атомные ядра не «схлопываютс­я­».

Внутри самих адронов сильное взаимодействие удерживает вместе кварки — составные части адронов. Квантами сильного поля являются глюоны. Каждый кварк имеет один из трёх «цветовых» зарядов, каждый глюон состоит из пары «цвет»-«антицвет». Глюоны связывают кварки в т. н. «конфайнмент», из-за которого на данный момент свободные кварки в эксперименте не наблюдались. При отдалении кварков друг от друга энергия глюонных связей возрастает, а не уменьшается как при ядерном взаимодействии. Затратив много энергии (столкнув адроны в ускорителе) можно разорвать кварк-глюонную связь, но при этом происходит выброс струи новых адронов. Впрочем, свободные кварки могут существовать в космосе: если какому-то кварку удалось избежать конфайнмента во время Большого взрыва, то вероятность аннигилировать с соответствующим антикварком или превратиться в бесцветный адрон для такого кварка исчезающе мала.

9.Слабое взаимодействие.

Слабое взаимодействие — фундаментальное короткодействующее взаимодействие. Радиус действия 10−18 м. Симметрично относительно комбинации пространственной инверсии и зарядового сопряжения. В слабом взаимодействии участвуют все фундаментальные фермионы (лептоны и кварки). Это единственное взаимодействие, в котором участвуют нейтрино (не считая гравитации, пренебрежимо малой в лабораторных условиях), чем объясняется колоссальная проникающая способность этих частиц. Слабое взаимодействие позволяет лептонам, кваркам и их античастицам обмениваться энергией, массой, электрическим зарядом и квантовыми числами — то есть превращаться друг в друга. Одно из проявлений — бета-распад.

Информация взята с сайта ru.wikipedia.org

ppns.ucoz.ru

Силы в природе — Класс!ная физика

Силы в природе

«Физика — 10 класс»

В главе 2 мы ввели понятие силы как количественной меры действия одного тела на другое.

В этой главе мы рассмотрим, какие силы рассматриваются в механике, чем определяются их значения.

Много ли видов сил существует в природе?

Перечислите известные вам силы.

Какую природу они имеют — гравитационную или электромагнитную?

На первый взгляд кажется, что мы взялись за непосильную и неразрешимую задачу: тел на Земле и вне её бесконечное множество.

Они взаимодействуют по-разному.

Так, например, камень падает на Землю; электровоз тянет поезд; нога футболиста ударяет по мячу; потёртая о мех эбонитовая палочка притягивает лёгкие бумажки, магнит притягивает железные опилки; проводник с током поворачивает стрелку компаса; взаимодействуют Луна и Земля, а вместе они взаимодействуют с Солнцем; взаимодействуют звёзды и звёздные системы, луч света отражается от зеркала и т. д.

Подобным примерам нет конца.

Похоже, что в природе существует бесконечное множество взаимодействий (сил)?

Оказывается, нет!

Четыре типа сил.

В безграничных просторах Вселенной, на нашей планете, в любом веществе, в живых организмах, в атомах, в атомных ядрах и в мире элементарных частиц мы встречаемся с проявлением всего лишь четырёх типов сил: гравитационных, электромагнитных, сильных (ядерных) и слабых.

Гравитационные силы, или силы всемирного тяготения, действуют между всеми телами, имеющими массу, — все тела притягиваются друг к другу.

Но это притяжение существенно обычно лишь тогда, когда хотя бы одно из взаимодействующих тел так же велико, как Земля или Луна.

Иначе эти силы столь малы, что ими можно пренебречь.

Электромагнитные силы действуют между частицами, имеющими электрические заряды.

Сфера их действия особенно обширна и разнообразна.

В атомах, молекулах, твёрдых, жидких и газообразных телах, живых организмах именно электромагнитные силы являются главными.

Такие, казалось бы, чисто механические силы, как силы трения и упругости, имеют электромагнитную природу.

Велика их роль в атомах.

Ядерные силы действуют между частицами в атомных ядрах и определяют свойства ядер.

Область действия ядерных сил очень ограничена.

Они заметны только внутри атомных ядер (т. е. на расстояниях порядка 10-15 м).

Уже на расстояниях между частицами порядка 10-13 м (в тысячу раз меньших размеров атома — 10-10 м) они не проявляются совсем.

Слабые взаимодействия вызывают взаимные превращения элементарных частиц, определяют радиоактивный распад ядер, реакции термоядерного синтеза.

Они проявляются на ещё меньших расстояниях, порядка 10-17 м.

Ядерные силы — самые мощные в природе.

Если интенсивность ядерных сил принять за единицу, то интенсивность электромагнитных сил составит 10-2, гравитационных — 10-40, слабых взаимодействий — 10-16.

Сильные (ядерные) и слабые взаимодействия проявляются на таких малых расстояниях, когда законы механики Ньютона, а с ними вместе и понятие механической силы теряют смысл.

Интенсивность сильного и слабого взаимодействий измеряется в единицах энергии (в электрон-вольтах), а не единицах силы, и потому применение к ним термина «сила» объясняется многовековой традицией все явления в окружающем мире объяснять действием характерных для каждого явления «сил».

В механике мы будем рассматривать только гравитационные и электромагнитные взаимодействия.

Силы в механике.

В механике обычно имеют дело с тремя видами сил — силами тяготения, силами упругости и силами трения.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Динамика — Физика, учебник для 10 класса — Класс!ная физика


Основное утверждение механики —
Сила —
Инертность тела. Масса. Единица массы —
Первый закон Ньютона —
Второй закон Ньютона —
Принцип суперпозиции сил —
Примеры решения задач по теме «Второй закон Ньютона» —
Третий закон Ньютона —
Геоцентрическая система отсчёта —
Принцип относительности Галилея. Инвариантные и относительные величины —
Силы в природе —
Сила тяжести и сила всемирного тяготения —
Сила тяжести на других планетах —
Примеры решения задач по теме «Закон всемирного тяготения» —
Первая космическая скорость —
Примеры решения задач по теме «Первая космическая скорость» —
Вес. Невесомость —
Деформация и силы упругости. Закон Гука —
Примеры решения задач по теме «Силы упругости. Закон Гука» —
Силы трения —
Примеры решения задач по теме «Силы трения» —
Примеры решения задач по теме «Силы трения» (продолжение) —

class-fizika.ru

§ 2.2. Виды сил.

Физика насчитывает четыре вида
фундаментальных взаимодействий. Два
из них – гравитационное и электромагнитное
имеют бесконечный радиус действия и
проявляют себя как в макро-, так и в
микромире. Еще два – сильное (ядерное)
и слабое (отвечает за радиоактивный
распад) вследствие малости радиуса
действия проявляют себя только в
микромире, «спрятавшись» внутри ядра
атома, и никак себя не проявляет в
макромире. Все механические взаимодействия
сводятся к трем видам: силе гравитационной
(тяжести), силе упругой и силе трения.
Силы упругая и трения имеют электромагнитную
природу: все тела состоят из атомов, в
состав которых входят электрически
заряженные частицы.

Гравитационное взаимодействие выражает
закон всемирного тяготения:

(2.3.1)

G – гравитационная
постоянная, она введена для согласования
единиц измерения величин в обеих частях
формулы, в СИ G
= 6,67.10-11 Н.м2/кг2
= 6,67.10-11 м3/(кг.с2),т1 ит2
массы материальных точек,r– расстояние между ними. Закон в форме
(2.3.1) применим также для вычисления сил
тяготения между материальной точкой
и телом шарообразной формы, или двух
тел шарообразной формы. В этом случаеr – расстояние от
м.т. до центра шара, соответственно,
между центрами шаров. Сила тяготения
направлена вдольr.
Масса, фигурирующая в законе всемирного
тяготения, называется массой гравитационной
или тяготеющей в отличие от массы
инертной, измеряющей способность тела
сопротивляться изменению состояния
под воздействием другого тела.
Экспериментально установлено, что эти
массы равны друг другу (Р. Этвеш, 1894 г.).
Этот опытный факт получил название
принципа эквивалентности и лежит в
основе общей теории относительности
Эйнштейна (теории тяготения). Из принципа
эквивалентности, в частности, следует,
что сила тяготения со стороны одного
тела сообщает всем другим телам одинаковое
ускорение независимо от их масс.
Например, все тела притягиваются к
земле, действующая на них сила тяготения
называетсясилой тяжести, определим
ее, используя формулу (2.3.1):.
Здесь
ускорение свободного падения,M3
иR3 соответственно
масса земли и ее радиус. Форма Земли
отличается от шара, к тому же плотность
вещества неодинакова в разных местах
ее объема, но влияние этих параметров
столь незначительно, что им можно
пренебречь, так что во всех точках
поверхности Землиg9,8 м/с2.Сила тяжестина поверхности
земли выражается формулой:

(2.3.2)

Из рассмотренного понятно, что на разных
планетах сила тяжести и сообщаемое ей
ускорение свободного падения различны.
Например, сила тяжести на Луне почти в
6 раз меньше, чем на Земле, а по мере
удаления космического путешественника
от поверхности Земли действующая на
него сила тяжести уменьшается.

Сила тяжести является причиной того,
что отсутствие опоры (подвеса) вызывает
падение тела. Сила, действующая со
стороны опоры (подвеса), называется
реакцией опоры и направлена всегда
перпендикулярно поверхности опоры к
телу, т.е. от опоры. Понятно, почему
вертикальная поверхность не может
служить опорой. Весом теланазывается
сила, с которой тело давит на опору или
тянет подвес, удерживающий его от падения
на землю. В соответствии с третьим
законом Ньютона вес и реакция опоры
(сила действия и сила противодействия)
равны друг другу. Понятие невесомости
означает отсутствие этих сил, в частности,
стоит нам подпрыгнуть, чтобы оторваться
от опоры, как мы попадаем в состояние
невесомости. В течение всего времени
движения, пока мы вновь не приземлимся
на опору, сила тяжести не перестает
действовать, замедляя движение вверх
и ускоряя движение вниз, а вот вес
отсутствует. Космонавты в космическом
корабле, движущемся с выключенными
двигателями, также находятся в состоянии
невесомости. Зато при разгоне корабля
они испытывают перегрузки, когда вес
значительно превышает силу тяжести:
реакция опоры должна не только
компенсировать силу тяжести, прижимающую
космонавта к сиденью, но и сообщить
ускорение, направленное от земли.
Впрочем, с подобными перегрузками
встречаются не только космонавты.

Сила упругости возникает в упруго
деформированном теле и противодействует
внешней деформирующей
силе. Деформации, т.е. изменение расстояний
между точками тела в результате внешнего
воздействия, называются упругими, если
они исчезают после снятия воздействия.
Упругими, как правило, бывают только
малые деформации. Примером служит
упругая деформация сжатой или растянутой
пружины. На рис.7 а) показана недеформированная
пружина, на рис.7 б) эта же пружина
растянута внешней силойна величинуx, в
результате в пружине возникает.Величину упругой силы выражает закон
Гука:

F=
kx
(2.3.3)

kкоэффициент
упругости (жесткость), постоянная для
данного тела величина, в СИ измеряется
в ньютонах на метр (Н/м). Знак минус
указывает на противоположность
направлений упругой силы и деформации.

Сила трения препятствует движению тела.
Различают трение сухое и трение жидкое.

Сила
сухого трения возникает между твердыми
телами, контактирующими друг с другом
вдоль некоторой поверхности, и вызвана
тем, что шероховатости поверхности
одного тела, цепляясь за шероховатости
поверхностидругого тела,
препятствуют их скольжению друг
относительно друга. Рис. 8 иллюстрирует
рассматриваемую ситуацию: тело 1 движется
со скоростьюпо
поверхности тела 2. Опыт показывает, что
сила трения скольженияFтрпропорциональна реакции опорыNи направлена в сторону, противоположную
скорости:

Fтр = N
(2.3.4)

коэффициент трения, безразмерная
величина. Его значение зависит от
материалов
трущихся поверхностей, качества их
обработки, загрязненности и обычно
считается приблизительно постоянным
для двух конкретных тел. В действительности,
при стремлении скорости к нулю, отмечается
некоторое возрастание силы трения до
значенияF0.
На рис. 9 приведен график модуля силы
трения скольжения от величины скорости
для движения, изображенного на рис.8.

Чтобы покоящееся тело 1 пришло в
движение, к нему надо приложить силу,
чуть превышающую F0.
Если внешняя сдвигающая силаF<F0 , то тело
1 останется неподвижным. Это значит, что
внешняя сила не в состоянии преодолеть
трение, и она уравновешивается силой
трения покояFпок.
Из законов Ньютона следует, что сила
трения покоя численно равна и противоположно
направленаF. Из
сказанного ясно, что 0
Fпок.
F0. Для
максимальной силы трения покоя иногда
пользуются коэффициентом трения покоя0
в формуле:

F0=0N

(2.3.5)

Отметим, что формула (2.3.5) и 0
имеют смысл только применительно к
максимальной силе трения покоя.

Трение жидкое или вязкое возникает при
движении слоев жидкости или газа друг
относительно друга. Оно встречается
при движении твердого тела в жидкости
или газе, а также при наличии жидкой
(вязкой) смазки между трущимися
поверхностями твердых тел. Особенностью
жидкого трения является отсутствие
трения покоя. Вам, вероятно, приходилось
наблюдать, что тяжелое бревно в воде
даже ребенок перемещает без труда, тогда
как это же бревно, лежащее на суше, не
всегда может сдвинуть даже сильный
мужчина. Еще отличительной особенностью
вязкого трения является возрастание
силы трения с увеличением скорости,
причем, для небольших скоростей эта
зависимость линейная, а при больших
скоростях она становится квадратичной.
С силой вязкого трения мы встречаемся,
плавая и ныряя в воде, а также в ветреную
погоду.

Отметим, что действие на тело нескольких
сил можно заменить одной. Она называется
равнодействующей и равна векторной
сумме всех действующих на тело сил:

(2.3.6)

Формула
(2.3.6) есть выражение принципа суперпозиции,
т.е. принципа независимого сложения.
Этот же принцип позволяет одну силу
представить в виде суммы ее проекций,
например:

studfiles.net

Сила (физическая величина) — это… Что такое Сила (физическая величина)?

Си́ла — векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций.[1]

Сила как векторная величина характеризуется модулем, направлением и «точкой» приложения силы. Последним параметром понятие о силе, как векторе в физике, отличается от понятия о векторе в векторной алгебре, где равные по модулю и направлению векторы, независимо от точки их приложения, считаются одним и тем же вектором . В физике эти векторы называются свободными векторами.В механике чрезвычайно распространено представление о связанных векторах, начало которых закреплено в определённой точке пространства или же может находиться на линии, продолжающей направление вектора (скользящие векторы). [2].

Также используется понятие линия действия силы, обозначающее проходящую через точку приложения силы прямую, по которой направлена сила.

Второй закон Ньютона гласит, что в инерциальных системах отсчета ускорение материальной точки по направлению совпадает с приложенной силой, а по модулю прямо пропорционально модулю силы и обратно пропорционально массе материальной точки. Или, что эквивалентно, в инерциальных системах отсчета скорость изменения импульса материальной точки равна приложенной силе.

При приложении силы к телу конечных размеров в нём возникают механические напряжения, сопровождающиеся деформациями.[3][4][5][6]

С точки зрения Стандартной модели физики элементарных частиц фундаментальные взаимодействия (гравитационное, слабое, электромагнитное, сильное) осуществляются посредством обмена так называемыми калибровочными бозонами.[3] Эксперименты по физике высоких энергий, проведённые в 70−80-х гг. XX в. подтвердили предположение о том, что слабое и электромагнитное взаимодействия являются проявлениями более фундаментального электрослабого взаимодействия.[7]

Размерность силы — LMT−2, единицей измерения в Международной системе единиц (СИ) является ньютон (N, Н), в системе СГС — дина.

История понятия

Понятие силы использовали ещё ученые античности в своих работах о статике и движении. Изучением сил в процессе конструирования простых механизмов занимался в III в. до н. э. Архимед.[8] Представления Аристотеля о силе, связанные с фундаментальными несоответствиями, просуществовали в течение нескольких столетий. Эти несоответствия устранил в XVII в. Исаак Ньютон, используя для описания силы математические методы. Механика Ньютона оставалась общепринятой на протяжении почти трехсот лет.[5] К началу XX в. Альберт Эйнштейн в теории относительности показал, что ньютоновская механика верна лишь в при сравнительно небольших скоростях движения и массах тел в системе, уточнив тем самым основные положения кинематики и динамики и описав некоторые новые свойства пространства-времени.

Ньютоновская механика

Исаак Ньютон задался целью описать движение объектов, используя понятия инерции и силы. Сделав это, он попутно установил, что всякое механическое движение подчиняется общим законам сохранения. В 1687 г. Ньютон опубликовал свой знаменитый труд «Математические начала натуральной философии», в котором изложил три основополагающих закона классической механики (знаменитые законы Ньютона).[5][9]

Первый закон Ньютона

Первый закон Ньютона утверждает, что существуют системы отсчета, в которых тела сохраняют состояние покоя или равномерного прямолинейного движения при отсутствии действий на них со стороны других тел или при взаимной компенсации этих воздействий.[9] Такие системы отсчета называются инерциальными. Ньютон предположил, что каждый массивный объект имеет определенный запас инерции, который характеризует «естественное состояние» движения этого объекта. Эта идея отрицает взгляд Аристотеля, который рассматривал покой «естественным состоянием» объекта. Первый закон Ньютона противоречит аристотелевской физике, одним из положений которой является утверждение о том, что тело может двигаться с постоянной скоростью лишь под действием силы. Тот факт, что в механике Ньютона в инерциальных системах отсчёта покой физически неотличим от равномерного прямолинейного движения, является обоснованием принципа относительности Галилея. Среди совокупности тел принципиально невозможно определить какие из них находится «в движении», а какие «покоятся». Говорить о движении можно лишь относительно какой-либо системы отсчета. Законы механики выполняются одинаково во всех инерциальных системах отсчета, другими словами все они механически эквивалентны. Последнее следует из так называемых преобразований Галилея.[10]

Например, законы механики абсолютно одинаково выполняются в кузове грузовика, когда тот едет по прямому участку дороги с постоянной скоростью и когда стоит на месте. Человек может подбросить мячик вертикально вверх и поймать его через некоторое время на том же самом месте вне зависимости от того движется ли грузовик равномерно и прямолинейно или покоится. Для него мячик летит по прямой. Однако для стороннего наблюдателя, находящегося на земле, траектория движения мячика имеет вид параболы. Это связано с тем, что мячик относительно земли движется во время полета не только вертикально, но и горизонтально по инерции в сторону движения грузовика. Для человека, находящегося в кузове грузовика не имеет значения движется ли последний по дороге, или окружающий мир перемещается с постоянной скоростью в противоположном направлении, а грузовик стоит на месте. Таким образом, состояние покоя и равномерного прямолинейного движения физически неотличимы друг от друга.

Второй закон Ньютона

Второй закон Ньютона в современной формулировке звучит так: в инерциальной системе отсчета скорость изменения импульса материальной точки равна векторной сумме всех сил, действующих на эту точку.

где − импульс материальной точки, − суммарная сила, действующая на материальную точку. Второй закон Ньютона гласит, что действие несбалансированных сил приводит к изменению импульса материальной точки.[9]

По определению импульса:

где − масса, − скорость.

По правилу нахождения производной произведения:

Если масса материальной точки остается неизменной, то производная по времени от массы равна нулю, и уравнение принимает вид:

Учитывая определение ускорения точки, второй закон Ньютона принимает вид:

Считается, что это «вторая самая известная формула в физике»[11], хотя сам Ньютон никогда явным образом не записывал свой второй закон в этом виде.

Поскольку в любой инерциальной системе отсчёта ускорение тела одинаково и не меняется при переходе от одной системы к другой, то и сила инвариантна по отношению к такому переходу.

Во всех явлениях природы сила, независимо от своего происхождения, проявляется только в механическом смысле, то есть как причина нарушения равномерного и прямолинейного движения тела в инерциальной системе координат. Обратное утверждение, т.е установление факта такого движения, не свидетельствует об отсутствии действующих на тело сил, а лишь о том, что действия этих сил взаимно уравновешиваются. Иначе: их векторная сумма есть вектор с модулем, равным нулю. На этом основано измерение величины силы, когда она компенсируется силой, величина которой известна .

Второй закон Ньютона позволяет измерять величину силы. Например, знание массы планеты и ее центростремительного ускорения при движении по орбите позволяет вычислить величину силы гравитационного притяжения, действующую на эту планету со стороны Солнца.

Третий закон Ньютона

Для любых двух тел (назовем их тело 1 и тело 2) третий закон Ньютона утверждает, что сила действия тела 1 на тело 2, сопровождается появлением равной по модулю, но противоположной по направлению силы, действующей на тело 1 со стороны тела 2.[12] Математически закон записывается так:

Этот закон означает, что силы всегда возникают парами «действие-противодействие».[9] Если тело 1 и тело 2 находятся в одной системе, то суммарная сила в системе, обусловленная взаимодействием этих тел равна нулю:

Это означает, что в замкнутой системе не существует несбалансированных внутренних сил. Это приводит к тому, что центр масс замкнутой системы (то есть той, на которую не действуют внешние силы) не может двигаться с ускорением. Отдельные части системы могут ускоряться, но лишь таким образом, что система в целом остается в состоянии покоя или равномерного прямолинейного движения. Однако в том случае, если внешние силы подействуют на систему, то ее центр масс начнет двигаться с ускорением, пропорциональным внешней результирующей силе и обратно пропорциональным массе системы.[3]

Фундаментальные взаимодействия

Все силы в природе основаны на четырех типах фундаментальных взаимодействий. Максимальная скорость распространения всех видов взаимодействия равна скорости света в вакууме. Электромагнитные силы действуют между электрически заряженными телами, гравитационные − между массивными объектами. Сильное и слабое проявляются только на очень малых расстояниях, они ответственны за возникновение взаимодействия между субатомными частицами, включая нуклоны, из которых состоят атомные ядра.

Интенсивность сильного и слабого взаимодействия измеряется в единицах энергии (электрон-вольтах), а не единицах силы, и потому применение к ним термина «сила» объясняется берущей из античности традицией объяснять любые явления в окружаемом мире действием специфических для каждого явления «сил».

Понятие силы не может быть применено по отношению к явлениям субатомного мира. Это понятие из арсенала классической физики, ассоциирующейся (пусть даже только подсознательно) с ньютоновскими представлениями о силах, действующих на расстоянии. В субатомной физике таких сил уже нет: их заменяют взаимодействия между частицами, происходящими через посредство полей, то есть каких-то других частиц. Поэтому физики высоких энергий избегают употреблять слово сила, заменяя его словом взаимодействие.[13]

Каждый вид взаимодействия обусловлен обменом соответствующих переносчиков взаимодействия: гравитационное − обменом гравитонов (существование не подтверждено экспериментально), электромагнитное − виртуальных фотонов, слабое − векторных бозонов, сильное − глюонов (и на больших расстояниях — мезонов). В настоящее время электромагнитное и слабое взаимодействия объединены в более фундаментальное электрослабое взаимодействие. Делаются попытки объединения всех четырех фундаментальных взаимодействие в одно (так называемая теория великого объединения).

Всё многообразие проявляющих себя в природе сил в принципе может быть сведено к этим четырем фундаментальным взаимодействиям. Например, трение − это проявление электромагнитных сил, действующих между атомами двух соприкасающихся поверхностей, и принципа запрета Паули,[14] который не позволяет атомам проникать в область друг друга. Сила, возникающая при деформации пружины, описываемая законом Гука, также является результатом действия электромагнитных сил между частицами и принципа запрета Паули, заставляющих атомы кристаллической решетки вещества удерживаться около положения равновесия.[3].

Однако на практике оказывается не только нецелесообразной, но и просто невозможной по условиям задачи подобная детализация рассмотрения вопроса о действии сил.

Гравитация

Гравитация (сила тяготения) — универсальное взаимодействие между любыми видами материи. В рамках классической механики описывается законом всемирного тяготения, сформулированным Исааком Ньютоном в его труде «Математические начала натуральной философии». Ньютон получил величину ускорения, с которым Луна движется вокруг Земли, положив при расчете, что сила тяготения убывает обратно пропорционально квадрату расстояния от тяготеющего тела. Кроме этого, им же было установлено, что ускорение, обусловленное притяжением одного тела другим, пропорционально произведению масс этих тел[15]. На основании этих двух выводов был сформулирован закон тяготения: любые материальные частицы притягиваются по направлению друг к другу с силой , прямо пропорциональной произведению масс ( и ) и обратно пропорциональной квадрату расстояния между ними:

Здесь − гравитационная постоянная[16], значение которой впервые получил в своих опытах Генри Кавендиш. Используя данный закон, можно получить формулы для расчета силы тяготения тел произвольной формы. Теория тяготения Ньютона хорошо описывает движение планет Солнечной системы и многих других небесных тел. Однако, в ее основе лежит концепция дальнодействия, противоречащая теории относительности. Поэтому классическая теория тяготения неприменима для описания движения тел, перемещающихся со скоростью, близкой к скорости света, гравитационных полей чрезвычайно массивных объектов (например, черных дыр), а также переменных полей тяготения, создаваемых движущимися телами, на больших расстояниях от них[17].

Более общей теорией гравитации является общая теория относительности Альберта Эйнштейна. В ней гравитация не характеризуется инвариантной силой, не зависящей от системы отсчёта. Вместо этого свободное движение тел в гравитационном поле, воспринимаемое наблюдателем как движение по искривленным траекториям в трехмерном пространстве-времени с переменной скоростью, рассматривается как движение по инерции по геодезической линии в искривлённом четырехмерном пространстве-времени, в котором время в разных точках течет по-разному. Причем эта линия в некотором смысле «наиболее прямая» — она такова, что пространственно-временной промежуток (собственное время) между двумя пространственно-временными положениями данного тела максимален. Искривление пространства зависит от массы тел, а также от всех видов энергии, присутствующих в системе[3].

Электромагнитное взаимодействие

Электростатическое поле (поле неподвижных зарядов)

Развитие физики после Ньютона добавило к трём основным (длина, масса, время) величинам электрический заряд с размерностью C. Однако, исходя из требований практики, основанных на удобствах измерения, вместо заряда нередко стал использоваться электрический ток с размерностью I, причём I = CT − 1. Единицей измерения величины заряда является кулон, а силы тока ампер.

Поскольку заряд, как таковой, не существует независимо от несущего его тела, то электрическое взаимодействие тел проявляется в виде той же рассматриваемой в механике силы, служащей причиной ускорения. Применительно к электростатическому взаимодействию двух «точечных зарядов» в вакууме используется закон Кулона:

где  — расстояние между зарядами, а ε0 ≈ 8.854187817·10−12 Ф/м. В однородном (изотропном) веществе в этой системе сила взаимодействия уменьшается в ε раз, где ε — диэлектрическая постоянная среды.

Направление силы совпадает с линией, соединяющей точечные заряды. Графически электростатическое поле принято изображать в виде картины силовых линий, представляющих собой воображаемые траектории, по которым бы перемещалась лишённая массы заряжённая частица. Эти линии начинаются на одном и заканчиваются на другом зарядах.

Электромагнитное поле (поле постоянных токов)

Существование магнитного поля признавалось ещё в средние века китайцами, использовавшим «любящий камень» — магнит, в качестве прообраза магнитного компаса. Графически магнитное поле принято изображать в виде замкнутых силовых линий, густота которых (так же, как и в случае электростатического поля) определяет его интенсивность. Исторически наглядным способом визуализации магнитного поля были железные опилки, насыпаемые, например, на лист бумаги, положенный на магнит.

Эрстед установил, что текущий по проводнику ток вызывает отклонение магнитной стрелки.

Фарадей пришёл к выводу, что вокруг проводника с током создаётся магнитное поле.

Ампер высказал гипотезу, признаваемую в физике, как модель процесса возникновения магнитного поля, заключающуюся в существовании в материалах микроскопических замкнутых токов, обеспечивающих совместно эффект естественного или наведённого магнетизма.

Ампером было установлено, что в находящейся в вакууме системе отсчёта, по отношению к которой заряд находится в движении, то есть ведёт себя как электрический ток, возникает магнитное поле, интенсивность которого определяется вектором магнитной индукции, лежащим в плоскости, расположенной перпендикулярно по отношению к направлению движения заряда.

Единицей измерения магнитной индукции является тесла: 1 Тл = 1 Т кг с−2 А−2
Количественно задача была решена Ампером, измерявшим силу взаимодействия двух параллельных проводников с текущими по ним токами. Один из проводников создавал вокруг себя магнитное поле, второй реагировал на это поле сближением или удалением с поддающейся измерению силой, зная которую и величину силы тока можно было определить модуль вектора магнитной индукции.

Силовое взаимодействие между электрическими зарядами, не находящимися в движении относительно друг друга описывается законом Кулона. Однако заряды, находящиеся в движении относительно друг друга создают магнитные поля, посредством которых созданные движением зарядов токов в общем случае приходят в состояние силового взаимодействия.

Принципиальным отличием силы, возникающей при относительном движении зарядов от случая их стационарного размещения, является различие в геометрии этих сил. Для случая электростатики сил взаимодействия двух зарядов направлена по линии, их соединяющей. Поэтому геометрия задачи двумерна и рассмотрение ведётся в плоскости, проходящей через эту линию.

В случае токов сила, характеризующая магнитное поле, создаваемое током, расположена в плоскости, перпендикулярной току. Поэтому картина явления становится трёхмерной. Магнитное поле, создаваемое бесконечно малым по длине элементом первого тока, взаимодействуя с таким же элементом второго тока, в общем случае создаёт силу, действующую на него. При этом для обоих токов эта картина полностью симметрична в том смысле, что нумерация токов произвольна.

Закон взаимодействия токов используется для эталонирования постоянного электрического тока.

Сильное взаимодействие

Сильное взаимодействие — короткодействующие силы между адронами и кварками. В атомном ядре сильное взаимодействие удерживает вместе положительно заряженные (испытывающие электростатическое отталкивание) протоны, происходит это посредством обмена пи-мезонами между нуклонами (протонами и нейтронами). Пи-мезоны живут очень мало, времени жизни им хватает лишь на то, чтобы обеспечить ядерные силы в радиусе ядра, потому ядерные силы называют короткодействующими. Увеличение количества нейтронов «разбавляет» ядро, уменьшая электростатические силы и увеличивая ядерные, но при большом количестве нейтронов они сами, будучи фермионами, начинают испытывать отталкивание вследствие принципа Паули. Также при слишком сильном сближении нуклонов начинается обмен W-бозонами, вызывающее отталкивание, благодаря этому атомные ядра не «схлопываютс­я­».

Внутри самих адронов сильное взаимодействие удерживает вместе кварки — составные части адронов. Квантами сильного поля являются глюоны. Каждый кварк имеет один из трёх «цветовых» зарядов, каждый глюон состоит из пары «цвет»-«антицвет». Глюоны связывают кварки в т. н. «конфайнмент», из-за которого на данный момент свободные кварки в эксперименте не наблюдались. При отдалении кварков друг от друга энергия глюонных связей возрастает, а не уменьшается как при ядерном взаимодействии. Затратив много энергии (столкнув адроны в ускорителе) можно разорвать кварк-глюонную связь, но при этом происходит выброс струи новых адронов. Впрочем, свободные кварки могут существовать в космосе: если какому-то кварку удалось избежать конфайнмента во время Большого взрыва, то вероятность аннигилировать с соответствующим антикварком или превратиться в бесцветный адрон для такого кварка исчезающе мала.

Слабое взаимодействие

Слабое взаимодействие — фундаментальное короткодействующее взаимодействие. Радиус действия 10−18 м. Симметрично относительно комбинации пространственной инверсии и зарядового сопряжения. В слабом взаимодействии участвуют все фундаментальные фермионы (лептоны и кварки). Это единственное взаимодействие, в котором участвуют нейтрино (не считая гравитации, пренебрежимо малой в лабораторных условиях), чем объясняется колоссальная проникающая способность этих частиц. Слабое взаимодействие позволяет лептонам, кваркам и их античастицам обмениваться энергией, массой, электрическим зарядом и квантовыми числами — то есть превращаться друг в друга. Одно из проявлений — бета-распад.

Производные виды сил

Сила упругости — сила, возникающая при деформации тела и противодействующая этой деформации. В случае упругих деформаций является потенциальной. Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Сила упругости направлена противоположно смещению, перпендикулярно поверхности. Вектор силы противоположен направлению смещения молекул.

Сила трения — сила, возникающая при относительном движении твёрдых тел и противодействующая этому движению. Относится к диссипативным силам. Сила трения имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Вектор силы трения направлен противоположно вектору скорости.

Сила сопротивления среды — сила, возникающая при движении твёрдого тела в жидкой или газообразной среде. Относится к диссипативным силам. Сила сопротивления имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Вектор силы сопротивления направлен противоположно вектору скорости.

Сила нормальной реакции опоры — сила упругости, действующая со стороны опоры на тело. Направлена перпендикулярно к поверхности опоры.

Силы поверхностного натяжения — силы, возникающие на поверхности фазового раздела. Имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Сила натяжения направлена по касательной к поверхности раздела фаз; возникает вследствие нескомпенсированного притяжения молекул, находящихся на границе раздела фаз, молекулами, находящимися не на границе раздела фаз.

Осмотическое давление

Силы Ван-дер-Ваальса — электромагнитные межмолекулярные силы, возникающие при поляризации молекул и образовании диполей. Ван-дер-Ваальсовы силы быстро убывают с увеличением расстояния.

Сила инерции — фиктивная сила, вводимая в неинерциальных системах отсчёта для того, чтобы в них выполнялся второй закон Ньютона. В частности, в системе отсчёта, связанной с равноускоренно движущимся телом сила инерции направлена противоположно ускорению. Из полной силы инерции могут быть для удобства выделены центробежная сила и сила Кориолиса.

Равнодействующая

При расчёте ускорения тела все действующие на него силы заменяют одной силой, называемой равнодействующей. Это геометрическая сумма всех сил, действующих на тело. При этом действие каждой силы не зависит от действия других, то есть каждая сила сообщает телу такое ускорение, какое она сообщила бы в отсутствие действия других сил. Это утверждение носит название принципа независимости действия сил (принцип суперпозиции).

См. также

Источники

Примечания

  1. Glossary. Earth Observatory. NASA. — «Сила — любой внешний фактор, который вызывает изменение в движении свободного тела или возникновение внутренних напряжений в зафиксированном теле.»  (англ.)
  2. Бронштейн И. Н. Семендяев К. А. Справочник по математике. М.: Издательство «Наука» Редакция справочной физико-математической литературы.1964.
  3. 1 2 3 4 5 Feynman, R. P., Leighton, R. B., Sands, M. Lectures on Physics, Vol 1 — Addison-Wesley, 1963.  (англ.)
  4. Kleppner, D., Kolenkow, R. J. An introduction to mechanics — McGraw-Hill.  (англ.)
  5. 1 2 3 University Physics, Sears, Young & Zemansky, pp. 18-38  (англ.)
  6. Хайкин С. Э.Силы инерции и невесомость. Изд-во «Наука» М.,1967, с илл.
  7. Weinberg, S. Dreams of a Final Theory — Vintage Books USA, 1994. — ISBN 0-679-74408-8.  (англ.)
  8. Heath,T.L. The Works of Archimedes (1897). Archive.org. Архивировано из первоисточника 23 августа 2011. Проверено 14 октября 2007.  (англ.)
  9. 1 2 3 4 Newton, I. The Principia Mathematical Principles of Natural Philosophy — University of California Press, 1999. — ISBN 0-520-08817-4.  (англ.)
  10. Мултановский В. В. Курс теоретической физики. Классическая механика. Основы специальной теории относительности. Релятивистская механика — М.: Просвещение, 1988. — С. 80−81.
  11. Принято не подчёркивать специально, что в такой формулировке Второй закон Ньютона годится только для наблюдателя, имеющего достаточные основания считать, что он находится в инерциальной системе отсчёта, из которой он и наблюдает движущееся под действием силы тело. Если же он сам находится в системе отсчёта, связанной с ускоряемым телом, в которой оно для него неподвижно, то в этой ситуации Второй закон Ньютона принимает вид: Fma = 0 . Или FF(i) = 0 , где F(i) есть сила инерции, действующей на ускоряемое тело, уравновешивающая по Третьему закону Ньютона действующее на него силу, что является причиной неподвижности этого тела в рассматриваемой неинерциальной системе отсчёта. Сила инерции фиктивна в том смысле, что причиной её возникновения не являются, в конечном итоге, ни силы гравитации, ни силы электромагнитного происхождения. Она появляется исключительно из-за неинерциальности движения системы наблюдателя.
  12. Henderson, Tom Lesson 4: Newton’s Third Law of Motion. The Physics Classroom (1996-2007). Архивировано из первоисточника 23 августа 2011. Проверено 4 января 2008.  (англ.)
  13. Капра, Фритьоф ДАО ФИЗИКИ. СПб.,»ОРИС»*»ЯНА-ПРИНТ». 1994 г. 304 с. ISBN 5-88436-021-5
  14. Nave, R Pauli Exclusion Principle. HyperPhysics***** Quantum Physics. Архивировано из первоисточника 23 августа 2011. Проверено 2 января 2008.  (англ.)
  15. University Physics, Sears, Young & Zemansky, pp. 59−82  (англ.)
  16. Sir Isaac Newton: The Universal Law of Gravitation. Astronomy 161 The Solar System. Архивировано из первоисточника 23 августа 2011. Проверено 4 января 2008.  (англ.)
  17. Статья И. Д. Новикова Физический энциклопедический словарь — М.: Советская энциклопедия, 1984. — С. 772−775.

dic.academic.ru

Физика. Понятия и определения.

 

 

 

 

 

 

 

Что такое сила?

Если тело ускоряется то на него что-то действует. А как найти это «что-то»? Например, что за силы действуют на тело вблизи поверхности земли? Это — сила тяжести, направленная вертикально вниз, пропорциональная массе тела и для высот, много меньших, чем радиус земли ${\large R}$, почти независящая от высоты; она равна

${\large F = \dfrac {G  \cdot m \cdot M}{R^2} = m \cdot g }$

где

${\large g = \dfrac {G  \cdot M}{R^2} }$

 

так называемое ускорение силы тяжести. В горизонтальном направлении тело будет двигаться с постоянной скоростью, однако движение в вертикальном направлении по второму закону Ньютона:

 

${\large m \cdot g = m \cdot \left ( \dfrac {d^2 \cdot x}{d \cdot t^2} \right ) }$

 

после сокращения ${\large m}$ получаем, что ускорение в направлении ${\large x}$ постоянно и равно ${\large g}$. Это хорошо известное движение свободно падающего тела, которое описывается уравнениями

${\large v_x = v_0 + g \cdot t}$

${\large x = x_0 + x_0 \cdot t  + \dfrac {1}{2} \cdot g \cdot t^2}$

 

 

В чем сила измеряется?

Во всех учебниках и умных книжках, силу принято выражать в Ньютонах, но кроме как в моделях которыми оперируют физики ньютоны ни где не применяются. Это крайне неудобно.

Ньютон newton (Н) — производная единица измерения силы в Международной системе единиц (СИ).
Исходя из второго закона Ньютона, единица ньютон определяется как сила, изменяющая за одну секунду скорость тела массой один килограмм на 1 метр в секунду в направлении действия силы.

Таким образом, 1 Н = 1 кг·м/с².   

Килограмм-сила (кгс или кГ) — гравитационная метрическая единица силы, равная силе, которая действует на тело массой один килограмм в гравитационном поле земли. Поэтому по определению килограмм-сила равна 9,80665 Н. Килограмм-сила удобна тем, что её величина равна весу тела массой в 1 кг.
1 кгс = 9,80665 ньютонов (примерно ≈ 10 Н)
1 Н ≈ 0,10197162 кгс ≈ 0,1 кгс

1 Н = 1 кг x 1м/с2.

 

 

 

Закон тяготения

Каждый объект Вселенной притягивается к любому другому объекту с силой, пропорциональной их массам и обратно пропорционально квадрату расстояния между ними.

${\large F = G  \cdot \dfrac {m \cdot M}{R^2}}$

 

Добавить можно, что любое тело реагирует на приложенную к нему силу ускорением в направлении этой силы, по величине обратно пропорциональным массе тела.

 ${\large G}$ — гравитационная постоянная

 ${\large M}$ — масса земли

 ${\large R}$ — радиус земли

 

${\large G = 6,67 \cdot {10^{-11}} \left ( \dfrac {m^3}{kg \cdot {sec}^2} \right ) }$

${\large M = 5,97 \cdot {10^{24}} \left ( kg \right ) }$

${\large R = 6,37 \cdot {10^{6}} \left ( m \right ) }$

 

В рамках классической механики, гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, согласно которому сила гравитационного притяжения между двумя телами массы ${\large m_1}$ и ${\large m_2}$, разделённых расстоянием ${\large R}$ есть

${\large F = -G  \cdot \dfrac {m_1 \cdot m_2}{R^2}}$

Здесь ${\large G}$ — гравитационная постоянная, равная ${\large 6,673 \cdot {10^{-11}} m^3 / \left ( kg \cdot {sec}^2 \right ) }$. Знак минус означает, что сила, действующая на пробное тело, всегда направлена по радиус-вектору от пробного тела к источнику гравитационного поля, т.е. гравитационное взаимодействие приводит всегда к притяжению тел.
Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность поля тяжести влечёт за собой закон сохранения суммы кинетической и потенциальной энергии, что при изучении движения тел в поле тяжести часто существенно упрощает решение.
В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал и сила зависят только от положения тела в данный момент времени.

 

 

Тяжелее — Легче

Вес тела ${\large P}$ выражается произведением его массы ${\large m}$ на ускорение силы тяжести ${\large g}$.

${\large P = m \cdot g}$

 

Когда на земле тело становится легче (слабее давит на весы), это происходит от уменьшения массы. На луне все не так, уменьшение веса вызвано изменением другого множителя — ${\large g}$, так как ускорение силы тяжести на поверхности луны в шесть раз меньше чем на земле.

 

масса земли = ${\large 5,9736 \cdot {10^{24}}\ kg }$

масса луны = ${\large 7,3477 \cdot {10^{22}}\ kg }$ 

 

ускорение свободного падения на Земле = ${\large 9,81\ m / c^2 }$ 

ускорение свободного падения на Луне = ${\large 1,62 \ m / c^2 }$ 

 

В результате произведение ${\large m \cdot g }$, а следовательно и вес уменьшаются в 6 раз.

Но нельзя обозначить оба эти явления одним и тем же выражением «сделать легче». На луне тела становятся не легче, а лишь менее стремительно падают они «менее падучи»))).

 

 

Векторные и скалярные величины

Векторная величина (например сила, приложенная к телу), помимо значения (модуля), характеризуется также направлением. Скалярная же величина (например, длина) характеризуется только значением. Все классические законы механики сформулированы для векторных величин.

 


 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Рисунок 1.

 

На рис. 1 изображены различные варианты расположения вектора ${ \large \overrightarrow{F}}$ и его проекции ${ \large F_x}$ и ${ \large F_y}$ на оси ${ \large X}$ и ${ \large Y}$ соответственно:

  • A.    величины ${ \large F_x}$ и ${ \large F_y}$ являются ненулевыми и положительными
  • B.    величины ${ \large F_x}$ и ${ \large F_y}$ являются ненулевыми, при этом ${\large F_y}$ — положительная величина, а ${\large F_x}$ — отрицательная, т.к. вектор ${\large \overrightarrow{F}}$ направлен в сторону, противоположную направлению оси ${\large X}$ 
  • C.    ${\large F_y}$ — положительная  ненулевая величина, ${\large F_x}$ равна нулю, т.к. вектор ${\large \overrightarrow{F}}$ направлен перпендикулярно оси ${\large X}$

 

Момент силы

Моментом силы называют векторное произведение радиус-вектора, проведённого от оси вращения к точке приложения силы, на вектор этой силы. Т.е. согласно классическому определению момент силы — величина векторная. В рамках нашей задачи, это определение можно упростить до следующего: моментом силы ${\large \overrightarrow{F}}$, приложенной к точке с координатой ${\large x_F}$, относительно оси, расположенной в точке ${\large x_0}$ называется скалярная величина, равная произведению модуля силы ${\large \overrightarrow{F}}$, на плечо силы — ${\large \left | x_F — x_0 \right |}$. А знак этой скалярной величины зависит от направления силы: если она вращает объект по часовой стрелке, то знак плюс, если против — то минус.

Важно понимать, что ось мы можем выбирать произвольным образом — если тело не вращается, то сумма моментов сил относительно любой оси равна нулю. Второе важное замечание — если сила приложена к точке, через которую проходит ось, то момент этой силы относительно этой оси равен нулю (поскольку плечо силы будет равно нулю). 

 

 

Проиллюстрируем вышесказанное примером, на рис.2. Предположим, что система, изображенная на рис. 2, находится в равновесии. Рассмотрим опору, на которой стоят грузы. На неё действуют 3 силы: ${\large \overrightarrow{N_1},\ \overrightarrow{N_2},\ \overrightarrow{N},}$ точки приложения этих сил А, В и С соответственно. На рисунке также присутствуют силы ${\large \overrightarrow{N_{1}^{gr}},\ \overrightarrow{N_2^{gr}}}$. Эти силы приложены к грузам, и согласно 3-му закону Ньютона

 

${\large \overrightarrow{N_{1}} = — \overrightarrow{N_{1}^{gr}}}$

${\large \overrightarrow{N_{2}} = — \overrightarrow{N_{2}^{gr}}}$

Теперь рассмотрим условие равенства моментов сил, действующих на опору, относительно оси, проходящей через точку А (и, как мы договаривались ранее, перпендикулярную плоскости рисунка):

 

${\large N \cdot l_1 — N_2 \cdot \left ( l_1 +l_2 \right ) = 0}$

Обратите внимание, что в уравнение не вошёл момент силы ${\large \overrightarrow{N_1}}$, поскольку плечо этой силы относительно рассматриваемой оси равно ${\large 0}$. Если же мы по каким-либо причинам хотим выбрать ось, проходящую через точку С, то условие равенства моментов сил будет выглядеть так:

 

${\large N_1 \cdot l_1 — N_2 \cdot l_2  = 0}$

Можно показать, что с математической точки зрения два последних уравнения эквивалентны.

 

 

Центр тяжести

Центром тяжести механической системы называется точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю.

 

 

 

Центр масс

Точка центра масс замечательна тем , что если на частицы образующие тело (неважно будет ли оно твердым или жидким, скоплением звезд или чем то другим) действует великое множество сил (имеются ввиду только внешние силы, поскольку все внутренние силы компенсируют друг друга), то результирующая сила приводит к такому ускорению этой точки, как будто в ней вся масса тела ${\large m}$.

Положение центра масс определяется уравнением:

 

${\large R_{c.m.} = \frac{\sum m_i\, r_i}{\sum m_i}}$

 

Это векторное уравнение, т.е. фактически три уравнения — по одному для каждого из трех направлений. Но рассмотрим только ${\large x}$ направление.  Что означает следующее равенство?

 

${\large X_{c.m.} = \frac{\sum m_i\, x_i}{\sum m_i}}$

 

Предположим тело разделено на маленькие кусочки с одинаковой массой ${\large m}$, причем полная масса тела равна будет равна числу таких кусочков ${\large N}$, умноженному на массу одного кусочка, например 1 грамм. Тогда это уравнение означает, что нужно взять координаты ${\large x}$ всех кусочков, сложить их и результат разделить на число кусочков. Иными словами, если массы кусочков равны то ${\large X_{c.m.}}$ будет просто средним арифметическим ${\large x}$ координат всех кусочков.

 

 


 

центр масс сложного тела

лежит на линии, соединяющей центры масс

двух составляющих его частей

 

 

 

Масса и плотность

Масса — фундаментальная физическая величина. Масса характеризует сразу несколько свойств тела и сама по себе обладает рядом важных свойств.

 

  • Масса служит мерой содержащегося в теле вещества.
  • Масса является мерой инертности тела. Инертностью называется свойство тела сохранять свою скорость неизменной (в инерциальной системе отсчёта), когда внешние воздействия отсутствуют или компенсируют друг друга. При наличии внешних воздействий инертность тела проявляется в том, что его скорость меняется не мгновенно, а постепенно, и тем медленнее, чем больше инертность (т.е. масса) тела. Например, если бильярдный шар и автобус движутся с одинаковой скоростью и тормозятся одинаковым усилием, то для остановки шара требуется гораздо меньше времени, чем для остановки автобуса.
  • Массы тел являются причиной их гравитационного притяжения друг к другу (см. раздел «Сила тяготения»).
  • Масса тела равна сумме масс его частей. Это так называемая аддитивность массы. Аддитивность позволяет использовать для измерения массы эталон — 1 кг.
  • Масса изолированной системы тел не меняется со временем (закон сохранения массы).
  • Масса тела не зависит от скорости его движения. Масса не меняется при переходе от одной системы отсчёта к другой.
  • Плотностью однородного тела называется отношение массы тела к его объёму:

 ${\large p = \dfrac {m}{V} }$

 

Плотность не зависит от геометрических свойств тела (формы, объёма) и является характеристикой вещества тела. Плотности различных веществ представлены в справочных таблицах. Желательно помнить плотность воды: 1000 кг/м3.

 

 

Второй и третий законы Ньютона

Взаимодействие тел можно описывать с помощью понятия силы. Сила — это векторная величина, являющаяся мерой воздействия одного тела на другое.
Будучи вектором, сила характеризуется модулем (абсолютной величиной) и направлением в пространстве. Кроме того, важна точка приложения силы: одна и та же по модулю и направлению сила, приложенная в разных точках тела, может оказывать различное воздействие. Так, если взяться за обод велосипедного колеса и потянуть по касательной к ободу, то колесо начнёт вращаться. Если же тянуть вдоль радиуса, никакого вращения не будет.

Второй закон Ньютона

Произведение массы тела на вектор ускорения есть равнодействующая всех сил, приложенных к телу:

${\large m \cdot \overrightarrow{a} = \overrightarrow{F} }$

Второй закон Ньютона связывает векторы ускорения и силы. Это означает, что справедливы следующие утверждения.

  1. ${\large m \cdot a = F}$, где ${\large a}$ — модуль ускорения, ${\large F}$ — модуль равнодействующей силы.
  2. Вектор ускорения имеет одинаковое направление с вектором равнодействующей силы, так как масса тела положительна.

Третий закон Ньютона

Два тела действуют друг на друга с силами, равными по модулю и противоположными по направлению. Эти силы имеют одну и ту же физическую природу и направлены вдоль прямой, соединяющей их точки приложения.

 

 

 

Принцип суперпозиции

Опыт показывает, что если на данное тело действуют несколько других тел, то соответствующие силы складываются как векторы. Более точно, справедлив принцип суперпозиции.
Принцип суперпозиции сил. Пусть на тело действуют силы ${\large \overrightarrow{F_1}, \overrightarrow{F_2},\ \ldots \overrightarrow{F_n}}$  Если заменить их одной силой ${\large \overrightarrow{F} =  \overrightarrow{F_1} + \overrightarrow{F_2} \ldots + \overrightarrow{F_n}}$, то результат воздействия не изменится.
Сила ${\large \overrightarrow{F}}$ называется равнодействующей сил ${\large \overrightarrow{F_1}, \overrightarrow{F_2},\ \ldots \overrightarrow{F_n}}$ или результирующей силой.
 

 

 

www.vdnk.ru

Силы в механике (средняя школа)

Силы в механике

Закон всемирного тяготения. Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния r между ними:


где G = 6,67∙10–11 м3/кг∙с2 (СИ) – гравитационная постоянная.

Закон всемирного тяготения справедлив для точечных, а также сферически симметричных тел. Приближенно он выполняется для любых тел, если расстояние между ними значительно больше их размеров.



Рис. 1. Закон всемирного тяготения

Одним из проявлений закона всемирного тяготения является сила тяжести. На поверхности Земли
поэтому сила всемирного тяготения, действующая на тело массой m, равна:


где ускорение свободного падения 
Здесь масса Земли равна
а ее радиус
Вблизи поверхности Земли ускорение свободного падения равно приблизительно g = 9,8 м/с2.

Сила F называется силой тяжести и направлена к центру Земли.



Рис. 2. Сила тяжести на различных расстояниях от Земли. При удалении от поверхности Земли сила земного тяготения и ускорение свободного падения изменяются обратно пропорционально квадрату расстояния r до центра Земли. Масса тела принята равной m = 70 кг

В современной физике считается, что гравитационное притяжение обусловлено наличием гравитационного поля, посредством которого тела действуют друг на друга.

Сила, с которой тело действует на неподвижную горизонтальную опору или подвес, называется весом тела 
По третьему закону Ньютона, с той же по модулю силой опора или подвес действуют на тело; эта сила называется реакцией опоры 
Понятие веса может быть распространено и на случай, когда опора или подвес движутся с ускорением относительно инерциальных систем.

Если опора или подвес двигается с некоторым ускорением, то сила давления со стороны тела (то есть вес тела) изменяется.

В частности, если опора движется с ускорением
направленным против силы тяжести, то вес тела обращается в нуль. Такое состояние называют невесомостью. Состояние невесомости испытывает космонавт в космическом корабле.



Рис. 3. Вес тела и реакция опоры

Изменение формы или размеров тела называется деформацией. Деформации бывают упругими и пластичными. При упругих деформациях тело восстанавливает свою форму и размеры после прекращения действия силы, при пластичных – нет. При упругих деформациях справедлив закон Гука: деформация пропорциональна вызывающей ее силе.


Fвнеш = –Fупр = kx.

Коэффициент k называется жесткостью. Знак минус показывает, что упругая сила всегда направлена в сторону, противоположную деформации.



Рис. 4. Сила упругости

При больших силах деформация становится пластической, график зависимости силы упругости от удлинения становится нелинейным, и закон Гука перестает действовать.



Рис. 5. Зависимость модуля силы упругости от удлинения

Силы, действующие между поверхностями соприкасающихся твердых тел, называются силами сухого трения. Они всегда направлены по касательной к соприкасающимся поверхностям и подразделяются на силы трения покоя, скольжения и качения.



Рис. 6. Сила трения покоя

Сила трения покоя – величина непостоянная, она может изменятся от нуля до некоторого максимального значения Fтр max. Сила трения покоя равна по модулю и противоположна по направлению проекции внешней силы, направленной параллельно поверхности соприкосновения неподвижных относительно друг друга тел.

Если проекция внешней силы больше Fтр max, то возникает движение. Силу трения в этом случае называют силой трения скольжения. Экспериментально доказано, что сила трения скольжения пропорциональна силе реакции опоры:

Коэффициент трения μ зависит от материалов, из которых изготовлены соприкасающиеся тела, и не зависит от размеров соприкасающихся поверхностей.

Сила трения скольжения всегда направлена против относительного движения тела.

Сила трения качения возникает, если тело катится по поверхности. Она значительно меньше силы трения скольжения для тела соответствующей массы. При решении многих физических задач силой трения качения можно пренебречь.

При движении в жидкости или газе возникает сила вязкого трения. При вязком трении нет трения покоя. Сила вязкого трения направлена в сторону, противоположную скорости тела. Зависимость от модуля скорости может быть линейной F = –βυ или квадратичной F = –αυ2.

files.school-collection.edu.ru

Сила (физика) Википедия

У этого термина существуют и другие значения, см. Сила (значения).

Сила
 F{\displaystyle \ F}
Размерность LMT−2
Единицы измерения
СИ ньютон
СГС дина
Примечания
векторная величина
Классическая механика
d(mv→)dt=F→{\displaystyle {\frac {\mathrm {d} (m{\vec {v}})}{\mathrm {d} t}}={\vec {F}}}Второй закон Ньютона
История…

Фундаментальные понятия

Пространство · Время · Масса· Скорость · Сила · Механическая работа · Энергия · Импульс

Формулировки

Ньютоновская механика · Лагранжева механика · Гамильтонова механика · Формализм Гамильтона — Якоби · Уравнения Рауса · Уравнения Аппеля · Теория Купмана — фон Неймана

Разделы

Прикладная механика · Небесная механика · Механика сплошных сред · Геометрическая оптика · Статистическая механика

Учёные

Галилей · Кеплер · Ньютон · Эйлер · Лаплас · Д’Аламбер · Лагранж · Гамильтон · Коши

См. также: Портал:Физика

Си́ла — физическая величина, являющаяся мерой воздействия на данное тело со стороны других тел или полей. Приложение силы обусловливает изменение скорости тела или появление деформаций и механических напряжений.
Деформация может возникать как в самом теле, так и в фиксирующих его объектах — например, пружинах.

Воздействие всегда осуществляется посредством полей, создаваемых телами и воспринимаемых рассматриваемым телом. Различные взаимодействия сводятся к четырём фундаментальным; согласно Стандартной мо

ru-wiki.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о