Кто придумал транзистор – Кто изобрел транзистор? – История изобретений – Календарь событий – Биографии великих людей,интересные идеи,полезные советы

История изобретения транзистора. Как был изобретен транзистор

1941 года ученые Уильям Шокли, Уолтер Браттейн и Джон Бардин объявили о создании транзистора , а 1947 года изобретение было официальное представлено публике. Именно эту дату принято считать днем изобретения транзистора . Но великий поход в «страну Полупроводников» начался еще в 1833, когда Майкл Фарадей обнаружил, что электропроводность сульфида серебра увеличивается при нагревании. И только через 125 лет в Америке на основе другого полупроводника, германия, была создана микросхема.

Новое изобретение

О первой демонстрации транзистора газета «New York Times» сообщила 1948 года на предпоследней странице: «Вчера Bell Telephone Laboratories впервые продемонстрировала изобретенный ею прибор под названием «транзистор» , его в некоторых случаях можно использовать в области радиотехники вместо электронных ламп. Было также показано его использование в телефонной системе и телевизионном устройстве. В каждом из этих случаев транзистор работал в качестве усилителя, хотя фирма заявляет, что он может применяться и как генератор, способный создавать и передавать радиоволны».

Новость, по мнению редактора, не походила на сенсацию. Публика не проявила поначалу интереса к новому прибору, и Bell пыталась продвинуть новинку, раздавая лицензии на использование транзистора всем желающим. А инвесторы между тем делали миллионные вложения в радиолампы, которые после тридцати лет развития переживали бум, – конец ему положит именно новое изобретение.

Потесненная лампа

До середины ХХ века казалось, что электронная лампа навсегда заняла место в радиоэлектронике. Она работала везде: в радиоприемниках и телевизорах, магнитофонах и радарах. Радиоэлектронная лампа сильно потеснила кристаллический детектор Брауна, оставив ему место только в детекторных приемниках. Удалось ей также составить конкуренцию и кристадину Лосева, – это был прообраз будущих полупроводниковых

транзисторов .

Но у лампы был большой недостаток – ограниченный срок службы. Необходимость создания нового элемента с неограниченным временем действия становилась в радиоэлектронике все острее. Но, как не парадоксально, разработка полупроводниковых приборов тормозилась, кроме объективных причин, еще и субъективными – инерцией мышления самих ученых. Достаточно сказать, что лабораторию американской компании «Bell telefon», где проводились исследования со сверхчистым германием, коллеги пренебрежительно называли «хижиной ненужных материалов».

Давние конкуренты

Эксперты, впервые увидев пластинку германия с присоединенными к ней проводниками, заявили: «Такой примитив никогда не сможет заменить лампу». И все же, не обращая внимания на все преграды, 1948 года компания «Bell telefon» впервые публично продемонстрировала твердотельный усилитель – точечный транзистор . Его годом раньше разработали сотрудники Джон Бардин и Уолтер Браттейн под руководством Уильяма Шокли.

На вопрос журналиста: «Как вы этого достигли?», Уильям Шокли ответил: «Транзистор

создан в результате соединения человеческих усилий, потребностей и обстоятельств».

Название «транзистор» происходит от английского слова TRANsferreSISTance, а окончание слова – «OR« соответствует раннее появившимся радиоэлементам – «термистор и варистор» и дал его Джон Пирс. В основе названия заложен тот факт, что прибором можно управлять путем изменения его сопротивления.

Бардин Шокли и Браттейн в лаборатории Bell, 1948 год

В 1956 году трем американским ученым за это открытие была присуждена Нобелевская премия в области физики. Интересно, что когда Джон Бардин опоздал на пресс-конференцию по поводу присуждения ему этой премии, то войдя в зал, в свое оправдание сказал: «Прошу извинить меня, но я не виноват, так как не мог попасть в гараж: отказал

транзистор в электронном замке».

Транзисторы в музыке

Уильям Шокли не остановился на достигнутом и разработал еще несколько новых типов транзисторов . К этим трудам своего сотрудника эксперты компании проявили скепсис. Более дальновидными оказались специалисты японской фирмы «SONY», она приобрела лицензию на эти транзисторы .

Полностью вытеснить радиолампу транзистору пока еще не удалось. Можно, наверное, утверждать, что полупроводниковые приборы и электронные лампы будут сосуществовать еще долго, не заменяя друг друга, а дополняя, и занимать то место в радиоэлектронике, где они дают наибольший эффект.

Не составляет исключение и музыкальная индустрия, так как звучание транзисторов и ламп серьезно отличается друг от друга. Очевидно то, что и варианты применения техники, построенной на столь несхожих компонентах, должны отличаться. Видимо, в каких-то случаях предпочтительней лампа, а в каких-то – транзистор .

При современном развитии электроники существует возможность сделать звук транзисторного прибора теплым, а лампового – достоверным. Такая техника существует, но стоит очень дорого.

Все же есть надежда, что в будущем лампа и транзистор станут жить дружно, дополняя друг друга и радуя потребителей. Отзывы же о комбинированной аппаратуре на сегодня очень обнадеживающие.

Транзистор обновлено: Июль 6, 2015 автором: Елена

Б. М. Малашевич

Трудно найти такую отрасль науки и техники, которая так же стремительно развивалась и оказала такое–же огромное влияние на все стороны жизнедея

levevg.ru

Первый Транзистор — Кто придумал?

Транзистор — предпосылка всей современной микроэлектроники. Если бы в обычном мобильном телефоне вместо транзисторов использовались катодно-лучевые трубки, устройство приобрело бы размеры Кёльнского собора.

Transfer resistor

Накануне Сочельника 1947 г. сотрудники компании «Белл Телефон Лабораториз» Уильям Шокли, Уолтер Браттейн и Джон Бардин продемонстрировали коллективу своей фирмы первый транзистор на основе полупроводникового материала германия. Примерно в это же время немецкие ученые Герберт Франц Матаре и Генрих Велькер разработали так называемый «французский транзистор» и в 1848 г. получили на него патент. В том же году Роберт Денк сконструировал первый транзисторный радиоприемник на основе электрода с оксидным покрытием. Денк не стал патентовать свое изобретение и даже уничтожил единственный экземпляр приемника, чтобы избежать злоупотреблений.

Победу обеспечил кремний

Однако ученым пришлось еще много потрудиться над подбором материала, пока полупроводниковые детали смогли удовлетворять техническим требованиям. С 1955 г. началось серийное производство кремниевых транзисторов, быстро вытеснивших вакуумные трубки из разнообразнейших устройств. Преимущество транзисторов в том, что они гораздо меньше и не так сильно нагреваются. Теперь стало возможным сооружение вычислительных машин, не занимающих целую комнату. Появившиеся в 1960-е гг. интегральные микросхемы потребовали разработки все более миниатюрных транзисторов, так что со временем они уменьшились в тысячу раз и стали тоньше волоса.

  • 1925 г.: Юлиус Эдгар Лилиенфельд создал теоретическое обоснование транзисторов, но не сумел воплотить их в реальность.
  • 1934 г.: Оскар Хейл изобрел полевой транзистор.
  • 1953 г.: первые транзисторы в слуховых аппаратах.
  • 1971 г.: первый микропроцессор — Интел 4004.

mjjm.ru

История развития транзисторов

ПЯТИГОРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА УПРАВЛЕНИЯ И ИНФОРМАТИКИ В ТЕХНИЧЕСКИХ СИСТЕМАХ

РЕФЕРАТ

«История развития транзисторов»

Выполнил:

Студент гр. УИТС-б-101

Сергиенко Виктор

Пятигорск, 2010

Введение

Транзи́стор (от англ. transfer — переносить и resistance — сопротивление или transconductance — активная межэлектродная проводимость и varistor — переменное сопротивление) — электронный прибор из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов.

Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).

В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). Другой важнейшей отраслью электроники является цифровая техника (логика, память, процессоры, компьютеры, цифровая связь и т. п.), где, напротив, биполярные транзисторы почти полностью вытеснены полевыми.

Вся современная цифровая техника построена, в основном, на полевых МОП (металл-оксид-полупроводник)-транзисторах (МОПТ), как более экономичных, по сравнению с БТ, элементах. Иногда их называют МДП (металл-диэлектрик-полупроводник)- транзисторы. Международный термин — MOSFET (metal-oxide-semiconductor field effect transistor). Транзисторы изготавливаются в рамках интегральной технологии на одном кремниевом кристалле (чипе) и составляют элементарный «кирпичик» для построения микросхем логики, памяти, процессора и т. п. Размеры современных МОПТ составляют от 90 до 32 нм. На одном современном чипе (обычно размером 1—2 см²) размещаются несколько (пока единицы) миллиардов МОПТ. На протяжении 60 лет происходит уменьшение размеров (миниатюризация) МОПТ и увеличение их количества на одном чипе (степень интеграции), в ближайшие годы ожидается дальнейшее увеличение степени интеграции транзисторов на чипе (см. Закон Мура). Уменьшение размеров МОПТ приводит также к повышению быстродействия процессоров, снижению энергопотребления и тепловыделения.

История

Первые патенты на принцип работы полевых транзисторов были зарегистрированы в Германии в 1928 году (в Канаде, 22 октября 1925 года) на имя австро-венгерского физика Юлия Эдгара Лилиенфельда. В 1934 году немецкий физик Оскар Хейл запатентовал полевой транзистор. Полевые транзисторы (в частности, МОП-транзисторы) основаны на простом электростатическом эффекте поля, по физике они существенно проще биполярных транзисторов, и поэтому они придуманы и запатентованы задолго до биполярных транзисторов. Тем не менее, первый МОП-транзистор, составляющий основу современной компьютерной индустрии, был изготовлен позже биполярного транзистора, в 1960 году. Только в 90-х годах XX века МОП-технология стала доминировать над биполярной.

В 1947 году Уильям Шокли, Джон Бардин и Уолтер Браттейн в лабораториях Bell Labs впервые создали действующий биполярный транзистор, продемонстрированный 16 декабря. 23 декабря состоялось официальное представление изобретения и именно эта дата считается днём изобретения транзистора. По технологии изготовления он относился к классу точечных транзисторов. В 1956 году они были награждены Нобелевской премией по физике «за исследования полупроводников и открытие транзисторного эффекта». Интересно, что Джон Бардин вскоре был удостоен Нобелевской премии во второй раз за создание теории сверхпроводимости.

Позднее вакуумные лампы были заменены транзисторами в большинстве электронных устройств, совершив революцию в создании интегральных схем и компьютеров.

Bell нуждались в названии устройства. Предлагались названия «полупроводниковый триод» (semiconductor triode), «Solid Triode», «Surface States Triode», «кристаллический триод» (crystal triode) и «Iotatron», но слово «транзистор» (transistor), предложенное Джоном Пирсом (John R. Pierce), победило во внутреннем голосовании.

Первоначально название «транзистор» относилось к резисторам, управляемым напряжением. В самом деле, транзистор можно представить как некое сопротивление, регулируемое напряжением на одном электроде (в полевых транзисторах — напряжением между затвором и истоком, в биполярных транзисторах — напряжением между базой и эмиттером).

Классификация транзисторов

Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от других разновидностей, основными носителями являются и электроны, и дырки (от слова «би» — «два»).

Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора — бо́льшая площадь p — n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.

Биполярный точечный транзистор был изобретен в 1947 году, в течение последующих лет он зарекомендовал себя как основной элемент для изготовления интегральных микросхем, использующих транзисторно-транзисторную, резисторно-транзисторную и диодно-транзисторную логику.

Первые транзисторы были изготовлены на основе германия. В настоящее время их изготавливают в основном из кремния и арсенида галлия. Последние транзисторы используются в схемах высокочастотных усилителей. Биполярный транзистор состоит из трех различным образом легированных полупроводниковых зон: эмиттера E, базы B и коллектора C. В зависимости от типа проводимости этих зон различают NPN (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и PNP транзисторы. К каждой из зон подведены проводящие контакты. База расположена между эмиттером и коллектором и изготовлена из слаболегированного полупроводника, обладающего большим сопротивлением. Общая площадь контакта база-эмиттер значительно меньше площади контакта коллектор-база, поэтому биполярный транзистор общего вида является несимметричным устройством (невозможно путем изменения полярности подключения поменять местами эмиттер и коллектор и получить в результате абсолютно аналогичный исходному биполярный транзистор).

В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В npn транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер. Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они — неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α / (1 − α) =(10..1000). Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора. Уровни электронов и дырок примерно равны.

Полевой транзистор — полупроводниковый прибор, в котором ток изменяется в результате действия перпендикулярного тока электрического поля, создаваемого входным сигналом.

Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных).

mirznanii.com

История транзисторов. Буревестники кремниевой революции::Журнал СА 1-2.2010

Рубрика: Карьера/Образование /  Ретроспектива

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Google+

 ВЛАДИМИР ГАКОВ, журналист, писатель-фантаст, лектор. Окончил физфак МГУ. Работал в НИИ. С 1984 г. на творческой работе. В 1990-1991 гг. – Associate Professor, Central Michigan University. С 2003 г. преподает в Академии народного хозяйства. Автор 8 книг и более 1000 публикаций

История транзисторов
Буревестники кремниевой революции

Нелепая ошибка привела к открытию, которое принесло его авторам Нобелевскую премию

Более шестидесяти лет назад, 23 декабря 1947 года, три американских физика, Уильям Шокли, Джон Бардин, Уолтер Браттейн, продемонстрировали коллегам новый прибор – полупроводниковый усилитель, или транзистор. Он был миниатюрнее, дешевле, прочнее и долговечнее радиоламп, а кроме того, потреблял гораздо меньше энергии. Словом, открытие стало настоящим рождественским подарком трех «санта-клаусов» человечеству – именно с этого основного элемента интегральных схем началась Великая кремниевая революция, приведшая к появлению общепринятых сегодня «персоналок».

Уильям Шокли, Джон Бардин и Уолтер Браттейн

Все трое получили заслуженную Нобелевскую премию, а Бардин впоследствии ухитрился получить и вторую – в 1972-м, за создание микроскопической теории сверхпроводимости (вместе с Леоном Купером и Джоном Шриффером – о чем ниже). Судьба Уильяма Шокли вообще сложилась очень любопытно.

Усилитель технического прогресса

История изобретения полупроводниковых усилителей – транзисторов – вышла драматичной, несмотря на ее скоротечность. Вся она уместилась в два послевоенных десятилетия, но чего в ней только не было! Тут и поразительные «пролеты» конкурентов удачливой тройки: находясь в буквальном смысле в сантиметрах от открытия, они не разглядели его и прошли мимо, в том числе и мимо светившей им Нобелевской премии. Ученики настолько хорошо усвоили идеи учителя, что чуть было не оставили его самого без означенной «нобелевки», так что раздосадованному шефу пришлось за неделю совершить невозможное, чтобы нагнать свою чересчур шуструю команду. Да и сам транзистор появился на свет, как это часто случалось, в результате нелепой ошибки одного из героев этой истории, измученного затяжной полосой неудач. Ну и, наконец, не менее поразительная «слепота» масс-медиа, сообщивших об одном из главных технологических переворотов ХХ века… мелким шрифтом на последних полосах!

Драматична судьба двух участников исторического события. Потеряв интерес к открытой ими золотой жиле, оба переключились на иные направления. Но Бардин, как уже говорилось, получил вторую «нобелевку» (их вообще в этой истории хватало), а Шокли – общественное негодование и игнорирование всего научного сообщества. До этого он еще успел растерять и лучших сотрудников. Сбежав из его фирмы и создав собственную, они разбогатели и прославились как создатели первых интегральных схем.

Тут не статью – увлекательный роман писать впору!

Но все по порядку. Итак, к середине прошлого века на повестку дня встал вопрос о замене громоздких, капризных, энергоемких и недолговечных электровакуумных ламп на что-то более миниатюрное и эффективное. К решению этой задачи одновременно подбирались несколько ученых и целые исследовательские группы.

История развития транзисторов

Хотя все началось еще раньше – в 1833 году, когда англичанин Майкл Фарадей обнаружил, что электропроводность сульфида серебра увеличивается при нагревании. Спустя без малого век, в 1926-м, соотечественник Фарадея Джулиус Эдгар Лилиенфилд получил патент под названием «Метод и прибор для управления электрическими токами», фактически предвосхитив, но так и не построив транзистор. А по окончании Второй мировой войны изучением электропроводных свойств полупроводниковых материалов занялись специалисты исследовательской фирмы Bell Telephone Laboratories, чья штаб-квартира располагалась в Марри-Хиллз (штат Нью-Джерси).

Именно там под руководством видного теоретика Уильяма Шокли был создан один из первых «мозговых центров» в истории американской науки. Шокли еще до войны пытался решить задачу повышения проводимости полупроводников с помощью внешнего электрического поля. Эскиз прибора в рабочем журнале ученого за 1939 год весьма напоминал нынешний полевой транзистор, однако испытания тогда закончились неудачей.

К концу войны в полупроводники успели поверить многие коллеги Шокли и, что самое главное, потенциальные заказчики и инвесторы – большой бизнес и «оборонка». На них произвели впечатление созданные во время войны радары, в основе которых лежали полупроводниковые детекторы.

Первым делом Шокли пригласил в Марри-Хиллз бывшего однокашника – теоретика Джона Бардина, переманив его из университета простым способом: предложил в два раза больший оклад. Кроме них двоих, в состав группы входила еще пятерка специалистов: теоретик, два экспериментатора, физико-химик и инженер-электронщик. Капитан этой команды ученых поставил перед ними ту же задачу, над которой бился до войны.

Однако и вторая попытка привела к отрицательному результату: изменить электропроводность полупроводниковых кремниевых пластин не смогли даже сильные внешние поля. Правда, на сей раз Бардин, работавший в связке с экспериментатором Уолтером Браттейном, с которым успел подружиться еще в колледже (где их объединила не только работа, но и совместное увлечение – гольф), смог хотя бы объяснить причину неудачи.

Если не вдаваться в технические детали, то из созданной им теории так называемых поверхностных состояний следовало, что управляющие металлические пластины, с помощью которых ученые воздействовали на полупроводниковый образец, и не могли дать желанного эффекта. Для получения положительного результата их следовало заменить заостренными (игольчатыми) электродами.

Друзья-коллеги так и поступили, и снова ничего. Казалось, дело зашло в тупик, но тут законченный трудоголик Браттейн, про которого говорили, что он может крутить ручки осциллографа по 25 часов в сутки («лишь бы было с кем поболтать»), неожиданно сорвался и совершил непростительную для профессионала ошибку. Что он там замкнул не так и какие полюса перепутал, в состоянии понять и оценить по достоинству только специалист-физик, для остального человечества важен результат той досадной ошибки, ставшей поистине золотой. Подсоединив электрод не туда, куда надо, Браттейн с удивлением зафиксировал резкое усиление входного сигнала: полупроводник заработал!

Проваленная премьера

Первым, кто сразу же оценил всю прелесть совершенной ошибки, был Бардин. Вместе с Браттейном он продолжил движение в «неправильном» направлении, начав экспериментировать с кристаллом германия, обладавшим большим, чем у кремния, сопротивлением. И 16 декабря 1947 года друзья продемонстрировали остальным участникам группы первый полупроводниковый усилитель, названный позже точечным транзистором.

Это был уродливый на вид германиевый брусок с торчащими из него закрученными усиками-электродами. Как именно он действует, в ту пору понимал, очевидно, один только Бардин: выдвинутая им по горячим следам гипотеза об инжекции (испускании) зарядов одним электродом (эмиттером) и их собирании другим электродом (коллектором) была выслушана коллегами в недоуменном молчании. Специалистов можно было понять – подтверждения теоретической правоты Бардина пришлось ждать годы.

Официальная презентация нового прибора состоялась через неделю, в предрождественский вторник 23 декабря, и эта дата вошла в историю как день открытия транзисторного эффекта. Присутствовал весь топ-менеджмент Bell Telephone Laboratories, сразу оценивший, какие золотые горы сулит компании новое изобретение – особенно в радиосвязи и телефонии.

Современные транзисторы

В мрачном расположении духа пребывал лишь снедаемый ревностью руководитель группы. Шокли считал себя автором идеи транзистора, он первым преподал своим удачливым ученикам основы квантовой теории полупроводников – однако его непосредственного вклада в создание первого рабочего транзистора никакое патентное бюро при всем желании не разглядело бы и в лупу.

Вдвойне несправедливо было и то, что Шокли раньше других оценил совершенно фантастические перспективы, которые сулил транзистор в иной области – стремительно прогрессировавшей вычислительной технике. Тут уже определенно светила «нобелевка», и Шокли, обладавший честолюбием и болезненным самолюбием, совершил фантастический рывок, чтобы успеть на уходящий поезд. Буквально за неделю ученый создал теорию инжекции и более основательную, чем бардинская, теорию транзистора – так называемую теорию p-n-переходов. А в новогоднюю ночь, когда коллеги исследовали в основном оставшиеся с рождественских гуляний бутылки из-под шампанского, придумал еще один тип транзистора – плоскостной (его еще называют «бутербродный»).

Героические усилия честолюбивого Шокли не пропали даром – спустя восемь лет он вместе с Бардиным и Браттейном разделил заветную Нобелевскую премию. На торжествах в Стокгольме, кстати, вся тройка в последний раз собралась вместе и больше никогда в полном составе не встречалась.

Через полгода после удачной премьеры транзистора в нью-йоркском офисе фирмы состоялась презентация для прессы нового усилителя. Однако реакция СМИ вопреки ожиданиям оказалась более чем вялой. На одной из последних полос (46-й) газеты The New York Times от 1 июля 1948 года в разделе «Новости радио» появилась короткая заметка – и все. Сообщение явно не тянуло на мировую сенсацию – с конца июня все американские и мировые СМИ были заняты обсуждением другой новости – советской блокады Западного Берлина, начатой за неделю до презентации транзистора. Изобретение троих ученых померкло на фоне репортажей о «воздушном мосте», с помощью которого американцы доставляли в блокированный сектор Берлина продукты питания и прочие предметы первой необходимости.

Поначалу фирме Bell Telephone Laboratories пришлось раздавать лицензии на транзисторы всем желающим, не торгуясь. Спрос был невелик – в то время инвесторы по инерции еще вкладывали огромные деньги в обычные радиолампы, производство которых переживало бум. Однако нашлись одиночки, которые быстро распознали возможности новых полупроводниковых усилителей, прежде всего в неожиданной области – слуховых аппаратов.

Микроэлектроника и макроевгеника

Среди прочих на нью-йоркской презентации присутствовал еще один будущий нобелевский лауреат – в ту пору инженер небольшой фирмы Centralab Джек Сент-Клер Килби. Вдохновившись увиденным, он наладил в своей фирме производство первых в мире миниатюрных слуховых аппаратов на транзисторах. А в мае 1958 года Килби перебрался в Даллас и поступил на работу в компанию Texas Instruments, производившую транзисторы, конденсаторы, резисторы и прочие «кубики», из которых собираются электросхемы.

Когда летом большинство сотрудников отправились в отпуска, Килби «на новенького» оставили потеть в офисе. Кроме всего прочего, ему пришлось заниматься рутинной работой, связанной скорее с бизнесом, чем с физикой. Именно за анализом ценообразования полупроводникового производства ученого посетила гениальная идея, в основе своей чисто экономическая. Получалось, что для вывода производства полупроводников на уровень рентабельности компании следовало ограничиться выпуском их одних. А все прочие активные элементы схемы производить на основе того же полупроводника, причем уже соединенными в единую компактную конструкцию наподобие детской игры Lego! Килби как раз и придумал, как это сделать.

Руководство компании пришло в восторг от идеи сотрудника и тут же «нагрузило» его срочным заданием: построить опытную модель схемы, целиком сделанной из полупроводника. 28 августа 1958 года Килби продемонстрировал работавший макет триггера, после чего приступил к изготовлению первой монолитной интегральной микросхемы (генератора с фазовым сдвигом) на кристалле германия.

Первый в истории простейший микрочип размером со скрепку для бумаг заработал 12 сентября, и этот день также вошел в историю. Однако Нобелевской премии Джеку Килби пришлось ждать почти полвека – ученый получил ее в последний год ХХ столетия, разделив премию с соотечественником, выходцем из Германии Гербертом Кремером и российским коллегой Жоресом Алферовым.

Что касается личных и профессиональных судеб трех отцов транзистора, то они сложились по-разному. Бардин, которого ревнивый до паранойи Шокли начал откровенно «затирать», в 1951 году оставил Bell Telephone Laboratories и перешел на работу в Университет штата Иллинойс в Урбане. Дополнительным стимулом послужил редкий в те времена годовой оклад в $10 тыс. Спустя пять лет профессор Бардин, уже забывший о полупроводниках и переключившийся на квантовые системы, услышал по радио о присуждении ему Нобелевской премии. А в 1972-м, как уже говорилось, за созданную вместе с сотрудниками Леоном Купером и Джоном Шриффером микроскопическую теорию сверхпроводимости получил и вторую. Умер единственный в истории дважды лауреат Нобелевской премии (в одной и той же номинации!) в 1991 году в возрасте 82 лет.

Анди Гроув, Роберт Нойс и Гордон Мур

Для Уолтера Браттейна, скончавшегося за четыре года до того, точечный транзистор так и остался пиком научной карьеры.

Зато их руководитель Уильям Шокли и после полученной премии активно работал в различных областях, хотя транзисторы вскоре забросил. Любопытно, что с технологической и коммерческой точек зрения его плоскостной транзистор оказался более перспективным, чем точечный Бардина и Браттейна: последний продержался на рынке лишь до конца 1950-х, в то время как плоскостные выпускаются и поныне. И именно на их основе были созданы первые микросхемы.

Но более всего Шокли прославился в сфере, весьма далекой от физики. А по мнению многих, и от науки вообще. В середине 1960-х годов он неожиданно увлекся евгеникой, вызывающей у многих неприятные ассоциации с арийскими сверхчеловеками, низшими расами и тому подобными «приветами» из недавнего прошлого. Шокли разработал собственную модификацию евгеники – дисгенику. Эта теория говорит о неизбежной умственной деградации человечества, в котором с течением времени вымывается интеллектуальная элита (люди с высоким IQ), а их место занимают те, у кого недостаток интеллекта скомпенсирован избытком репродуктивной функции. Иными словами – более плодовитыми и более глупыми.

С идеей общего оглупления человечества трезвомыслящему человеку еще можно было бы согласиться – в принципе. Однако Шокли добавил в свои рассуждения расовый момент, записав в число более плодовитых и более глупых представителей черной и желтой рас, которые, по его мнению, от рождения обладают более низким IQ, чем белые. На том американский физик не остановился и в духе приснопамятных нацистских рецептов предложил свое окончательное решение – только не еврейского, а негритянского вопроса. Чтобы бурно размножающиеся и умственно неразвитые «черные» (а также «желтые» и слабоумные «белые») окончательно не вытеснили на обочину истории высокоинтеллектуальную белую элиту, последней следует побудить первых к добровольной стерилизации.

План Шокли, который он неоднократно представлял в американскую Академию наук и правительственные учреждения, предусматривал материальное стимулировение людей с низким IQ, согласившихся на добровольную стерилизацию.

Можно себе представить реакцию коллег Шокли на подобные откровения. В 1960-е годы о тотальной политкорректности в Америке говорить не приходилось, но и откровенный расизм был уже не в моде. А когда подобные идеи излагал профессор и нобелевский лауреат, результатом могли быть только шок и возмущение. Полная обструкция со стороны интеллектуальной элиты сопровождала Шокли до последних дней (он умер от рака в 1989 году).

Вундеркинды Кремниевой долины

Между тем история изобретения транзистора на том не закончилась. Круги от исторического события, произошедшего в декабре 1947 года, расходились еще долго, порой приводя к совершенно непредсказуемым результатам.

По справедливости к упомянутой тройке нобелевских лауреатов 2000 года – Килби, Кремеру и Алферову – должен был бы присоединиться и американец Роберт Нойс, создавший первую микросхему одновременно с Килби. И самое главное – независимо от него. Однако Нойсу не довелось дожить до конца века, а посмертно эту премию, как известно, не присуждают.

Но занятно, что первый толчок научной карьере Нойса дал тот же Шокли – еще до того, как окончательно «сдвинулся» на расовой почве. В 1955 году будущий нобелевский лауреат покинул компанию Bell Telephone Laboratories и основал собственную фирму Shockley Semiconductor Laboratories в южном пригороде Сан-Франциско – Пало-Альто, где прошло его детство. Так был заложен первый камень в основание легендарной Кремниевой (или Силиконовой) долины.

Сотрудников Шокли набрал из молодых, да ранних, не подумав ни об их амбициях, ни о пределах их терпения – характер у него был отвратительный, да и руководителем он себя показал никаким. Не прошло и двух лет, как психологический климат в фирме стал чреват взрывом, и восемь лучших сотрудников во главе с Нойсом и Гордоном Муром сбежали из нее, чтобы основать собственную компанию.

Гениальных идей у «восьмерки предателей» (как заклеймил их Шокли) было хоть отбавляй – чего не скажешь о стартовых капиталах. Друзья-компаньоны еще не рожденной компании начали хождение по банкам и инвесторам в поисках денег. И после нескольких отказов счастливо наткнулись на такого же молодого и амбициозного финансиста Артура Рока, чьим коньком было как раз привлечение инвестиций. Что именно «напели» инженеры-технари бизнесмену, истории неведомо, но, как бы то ни было, он сыграл поистине судьбоносную роль в их будущем бизнесе. А также в судьбе других фирм Кремниевой долины, у основателей которых на старте не было ни гроша за душой – одни гениальные идеи и проекты.

С помощью Рока местная компания Fairchild Camera & Instrument согласилась инвестировать в новое дело $1,5 млн, но с одним условием: у нее останется право в будущем выкупить компанию «восьмерки» за вдвое большую сумму – если у тех дела пойдут в гору. Так была создана компания Fairchild Semiconductor, название которой буквально переводится как «Полупроводник чудо-ребенка» (в немецком варианте – вундеркинда). И вундеркинды из Пало-Альто скоро заявили о себе.

Первый транзисторСовременный микрочипМикрочип

Нойс сам себя считал отменным лентяем. И главное изобретение жизни сделал, по его собственным словам, также из лени. Ему надоело наблюдать, как при изготовлении микромодулей пластины кремния сначала разрезали на отдельные транзисторы, а затем опять соединяли друг с другом в единую схему. Процесс был трудоемким (все соединения паялись вручную под микроскопом) и дорогостоящим. И в 1958 году Нойс наконец сообразил, как изолировать друг от друга отдельные транзисторы в кристалле. Так родились всем знакомые микросхемы – пластинки с графическим лабиринтом «дорожек» из алюминиевых напылений, отделенных друг от друга изолирующим материалом.

На первых порах микросхемы с трудом пробивали себе дорогу на рынок. Но в начале 1970-х все резко изменилось: после того как в 1969 году Fairchild Superconductor продала определенный тип микрочипов (предсказанных Бардиным еще во время работы в Bell Telephone Laboratories) на $15 млн. Спустя два года объем продаж той же продукции подскочил до $100 млн.

Однако успехи «вундеркиндов» омрачили обычные в таких случаях приоритетные дрязги. Дело в том, что Джек Килби подал заявку на патент микросхемы в феврале 1959 года, а Нойс сделал это только спустя пять месяцев. Тем не менее он получил патент первым – в апреле 1961-го, а Килби – только через три года. После этого между конкурентами развязалась десятилетняя «приоритетная война», закончившаяся мировым соглашением: Апелляционный суд США подтвердил претензии Нойса на первенство в технологии, но одновременно постановил считать Килби создателем первой работающей микросхемы.

Роберт Нойс не дожил до положенной ему по праву Нобелевской премии 2000 года ровно десять лет – в 63-летнем возрасте он скончался в своем рабочем кабинете от сердечного приступа.

Но до этого он основал вместе с Муром еще одну знаменитую компанию. Бросив в 1968 году налаженный бизнес в Fairchild Semiconductor, друзья решили назвать свое новое детище без затей: Moore Noyce. Однако по-английски это звучало более чем двусмысленно – почти как more noise («больше шума»), и компаньоны остановились на более официальном, зато содержательном названии: Integrated Electronics. Затем их компания неоднократно меняла имя, и сегодня каждый пользователь «персоналок» ежедневно лицезреет ее логотип с нынешним названием, коротким и звучным – Intel. Который «внутри».

Так спустя два десятилетия после открытия Бардина, Браттейна и Шокли завершилась Великая кремниевая революция.

Приложение

Нарушитель конвенции

В случае с Джоном Бардиным члены Шведской академии в первый и пока единственный раз в более чем вековой истории Нобелевских премий пошли на нарушение ее статута. Один из его пунктов запрещает присуждать премии дважды в одной номинации. Однако отметить успех сотрудников Бардина (очевидный для членов комитета и всего мирового научного сообщества) и при этом проигнорировать главного виновника торжества было бы просто неприлично, и американскому физику сделали исключение.

На сенсацию явно не тянуло…

«Вчера Bell Telephone Laboratories впервые продемонстрировала изобретенный ею прибор под названием «транзистор», который в ряде случаев можно использовать в области радиотехники вместо электронных ламп. Прибор был применен в схеме радиоприемника, не содержащего обычных ламп, а также в телефонной системе и телевизионном устройстве. Во всех случаях прибор работал в качестве усилителя, хотя фирма заявляет, что он может применяться и как генератор, способный создавать и передавать радиоволны. Транзистор, имеющий форму маленького металлического цилиндра длиной около 13 миллиметров, совсем не похож на обычные лампы, в нем нет ни полости, из которой откачан воздух, ни сетки, ни анода, ни стеклянного корпуса. Транзистор включается практически мгновенно, не требуя разогрева, поскольку в нем отсутствует нить накала. Рабочими элементами прибора являются лишь две тонкие проволочки, подведенные к куску полупроводника величиной с булавочную головку, припаянному к металлическому основанию. Полупроводник усиливает ток, подводимый к нему по одной проволочке, а другая отводит усиленный ток».

The New York Times, 1 июля 1948 г.


Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Google+

samag.ru

Транзисторная история.

Главная  → Технологии  → Транзисторная история

Александр Нитусов

Открывая осенний форум Intel для разработчиков (IDF) в Сан-Франциско (www.pcweek.ru/themes/detail.php?ID=102444), старший вице-президент и генеральный менеджер подразделения Digital Enterprise Group корпорации Патрик Гелсингер отметил, что 2007-й стал юбилейным не только для Intel (отметившей десятилетие IDF), но и для всей полупроводниковой отрасли: как признано международным сообществом, 60 лет назад американцы У. Шокли, В. Браттейн и Дж. Бардин изобрели первый транзистор.

Тем не менее, подобные изобретения не делаются на пустом месте «из ничего»; научные достижения советских исследователей и инженеров, равно как и разработки немецких ученых, в 1920—1930-е годы создали теоретические и экспериментальные основы и во многом предопределили появление этого прибора.

Когда и где именно начался «путь к транзистору» , сказать не просто. Его конкретному созданию предшествовал длительный и весьма насыщенный период исследований в области электроники, научных экспериментов и разработок во многих странах. Разумеется, СССР не был исключением. Началом отечественных разработок в этом направлении можно считать труды физика А. Г. Столетова по исследованию фотоэффекта и А. С. Попова по созданию радиопередающих устройств ещё в конце XIX в. Развитие электроники в советское время стимулировалось бурным прогрессом радиотехники в двадцатые годы, немалую роль в котором играли разработки сверхмощных (для того времени) радиоламп, ламповых триггеров и других элементов, выполненные М. А. Бонч-Бруевичем. Одним из факторов, определивших бурное развитие данного направления, стал общий подъём науки и образования в стране.

Историки науки знают, что уровень советских исследований и разработок по всему диапазону вопросов электроники часто превосходил мировой и никогда не опускался ниже него. Это обуславливалось как «взрывным» характером научного прогресса в СССР так и тем, что на развитии науки во многих западных странах весьма негативно сказались период послевоенной (1914—1918 гг.) депрессии, а позже и жестокий экономический кризис 1929—1934 гг.

Одной из первых заинтересовавших экспериментаторов проблем стала односторонняя проводимость в точке соприкосновения металлической пружины и кристаллов полупроводника: требовалось понять причины этого явления.

О. В. Лосев

Советский инженер-радиофизик О. В. Лосев, родившийся в 1903 в Твери, школьником провёл много времени на местной радиостанции, где работали радиоконструкторы В.М. Бонч-Бруевич, В.М. Лещинский и В.К. Лебединскй. В 1920 г. он окончил Тверское реальное училище и начал работу в Нижегородской радиолаборатории (соданной по указу В.И. Ленина в 1918), где Бонч-Бруевич и создавал новые радиолампы. Получив должность лаборанта в отделе В.К. Лебединского, Лосев занялся иследованием кристаллических детекторов. Экспериментируя со слаботочной техникой (работающей при напряжениях до 4В), Лосев исследовал вольт-амперные характеристики детектора из цинкита и угольного волоска (из старой лампы). 13 января 1922 он открыл явление возникновения электромагнитных колебаний и эффект их усиления в полупроводниковом кристаллическом детекторе. Он обнаружил у кристалла падающий участок вольт-амперной характеристики и первым построил генерирующий детектор, т. е. детекторный приемник, способный принимать и усиливать электромагнитные колебания. Свой прибор Лосев и основал на контактной паре металлического острия и кристалла цинкита (оксида цинка), на которую подавалось небольшое напряжение. Прибор Лосева – приемник с генерирующим диодом, вошёл в историю полупроводниковой электроники как «кристадин» (кристаллический гетеродин). Это открытие не оформлялось никакими патентами, но было широко обнародовано и в СССР и за рубежом. Лосев приобрел всемирную известность, а сами кристадины работали (на волне 24 м ) на нескольких радиостанциях Министерства связи (Наркомпочтеля), что принесло автору две премии министерства – в 1922 и 1925 гг. Кристадины производились до начала 1930-х гг., а потом были сменены усовершенствованными радиолампами. Примечательно, что продолжение исследований в этом направлении привело к созданию в 1958 г. туннельных диодов, нашедших применение в вычислительной технике 60-х годов ХХ века. Лосев первым открыл и новое явление — свечение кристаллов карборунда при прохождении тока через точечный контакт. Учёный объяснил это явление существованием в детектирующем контакте некоторого «активного слоя» (впоследствии названного p – n -переходом, от p — positive, n — negative) (статья О. Лосева в журнале «Телеграфия и Телефония без проводов» 1927 г.). В 1929 г. Лосев получил патент СССР (№ 12191) на изобретение светового реле. Само явление свечения мировая печать1920-х гг. называла «светом Лосева» (Lossew Licht, Losev light, etc.), а открывателю (так и не получившему специального образования) по инициативе академика А.Ф. Иоффе в 1938 г. была присуждена степень кандидата физико-математических наук.

В 1926 г. советский физик Я. И. Френкель выдвинул гипотезу о дефектах кристаллической структуры полупроводников, названных «пустыми местами» , или, более привычно, «дырками» , которые могли перемещаться по кристаллу. В 1930-е годы академик А. Ф. Иоффе начал эксперименты с полупроводниками в Ленинградском институте инженерной физики, а в 1932 Иоффе и Френкель разработали теорию выпрямления тока контактном слое металл-полупроводник в которой рассматривался и туннельный эффект.

Параллельно с открытиями советских исследователей достигли успехов и немецкие ученые. Так 1928 Юлиус Эдгар Лилиенфельд запатентовал принципы работы полевого транзистора , хотя конечно, говорить о стабильности его характеристик или их техническом совершенстве в то время было ещё рано. В 1936-38 гг. знаменитый физик Роберт Вихард Поль (основоположник современной физики твёрдого тела), совместно с Р. Хильшем, создали реально работавший прототип транзистора – полупроводниковый усилитель, основанный на кристаллах бромида галлия (опубликовано в Zeitschrift Physik, III (1938)).

Сам факт научного общения в Европе (и не только) вряд ли может вызвать сомнения. В 1920-е и до второй половины 1930-х гг. научная литература и периодика европейских стран, включая СССР, были достижимы почти для каждого ученого и личные контакты также были относительно свободыми. Так например, Роберт Поль посещал СССР в 1928 г., участвуя, вместе с Полем Дираком, Петером Прингсхаймом, Максом Борном, Абрамом Йоффе, Рудольфом Ладенбургом и др. в VI съезде физиков, в Казани. Советские ученые также выезжали в другие страны и поддерживали международные научные контакты. Правда, не всегда это приносило вещественные результаты. Так О. Лосев пытался обсудить физические основы своих открытий в фотолюменисценции с А. Эйнштейном, однако ответа на своё обращение не получил.

Тем не менее, определить степень взаимного влияния результатов конкретных разработок в области электроники и указать насколько независимым было то или иное открытие того периода, не так просто.

В том же 1938 г. украинский академик Б.И. Давыдов и его сотрудники предложили (первую) диффузионную теорию выпрямления переменного тока посредством кристаллических детекторов, в соответствии с которой оно имеет место на границе между двумя слоями проводников, обладающих p- и n- проводимостью. Эта диффузионная теория выпрямления в p – n – p переходе была опубликована Б.И. Давыдовым в 1938 в статье: «К теории движения электронов в газах и полупроводниках» (ЖЭТФ VII , вып. 9-10 стр. 1069-89, 1937, воспроизведено в «Успехах Физических наук» I. XIX вып.1, 1938), последовавшей за его статьей: «О распределении скоростей электронов движущихся в электрическом поле» (ЖЭТФ 6 (5), 463, 1936).

Далее, в СССР, эта теория была подтверждена и развита в исследованиях, работавшего до 1935 в группе А.Ф. Йоффе в Ленинграде, Вадима Евгеньевича Лашкарева, проведенных им в Киеве в 1939—1941 гг. Он установил, что по обе стороны «запорного слоя» , расположенного параллельно границе раздела медь – оксид меди, находятся носители тока противоположных знаков (явление p n -перехода), а также, что введение в полупроводники примесей резко повышает их способность проводить электрический ток. Лашкарев открыл и механизм инжекции (переноса носителей тока) – явления, составляющего основу действия полупроводниковых диодов и транзисторов. Его работа была прервана начавшейся войной и окупацией, однако по её окончании Лашкарёв вернулся в Киев и в 1946 г. возобновил исследования.

Война прервала не только его работу. Так, Олег Лосев, начавший в 1941 исследования сплавов кремния, который он считал очень перспективным для электроники материалом, скончался от голода в 1942 г. в осажденном Ленинграде.

Так выглядел первый транзистор,
созданный группой специалистов Bell Labs, 1947 г.
(фотография с сайта www.wikipedia.org)

Ко второй половине 1940-х гг. успешные теоретические и эксперементальные довоенные исследования европейцев (включая СССР), а затем и начавшиеся американские разработки, создали благоприятную научную основу для создания более-менее удовлетворительно работавших транзисторов и их производства на промышленном уровне. Так теория p – n – p перехода предложенная Давыдовым в 1938 впоследствии была развита У. Шокли в США. В 1947 г. В. Браттейн и Дж. Бардин, работавшие под руководством Шокли, открыли транзисторный эффект в детекторах, основанных на кристаллах германия. Их эксперименты во многом продолжали довоенные опыты Роберта В. Поля и Р. Хильша с усилителем на базе монокристалла бромида галлия, а также разработки Юлиуса Лилиенфельда. В 1948 г. были опубликованы результаты исследований Шокли и изготовлены первые германиевые транзисторы с точечным контактом. Разумеется, они всё ещё были весьма далеки от совершенства, а их конструкция сохраняла черты лабораторной установки (что, впрочем, характерно для начального периода любого подобного изобретения). Характеристики первых транзисторов отличались неустойчивостью и непредсказуемостью, и поэтому их реальное практическое применение началось уже после 1951 г., когда Шокли создал более надёжный транзистор – планарный, состоявший из трёх слоёв германия типа n — p — n суммарной толщиной 1 см. За открытия в области полупроводников и изобретение транзистора Шокли, Бардин и Браттейн в 1956 г. разделили Нобелевскую премию по физике (примечательно, что Бардин – единственный физик, удостоенный Нобелевской премии дважды: второй раз – в 1972 г. за разработку теории сверхпроводимости).

К сожалению, эпохальное изобретение было омрачено последовавшей попыткой Шокли претендовать на монопольное владение патентом на выпущенный транзистор, однако патентоведы фирмы Белл отклонили претензии, указав, между прочем, что его собственный патент (на основании которого он руководил работой) оказался почти идентичным патенту Лилиенфельда.

Разумеется, создатели первого, достаточно устойчиво функционировавшего, транзистора не начинали «с нулевой отметки» , что попросту невозможно при современном уровне науки и технологий, а продолжали работу предшественников. Об этом говорил и Дж. Бэрдин в вводной части своей Нобелевской лекции (11.12.1956 г.). В частности, Бэрдин отметил, что: «…Основательный теоретический базис имелся уже в (Европейских) работах выполненных в 1930-е гг.:

  • Квантовая механическая теория Вильсона, основанная на модели энергетической зоны, описывающая проводимость в терминах избыточных электронов и дырок. Это основа всего последующего развития. Теория показывает, как концентрация носителей зависит от температуры и наличия примесей.»
  • «Теория Френкеля о явлении фотопроводимости (изменение потенциала в точке контакта при (изменении) освещённости и электрический эффект фотогенерирования). В них приводятся общие уравнения, описывающие протекание тока при наличии неравновесной концентрации дырок и проводящих электронов. Он открыл что ток (электронов) может происходить по причине диффузии в перепаде концентрации, равно как и за счёт электрического поля.»
  • «Независимые, параллельные разработки по теории выпрямления в контактной зоне были выполнены Моттом, Шоттки и Давыдовым. Наиболее полная математическая теория была разработана Шоттки и его сотрудником Шпенке.»

В списке источников, помещенном в лекции, под номером 2 значится Я.И. Фрнекель ( Physik Z. Sowjetunion 8 (1935) 185), под ном. 4 – Б.И. Давыдов (J. Tech. Phys. U.S.S.R, 5(1938)87), под ном. 6 – R . Hilsch and R. W. Pohl, (Z. Physik, III (1938) 399), а под ном. 7 помещен комментарий о том что: «Усилители основанные на принципе полевого эффекта ранее уже приводились в патентной литературе (Р. Лилиенфельд и др.), но были несовершенны / not successful /» .).

Первые отечественные транзисторы П1А и П3А
(с радиатором), 1957 г.

Однако времена менялись и в 1950-е гг. развитие транзистора шло полным ходом. Полым ходом шла работа и в СССР. Начиная с 1946 г. В.Е. Лашкарёв успешно разворачивал научные исследования в разрушенном войной Киеве. Вскоре он открыл биполярную диффузию неравновесных носителей тока в полупроводниках, а в начале 1950-х изготовил первые точечные транзисторы в лабораторных условиях. То, что результаты их опытной эксплуатации были обнадёживающими, подтверждается следующим любопытным эпизодом.

Пионер советской вычислительной техники – академик С. А. Лебедев, создавший в Киеве первую советскую ЭВМ МЭСМ (1949—1951) и основавший там научную школу, приезжал в Киев в день своего 50-летия (2 ноября 1952 г.). Там он услышал о транзисторах Лашкарёва и, игнорируя подготовленные в его честь торжества (а Лебедев вообще не любил никакого официоза, справедливо полагая его пустой тратой времени), отправился прямиком в лабораторию при Институте физики АН Украинской ССР. Познакомившись с Лашкарёвым и его разработками, Лебедев предложил сопровождавшему его аспиранту А. Кондалеву начать проектирование ряда устройств ЭВМ на базе новых транзисторов и диодов, что тот и сделал после трехмесячной стажировки у Лашкарёва. (Об этом случае автору рассказал другой аспирант Лебедева – ныне академик НАН Украины Б.Н. Малиновский, также присутствовавший при встрече и впоследствии включившийся в упомянутую работу.) Правда, сведения о каком-либо промышленном развитии этого проекта, по крайней мере в гражданской области, отсутствуют, но это и понятно: массового производства транзисторов в те годы ещё не существовало.

Широкое применение транзисторов во всём мире началось позже. Тем не менее, научные заслуги Лашкарёва были оценены: он возглавил новый Институт полупроводников АН Украины, который был открыт в 1960 г.

В СССР работа по транзисторам велась почти в таком же темпе, что и за рубежом. Параллельно с киевской лабораторией Лашкарёва исследовательская группа московского инженера А. В. Красилова в 1948 г. создала германиевые диоды для радиолокационных станций. В феврале 1949-го Красилов и его помощница Сусанна Мадоян (Сусанна Гукасовна Мадоян – в то время студентка Московского химико-технологического института, выполнявшая дипломную работу по теме «Точечный транзистор» ) впервые наблюдали транзисторный эффект. Правда, первый лабораторный образец работал не более часа, а затем требовал новой настройки. Тогда же Красилов и Мадоян опубликовали первую в Советском Союзе статью о транзисторах, называвшуюся «Кристаллический триод» .

Приблизительно в то же время точечные транзисторы были разработаны и в других лабораториях страны. Так, в 1950 г. экспериментальные образцы германиевых транзисторов были созданы в Физическом институте Академии наук (Б.М. Вулом, А.В. Ржановым, В.С. Вавиловым и др.) и Ленинградском физико-техническом институте (В.М. Тучкевичем, Д.Н. Наследовым).

В 1953 г. был организован первый в СССР институт полупроводников (ныне — НИИ «Пульсар» ). Туда была переведена лаборатория Красилова, в которой Мадоян разработала первые сплавные германиевые транзисторы. Их развитие связано с расширением частотного предела и повышением КПД транзистора. Соответствующие работы проводились совместно с лабораторией профессора С. Г. Калашникова в ЦНИИ-108 (ныне ГосЦНИРТИ): начинался новый период, характеризуемый сотрудничеством различных организаций, специализировавшихся в полупроводниковой области. В конце же 1940-х одинаковые открытия часто делались независимо друг от друга, а их авторы не имели информации о достижениях своих коллег. Причиной такой «научной параллельности» была секретность исследований в области электроники, имевшей оборонное значение. Подобная картина наблюдалась и при создании первых электронных компьютеров будущих потребителей транзисторов.

Впрочем, секретность отнюдь не была некой «советской особенностью» : оборонные разработки засекречиваются во всем мире. Изобретение транзистора тоже было строго засекречено фирмой Bell (где в то время работал Шокли), и первое сообщение о нем появилось в печати только 1 июля 1948 г.: в небольшой заметке газеты The New York Times, где без лишних подробностей сообщалось о создании подразделением Bell Telephone Laboratories твердотельного электронного прибора, заменявшего электронную лампу.

С образованием сети специальных научно-исследовательских организаций развитие транзисторов постоянно ускорялось. В начале 1950-х в НИИ-160 Ф. А. Щиголь и Н. Н. Спиро ежедневно выпускали десятки промышленных экземпляров точечных транзисторов типа С1-С4, а М. М. Самохвалов разрабатывал в НИИ-35 новые решения по групповой технологии, технологии «вплавления – диффузии» для получения тонкой базы ВЧ-транзисторов. В 1953 г. на основе исследований термоэлектрических свойств полупроводников А. Ф. Иоффе создал серию термоэлектрогенераторов, а в НИИ-35 были изготовлены планарные транзисторы П1, П2, П3. Вскоре в лаборатории С. Г. Калашникова был получен германиевый транзистор для частот 1,0 — 1,5 МГц, а Ф. А. Щиголь сконструировал кремниевые сплавные транзисторы типа П501-П503.

В 1957 г. советская промышленность выпустила 2,7 млн. транзисторов. Начавшееся создание и развитие ракетной и космической техники, а затем и вычислительных машин, а так же потребности приборостроения и других отраслей экономики полностью удовлетворялись транзисторами и другими электронными компонентами отечественного производства.

Статья опубликована в журнале PCWeek/RE №41 (599) 2007
Печатается с разрешения автора.
Статья помещена в музей 6.01.2008

www.computer-museum.ru

транзистор кто изобрел — кто и когда изобрёл транзистор — 22 ответа



транзистор изобретен

В разделе Наука, Техника, Языки на вопрос кто и когда изобрёл транзистор заданный автором Вровень лучший ответ это Первые патенты на принцип работы полевых транзисторов были зарегистрированы в Германии 1928 (в Канаде, в 1925 году в октябре 22) на имя австро-венгерского физика Юлия Эдгара Лилиенфельда. В 1934 году немецкий физик Оскар Хейл запатентовал полевой транзистор. Полевые транзисторы (в частности, МОП-транзисторы) основаны на простом электростатическом эффекте поля, по физике они существенно проще биполярных транзисторов, и поэтому они придуманы и запатентованы задолго до биполярных транзисторов. Тем не менее, первый МОП-транзистор, составляющий основу современной компьютерной индустрии, был изготовлен позже биполярного транзистора в 1960 году. Только в 90-х годах 20 века МОП-технология стала доминировать над биполярной.
В 1947 году Уильям Шокли, Джон Бардин и Уолтер Браттейн в лабораториях Bell Labs впервые создали действующий биполярный транзистор, продемонстрированный 16 декабря. 23 декабря состоялось официальное представление изобретения и именно эта дата считается днём изобретения транзистора. По технологии изготовления он относился к классу точечных транзисторов. В 1956 году они были награждены Нобелевской премией по физике «за исследования полупроводников и открытие транзисторного эффекта». Интересно, что Джон Бардин вскоре был удостоен Нобелевской премии во второй раз за создание теории сверхпроводимости.
Позднее транзисторы заменили вакуумные лампы в большинстве электронных устройств, свершив революцию в создании интегральных схем и компьютеров.
Bell нуждались в названии устройства. Предлагались названия «полупроводниковый триод» (semiconductor triode), «Solid Triode», «Surface States Triode», «кристаллический триод» (crystal triode) и «Iotatron», но слово «транзистор» (transistor), предложенное Джоном Пирсом (John R. Pierce), победило во внутреннем голосовании.
Первоначально название «транзистор» относилось к резисторам, управляемым напряжением. В самом деле, транзистор можно представить как некое сопротивление, регулируемое напряжением на одном электроде (в полевых транзисторах, для которых эта аналогия более точна — напряжением на затворе, в биполярных транзисторах — напряжением на базе или током базы) .

Ответ от 22 ответа[гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: кто и когда изобрёл транзистор

Ответ от Заросль[активный]
Изобретение транзистора можно отнести к самому важному изобретению 20 века

Ответ от Малосольный[новичек]
Еще в 1941 г. В. Е. Лашкарев опубликовал статью “Исследование запирающих слоев методом термозонда” (Известия АН СССР. Сер. физ. Т5, 1941) и в соавторстве с К. М. Косоноговой статью “Влияние примесей на вентильный фотоэффект в закиси меди” (там же). Он установил, что обе стороны “запорного слоя”, расположенного параллельно границе раздела медь – закись меди, имеют противоположные знаки носителей тока. Это явление получило название p-n перехода (p – от positive, n – от negative). В. Е. Лашкарев раскрыл и механизм инжекции – важнейшего явления, на основе которого действуют полупроводниковые диоды и транзисторы.
Первое сообщение в американской печати о появлении полупроводникового усилителя-транзистора появилось в июле 1948 г., спустя 7 лет после статьи В. Е. Лашкарева. Источник То есть, В. Е. Лошкарев разработал теоретическую базу для создания полупроводников, на основе которой и были созданы полупроводники п-н-п соответственно н-п-н типа. Есть интересный источник о этом гениальном ученом физике и биологе, вот допустим один из них:


Ответ от 2 ответа[гуру]

Привет! Вот еще темы с нужными ответами:

Изобретение транзистора на Википедии
Посмотрите статью на википедии про Изобретение транзистора

Инсульт на Википедии
Посмотрите статью на википедии про Инсульт

 

Ответить на вопрос:

22oa.ru

Транзистор — Традиция

Фотография некоторых типов дискретных транзисторов

Транзи́стор (от англ. transfer — переносить и resistor — сопротивление) — трёхэлектродный полупроводниковый электронный прибор, в котором ток в цепи двух электродов управляется третьим электродом. Управление током в выходной цепи осуществляется за счёт изменения входного напряжения. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.). В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). Другой важнейшей отраслью электроники является цифровая техника (логика, память, процессоры, компьютеры, цифровая связь и т. п.), где, напротив, биполярные транзисторы почти полностью вытеснены полевыми.

Вся современная цифровая техника построена, в основном, на полевых МОП (металл-оксид-полупроводник)-транзисторах (МОПТ), как более экономичных, по сравнению с БТ, элементах. Иногда их называют МДП (металл-диэлектрик-полупроводник)- транзисторы. Международный термин — MOSFET (metal-oxide-semiconductor field effect transistor). Транзисторы изготавливаются в рамках интегральной технологии на одном кремниевом кристалле (чипе) и составляют элементарный «кирпичик» для построения микросхем памяти, процессора, логики и т. п. Размеры современных МОПТ составляют от 90 до 32 нм. На одном современном чипе (обычно размером 1—2 см²) размещаются несколько (пока единицы) миллиардов МОПТ. На протяжении 60 лет происходит уменьшение размеров (миниатюризация) МОПТ и увеличение их количества на одном чипе (степень интеграции), в ближайшие годы ожидается дальнейшее увеличение степени интеграции транзисторов на чипе (см. Закон Мура). Уменьшение размеров МОПТ приводит также к повышению быстродействия процессоров. Каждую секунду сегодня в мире изготавливается полмиллиарда МОП-транзисторов.

Первый в мире работающий транзистор

Первые патенты на принцип работы полевых транзисторов были зарегистрированы в Германии 1928 (в Канаде, в 1925 году в октябре 22) на имя австро-венгерского физика Юлия Эдгара Лилиенфельда. В 1934 немецкий физик Оскар Хейл запатентовал полевой транзистор. Полевые транзисторы (в частности, МОП-транзисторы) основаны на простом электростатическом эффекте поля, по физике они существенно проще биполярных транзисторов, и поэтому они придуманы и запатентованы задолго до биполярных транзисторов. Тем не менее, первый МОП-транзистор, составляющий основу современной компьютерной индустрии, был изготовлен позже биполярного транзистора в 1960 году. Только в 90-х годах 20 века МОП-технология стала доминировать над биполярной.

В 1947 Уильям Шокли, Джон Бардин и Уолтер Браттейн в лабораториях Bell Labs впервые создали действующий биполярный транзистор, продемонстрированный 16 декабря. 23 декабря состоялось официальное представление изобретения и именно эта дата считается днём изобретения транзистора. По технологии изготовления он относился к классу точечных транзисторов. В 1956 году они были награждены Нобелевской премией по физике «за исследования полупроводников и открытие транзисторного эффекта». Интересно, что Джон Бардин вскоре был удостоен Нобелевской премии во второй раз за создание теории сверхпроводимости.

Позднее транзисторы заменили вакуумные лампы в большинстве электронных устройств, свершив революцию в создании интегральных схем и компьютеров.

Bell нуждались в названии устройства. Предлагались названия «полупроводниковый триод» (semiconductor triode), «Solid Triode», «Surface States Triode», «кристаллический триод» (crystal triode) и «Iotatron», но слово «транзистор» (transistor), предложенное Джоном Пирсом (John R. Pierce), победило во внутреннем голосовании.

Первоначально название «транзистор» относилось к резисторам, управляемым напряжением. В самом деле, транзистор можно представить как некое сопротивление, регулируемое напряжением на одном электроде (в полевых транзисторах, для которых эта аналогия более точна — напряжением на затворе, в биполярных транзисторах — напряжением на базе или током базы).

Классификация транзисторов[править]

p-n-pканал p-типа
n-p-nканал n-типа
БиполярныеПолевые

Обозначение транзисторов разных типов

Принцип действия и способы применения транзисторов существенно зависят от их типа, поэтому подробная информация об этом отнесена в соответствующие статьи.

По типу используемого полупроводника транзисторы классифицируются на кремниевые, германиевые и арсенид-галлиевые. Другие материалы транзисторов до недавнего времени не использовались. В настоящее время имеются транзисторы на основе, например, прозрачных полупроводников для использования в матрицах дисплеев. Перспективный материал для транзисторов — полупроводниковые полимеры. Также имеются отдельные сообщения о транзисторах на основе углеродных нанотрубок.

По мощности различают маломощные транзисторы (рассеиваемая мощность измеряется в мВт), транзисторы средней мощности (от 0,1 до 1 Вт рассеиваемой мощности) и мощные транзисторы (больше 1 Вт). На фотографии мощность транзисторов возрастает слева направо.

По исполнению различают дискретные транзисторы (корпусные и бескорпусные) и транзисторы в составе интегральных схем

tt:Tranzistor yi:טראנזיסטאר

traditio.wiki

Оставить комментарий