Квантовая физика для чайников – Квантовая механика для чайников. Что такое квант, уравнение Шредингера, принцип неопределенности Гейзенберга

Содержание

Квантовая физика для чайников! Лучшие эксперименты

Для новой версии книги «Фаза» (2015 года) нужно было одним абзацем и понятно обывателю выразить те вещи, на понимание которых обычно уходят недели и месяцы. Возможно, вам эти сжатые знания пригодятся. Для упрощения понимания квантовая физика описывается не теорией, а экспериментами.

(Графическая версия статьи)

Первый квантовый эксперимент с двумя щелями

В 1803 году Томас Юнг направил пучок света на непрозрачную ширму с двумя прорезями. Вместо ожидаемых двух полосок света на проекционном экране он увидел несколько полос, как если бы произошла интерференция (наложение) двух волн света из каждой прорези. Фактически именно в этот момент зародилась квантовая физика, вернее вопросы у её основы. В XX и XXI веках было показано, что не только свет, но любая одиночная элементарная частица и даже некоторые молекулы ведут себя как волна, как кванты, будто проходя через обе щели одновременно. Однако если поставить у щелей датчик, который определяет, что именно происходит с частицей в этом месте и через какую именно щель она все-таки проходит, то на проекционном экране появляются только две полосы, словно факт наблюдения (косвенного влияния) рушит волновую функцию и объект ведет себя как материя. (Подробно, видео)

Принципа неопределенности Гейзенберга – фундамент квантовой физики!

Благодаря открытию 1927 года тысячи ученых и студентов повторяют один и тот же простой эксперимент, пропуская лазерный луч через сужающуюся щель. Логично, видимый след от лазера на проекционном экране становится все уже и уже вслед за уменьшением зазора. Но в определенный момент, когда щель становится достаточно узкой, пятно от лазера вдруг начинает становиться шире и шире, растягиваясь по экрану и тускнея пока щель не исчезнет. Это самое очевидное доказательство квинтэссенции квантовой физики — принципа неопределенности Вернера Гейзенберга, выдающегося физика-теоретика. Суть его в том, что чем точнее мы определяем одну из парных характеристик квантовой системы, тем более неопределенней становится вторая характеристика. В данном случае, чем точнее мы определяем сужающейся щелью координаты фотонов лазера, тем неопределеннее становится импульс этих фотонов. В макромире мы точно также можем измерить либо точное местоположение летящего меча, взяв его в руки, либо его направление, но никак не одновременно, так как это противоречит и мешает друг другу. (Подробно, видео)

Квантовая сверхпроводимость и эффект Мейснера

В 1933 году Вальтер Мейснер обнаружил интересное явление в квантовой физике: в охлажденном до минимальных температур сверхпроводнике магнитное поле вытесняется за его пределы. Это явление получило название эффект Мейснера. Если обычный магнит положить на алюминий (или другой сверхпроводник), а затем его охладить жидким азотом, то магнит взлетит и зависнет в воздухе, так как будет «видеть» вытесненное из охлажденного алюминия свое же магнитное поле той же полярности, а одинаковые стороны магнитов отталкиваются. (Подробно, видео)

Квантовая сверхтекучесть

В 1938 году Петр Капица охладил жидкий гелий до близкой к нулю температуры и обнаружил, что у вещества пропала вязкость. Это явление в квантовой физике получило название сверхтекучесть. Если охлажденный жидкий гелий налить на дно стакана, то он все равно вытечет из него по стенкам. Фактически, пока гелий достаточно охлажденный для него нет пределов, чтобы разлиться, вне зависимости от формы и размера емкости. В конце XX и начале XXI веков сверхтекучесть при определенных условиях была также обнаружена у водорода и различных газов. (Подробно, видео)

Квантовый туннелинг

В 1960 году Айвор Джайевер проводил электрические опыты со сверхпроводниками, разделенными микроскопической пленкой непроводящего ток оксида алюминия. Выяснилось, что вопреки физике и логике часть электронов все равно проходит через изоляцию. Это подтвердило теорию о возможности квантового туннельного эффекта. Он распространяется не только на электричество, но и любые элементарные частицы, они же волны согласно квантовой физике. Они могут проходить препятствия насквозь, если ширина этих препятствий меньше длины волны частицы. Чем препятствие уже, тем чаще частицы проходят сквозь них. (Подробно, видео)

Квантовая запутанность и телепортация

В 1982 году физик Ален Аспэ, будущий лауреат Нобелевской премии, направил два одновременно созданных фотона на разнонаправленные датчики определения их спина (поляризации). Оказалось, что измерение спина одного фотона мгновенно влияет на положение спина второго фотона, который становится противоположным. Так была доказана возможность квантовой запутанности элементарных частиц и квантовая телепортация. В 2008 году ученым удалось измерить состояние квантово-запутанных фотонов на расстоянии 144 километров и взаимодействие между ними все равно оказалось мгновенным, как если бы они были в одном месте или не было пространства. Считается, что если такие квантово-запутанные фотоны окажутся в противоположных участках вселенной, то взаимодействие между ними все равно будет мгновенным, хотя свет это же расстояние преодолевает за десятки миллиардов лет. Любопытно, но согласно Эйнштейну для летящих со скоростью света фотонов времени тоже нет. Совпадение ли это? Так не думают физики будущего! (Подробно, видео)

Квантовый эффект Зенона и остановка времени

В 1989 году группа ученых под руководством Дэвида Вайнленда наблюдала за скоростью перехода ионов бериллия между атомными уровнями. Выяснилось, что сам факт измерения состояния ионов замедлял их переход между состояниями. В начале XXI века в подобном эксперименте с атомами рубидия удалось достичь 30-кратного замедления. Все это является подтверждением квантового эффект Зенона. Его смысл в том, что сам факт измерения состояния нестабильной частицы в квантовой физике замедляет скорость ее распада и в теории может его полностью остановить. (Подробно, видео англ.)

Квантовый ластик с отложенным выбором

В 1999 году группа ученых под руководствам Марлана Скали направляла фотоны через две щели, за которыми стояла призма, конвертирующая каждый выходящий фотон в пару квантово-запутанных фотонов и разделяя их на два направления. Первое отправляло фотоны на основной детектор. Второе направление отправляла фотоны на систему 50%-отражателей и детекторов. Выяснилось, если фотон из второго направления достигал детекторы определяющие щель, из которой он вылетел, то основной детектор фиксировал его парный фотон как частицу. Если же фотон из второго направления достигал детекторы не определяющие щель, из которой он вылетел, то основной детектор фиксировал его парный фотон как волну. Не только измерение одного фотона отражалось на его квантово-запутанной паре, но и это происходило вне расстояния и времени, ведь вторичная система детекторов фиксировала фотоны позже основного, как если бы будущее определяло прошлое. Считается, что это самый невероятный эксперимент не только в истории квантовой физики, но и вполне в истории всей науки, так как он подрывает многие привычные основы мировоззрения. (Подробно англ., видео англ.)

Квантовая суперпозиция и кот Шредингера

В 2010 году Аарон О’Коннелл поместил небольшую металлическую пластину в непрозрачную вакуумную камеру, которую охладил почти до абсолютного нуля. Затем он придал импульс пластине, чтобы она вибрировала. Однако датчик положения показал, что пластина вибрировала и была спокойна одновременно, что точно соответствовало теоретической квантовой физике. Этим впервые был доказан принцип суперпозиции на макрообъектах. В изолированных условиях, когда не происходит взаимодействия квантовых систем, объект может одновременно находиться в неограниченном количестве любых возможных положений, как если бы он больше не был материальным. (Подробно, видео)

Квантовый Чеширский кот и физика

В 2014 году Тобиас Денкмайр и его коллеги разделили поток нейтронов на два пучка и провели серию сложных измерений. Выяснилось, что при определенных обстоятельствах нейтроны могут находиться в одном пучке, а их же магнитный момент в другом пучке. Таким образом был подтвержден квантовый парадокс улыбки Чеширского кота, когда частицы и их свойства могут находиться по нашему восприятию в разных частях пространства, как улыбка отдельно от кота в сказки «Алиса в стране чудес». В очередной раз квантовая физика оказалась загадочней и удивительней любой сказки! (Подробно, видео англ.)

(Графическая версия статьи)

Спасибо за чтение! Теперь вы стали немного умнее и от этого наш мир чуточку посветлел. Поделитесь ссылкой на эту статью с друзьями и мир станет еще лучше!

Автор Михаил Радуга, www.aing.ru
(Книга «Фаза»)

Подписаться на новости:

  

  

  

  

  

_______________________

aing.ru

Квантовая механика для чайников. Что такое квант, уравнение Шредингера, принцип неопределенности Гейзенберга

Квантовая механика

Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики  или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.

Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться. Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница. Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?

Шутки в сторону, начинаем серьезный квантовый разговор.

С чего начать? Конечно, с того, что такое квант.

Квант

Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят — квант света, квант энергии или квант поля.

Что это значит? Это значит, что меньше быть уже просто не может. Когда говорят о том, что какая-то  величина квантуется, понимают, что данная величина принимает ряд определенных, дискретных значений.  Так, энергия электрона в атоме квантуется, свет распространяется «порциями», то есть квантами.

Сам термин «квант» имеет множество применений.  Квантом света (электромагнитного поля) является фотон. По аналогии квантами называются частицы или квазичастицы, соответствующие иным полям взаимодействия. Здесь можно вспомнить про знаменитый бозон Хиггса, который является квантом поля Хиггса. Но в эти дебри мы пока не лезем.

Квантовая механика для «чайников»

Как механика может быть квантовой?

Как Вы уже

zaochnik.ru

Квантовая механика на пальцах. Часть I

Современную физику принято подразделять на две большие ветви
— классическую и квантовую. Первая исторически восходит к
Галилею и Ньютону, вторая — к Максу Планку и Альберту
Эйнштейну. Квантовая идеология первоначально обрела себе место в
новой теории электромагнитного излучения, однако без большой
задержки распространилась на описание свойств материи на уровне
атомов и молекул. В этом качестве она стала основой новой науки,
названной квантовой механикой. Попробуем разобраться в ее сути с
нуля, без каких-либо предварительных знаний.

Квантовая механика давно вышла за свои первоначальные рамки. Уже
к концу первой трети двадцатого века она стала незаменимым
инструментом теоретического изучения электрических и магнитных
свойств различных материалов. Она нужна для описания атомных ядер
и частиц, из которых те состоят, — протонов и нейтронов.
Квантовая механика также лежит в основе наших знаний о самых
фундаментальных свойствах материи, которая заполняет Вселенную.
Без нее невозможно выяснить, откуда взялись химические элементы,
почему загораются, светят и умирают звезды, как рождаются
космические лучи и что происходит при столкновениях элементарных
частиц. В общем, это наука широкого профиля.

Но это не всё. Квантовая механика показала, что в микромире
действуют законы, которые сильно противоречат нашему житейскому
опыту. Их нелегко осознать, к ним непросто привыкнуть, они
удивительны и парадоксальны — и все же справедливы!

НАСЛЕДИЕ НЬЮТОНА

Слово «механика» имеет много смыслов, однако с точки зрения
физики это наука о движении, о перемещении в пространстве.
Теннисный мяч летит над сеткой, поезд мчится по рельсам, ветры
переносят воздушные потоки, Земля вращается вокруг Солнца, а оно
в свою очередь каждые двести миллионов лет совершает полный
оборот вокруг центра нашей Галактики. Эти движения совершаются
под действием различных сил, иногда очень сложных. Однако все они
описываются одними и теми же законами, которые в XVII веке открыл
великий английский физик и математик Исаак Ньютон. Позднее их не
раз переписывали с помощью все новых математических формул, но
суть от этого не менялась. И двести с лишним лет физики были
уверены, что великое творение Ньютона не знает исключений.

Возьмем простейшее из всех мыслимых тел — крошечный шарик.
Если заложить в уравнения механики сведения о том, какова его
масса, какие силы на него действуют, где он находится в начальный
момент и какую при этом имеет скорость, можно будет вычислить
положение (как говорят физики, координаты) и скорость шарика во
все последующие моменты. Чтобы описать движение тела сложной
формы, надо знать побольше, и на практике такие расчеты могут
оказаться очень трудоемкими не только для человека, но и для
суперкомпьютера, но это уже дело техники.  

Ньютоновская механика имеет дело только с теми движениями,
которые задаются координатами тел и их скоростями. При этом она
принимает без доказательств, что все эти величины можно
одновременно измерить с любой точностью — во всяком случае,
в принципе. Именно это допущение позволяет считать, что тело в
любой момент находится в определенном месте в пространстве и при
этом имеет определенную скорость. Если от него отказаться,
уравнения ньютоновской механики не только потеряют силу, но и
станут бессмысленными. Это легко понять — ведь координаты и
скорости фигурируют в них на равных правах и в сочетании друг с
другом.

МЕРА ЗА МЕРУ

Теперь подумаем, как на практике выполнить такие измерения.
Предположим, мы следим за самолетом с помощью радиолокатора.
Импульсы радиоволн отражаются от корпуса машины, и прибор выдает
на дисплее ее координаты и скорость. При отражении каждый импульс
передает самолету часть своей энергии и тем самым чуть-чуть
меняет его скорость. Однако кинетическая энергия самолета
настолько превышает энергию облучения, что эти изменения никак
себя не оказывают и могут считаться нулевыми. Это и дает
основания утверждать, что наш прибор одновременно отслеживает и
путь, и скорость самолета. То же самое происходит и при любых
измерениях движения крупных (как говорят физики, макроскопических
тел) посредством радиоволн, света или чего-то еще. Даже просто
«на глазок» прикинуть расстояние до соседней машины на шоссе
можно только потому, что она отражает свет — иначе мы бы ее
просто не увидели. Это же относится и к оценке ее скорости.

Но вот можно ли таким же путем одновременно измерить координаты и
скорость микрочастицы — скажем, электрона? Электроны несут
электрические заряды и потому рассеивают электромагнитные волны,
в том числе и свет. Следовательно, электрон в принципе можно
отловить, поймав отраженный от него электромагнитный импульс.
Однако его положение в пространстве нам удастся определить только
с погрешностью, величина которой примерно равна длине волны
излучения, которое мы использовали в нашем локаторе. Для
повышения точности эту длину надо уменьшать, переходя от видимого
света к ультрафиолету, потом к рентгеновским лучам, потом к
гамма-излучению. Чтобы измерить скорость электрона, такую локацию
надо выполнить как минимум дважды, причем через короткий
промежуток времени.

Теперь мы подошли к главному — к моменту истины. Как уже
говорилось, электромагнитный импульс передает часть своей энергии
объекту, на котором он рассеивается. После отражения импульса
кинетическая энергия электрона изменится, а потому изменится и
его скорость. Электрон может ускориться, затормозиться или
повернуть, но в любом случае его движение не будет прежним. Этого
не произойдет лишь в том случае, если мы все время будем
обстреливать электрон только такими импульсами, чья энергия
практически равна нулю по сравнению с его собственной. Как только
что говорилось, для достижения все большей точности в измерении
координат надо раз за разом уменьшать длину волны, на которой
работает наш воображаемый локатор (то есть увеличивать частоты).
Можно ли это сделать, сохраняя энергию импульсов на сколь угодно
малом уровне?

Если бы кому-то пришло в голову задать такой вопрос сразу после
открытия электрона в 1897 году, ответ мог бы быть только
положительным. Тогда считалось, что энергия электромагнитной
волны может быть как угодно малой при любой длины волны. Но уже
через три года было доказано, что Природа такой свободы не
допускает.

НАКОНЕЦ-ТО КВАНТЫ!

Этим важнейшим открытием наука обязана немецкому физику-теоретику
Максу Планку. В то время физиков очень интересовало тепловое
излучение нагретых тел (скажем, утюга или раскаленной нити
электрической лампочки). На этот счет было выполнено много
экспериментов, однако их результаты никак не удавалось свести к
одной формуле. В 1900 году Планк показал, что такую формулу можно
получить, если предположить, что тепловое излучение испускается и
поглощается отдельными пакетами, а вовсе не непрерывно. Энергия
каждого пакета равна частоте излучения, умноженной на новую
физическую константу, которую назвали постоянной Планка.

Новая теория радикально расходилась с тогдашними представлениями
о природе электромагнитных волн (а тепловое излучение — это
просто его разновидность). Все волновые процессы считались
абсолютно непрерывными. По Планку же получалось, что это свойство
относится разве что к уже родившимся волнам, которые
распространяются в пространстве. Процессы испускания и поглощения
волн, напротив, могут осуществляться только порционно (как
говорят физики, дискретно). В общем, если электромагнитное
излучение — это море, то черпать из него (или добавлять в
него) воду можно только кружками определенной вместимости.

Следующий шаг через пять лет сделал Альберт Эйнштейн в своей
теории фотоэффекта. Так называется процесс, в ходе которого свет
выбивает электроны с поверхности различных веществ. Это явление в
1887 году открыл Генрих Герц — он же первооткрыватель
электромагнитных волн. В начале двадцатого века было установлено,
что энергия вылетающих электронов растет вместе с частотой
падающего излучения. Чтобы объяснить этот результат, Эйнштейн
допустил, что планковские энергетичсеские пакеты сохраняются и
при распространении света. Световой поток оказался вовсе не
непрерывным, он распадается на отдельные «зерна», которые
Эйнштейн назвал световыми
квантами
 (латинское слово «кванта» означает
«количество»).  Так в языке физики появился термин, который
в будущем дал название новой механике.

Вернемся к мысленному эксперименту с измерением движения
электрона. Как говорилось, мы можем уточнять его позицию,
обстреливая электрон световыми импульсами все меньшей длины
волны. Это означает, что для локации электрона придется
использовать кванты все большей частоты, а следовательно,
энергии. Встреча с каждым таким квантом будет все сильнее менять
его скорость. А для сколько-нибудь точного измерения скорости
придется использовать свет очень малых частот, состоящий из
квантов почти нулевой энергии. Уменьшение частоты означает рост
длины волны, так что позицию электрона мы будем измерять со все
большей погрешностью.

К чему же мы пришли? Мы предположили, что электрону в любой
момент можно приписать и определенное положение в пространстве, и
определенную скорость. Однако наш мысленный эксперимент показал,
что квантовая структура света не позволяет одновременно измерить
и то, и другое. Это принципиальный запрет, он не зависит от
устройства и качества измерительных приборов. Чем точнее мы
определяем положение электрона, тем сильнее меняем его скорость,
в то время как точное измерение скорости делает невозможным
измерение позиции.  Однако физика не имеет дела с
воображаемыми вещами, это опытная наука. Поэтому наше
первоначальное допущение о наличии у электрона пространственных
координат и скорости не имеет физического смысла и должно быть
отброшено. Выражаясь иначе электрон не может одновременно иметь и
определенную скорость, и определенное положение в пространстве.
Выходит, что для описания движения электрона ньютоновская теория
не годится. Здесь нужна совсем другая механика, учитывающая
квантовую природу света.

Эти рассуждения могли бы придти в голову какому-нибудь физику
сразу после появления эйнштейновской теории фотоэффекта. До них
мог додуматься сам Эйнштейн, который очень любил мысленные
эксперименты и замечательно умел ими пользоваться (именно с их
помощью он создал свою теорию относительности). Однако этого не
случилось, и рождения новой механики пришлось ждать еще двадцать
лет.

Вторая часть выложена здесь.

scientificrussia.ru

Квантовая физика за 5 минут! 10 удивительных фактов

Для новой версии книги «Фаза» (2015 года) нужно было одним абзацем и понятно обывателю выразить те вещи, на понимание которых обычно уходят недели и месяцы. Для упрощения понимания квантовая физика описывается не теорией, а экспериментами и их историей.

Как фаза(осознанные сновидения и внетелесные переживания) связана с квантовой физикой??? Ответ в новой версии книги Фаза (версия 3, 2015 г.)

 

Подписаться на новости:

  

  

  

  

  

_______________________

aing.ru

Шесть фактов о квантовой физике, которые должен знать каждый

Неподготовленного слушателя квантовая физика пугает с самого начала знакомства. Она странная и нелогичная, даже для физиков, которые имеют с ней дело каждый день. Но она не непонятная. Если вас интересует квантовая физика, на самом деле есть шесть ключевых понятий из нее, которые необходимо удерживать в уме. Нет, они мало связаны с квантовыми явлениями. И это не мысленные эксперименты. Просто намотайте их на ус, и квантовую физику будет намного проще понять.

Все состоит из волн — и частиц тоже

Есть много мест, с которых можно начать это обсуждение, и вот это так же хорошо, как другие: все в нашей Вселенной обладает одновременно природой частиц и волн. Если бы можно было сказать о магии так: «Все это волны, и только волны», это было бы замечательным поэтическим описанием квантовой физики. На самом деле все в этой вселенной обладает волновой природой.

Конечно, также все во Вселенной имеет природу частиц. Звучит странно, но это экспериментальный факт.

Описывать реальные объекты как частицы и волны одновременно будет несколько неточным. Собственно говоря, объекты, описываемые квантовой физикой, не являются частицами и волнами, а скорее принадлежат третьей категории, которая наследует свойства волн (частоту и длину волны, вместе с распространением в пространстве) и некоторые свойства частиц (их можно пересчитать и локализовать с определенной степенью). Это приводит к оживленным дебатам в физическом сообществе на тему того, будет ли вообще корректно говорить о свете как о частице; не потому, что есть противоречие в том, обладает ли свет природой частиц, а потому, что называть фотоны «частицами», а не «возбуждениями квантового поля» — значит, вводить студентов в заблуждение. Впрочем, это касается и того, можно ли называть электроны частицами, но такие споры останутся в кругах сугубо академических.

Эта «третья» природа квантовых объектов отражается в запутанном иногда языке физиков, которые обсуждают квантовые явления. Бозон Хиггса был обнаружен на Большом адронном коллайдере в качестве частицы, но вы наверняка слышали словосочетание «поле Хиггса», такой делокализованной вещи, которая заполняет все пространство. Это происходит, поскольку при определенных условиях вроде экспериментов со столкновением частиц более уместно обсуждать возбуждения поля Хиггса, нежели определять характеристики частицы, тогда как при других условиях вроде общих обсуждений того, почему у определенных частиц есть масса, более уместно обсуждать физику в терминах взаимодействия с квантовым полем вселенских масштабов. Это просто разные языки, описывающие одни и те же математические объекты.

Квантовая физика дискретна

Все в названии физики — слово «квантум» происходит от латинского «сколько» и отражает тот факт, что квантовые модели всегда включают что-то приходящее в дискретных величинах. Энергия, содержащаяся

hi-news.ru

Квантовая физика для чайников

В данной статье мы дадим полезные советы по изучению квантовой физики для чайников. Ответим, какой должен быть подход в изучении квантовой физики начинающими.

Квантовая физика — это достаточно сложная дисциплина, которая не всем легко подается усвоению. Тем не менее, физика как предмет интересная и полезная, поэтому и квантовая физика (http://www.cyberforum.ru/quantum-physics/) находит своих фанатов, которые готовы ее изучить и получить в итоге практическую пользу. Для того, чтобы было проще усвоить материал, нужно начинать с самого начала, то есть с самых простых учебников квантовой физики для начинающих. Это позволит получить хорошую базу для знаний, и в то же время хорошо структурировать свои знания в голове.

Начинать самостоятельное обучение нужно с хорошей литературы. Именно литература является решающим фактором в процессе получения знаний и обеспечивает их качество. Особый интерес вызывает квантовая механика, и многие начинают свои изучения именно с нее. Физику должен знать каждый, потому что это наука о жизни, которая объясняет многие процессы, и делает их понятными для окружающих.

Учтите, что когда приступите к изучению квантовой физики, вы должны обладать знаниями математики и физики, так как без них вы просто не справитесь. Будет хорошо, если у вас будет возможность обращаться к преподавателю, чтобы найти ответы на возникшие вопросы. Если такой возможности не будет, можете попробовать разъяснить ситуацию на специализированных форумах. Форумы тоже могут сильно пригодиться в обучении.

Когда определитесь с выбором учебника, вы должны быть готовы к тому, что он достаточно сложный и его придется не просто читать, а вникать во всем том, что в нем написано. Чтобы по окончании обучения не возникла мысль, что это все ненужные никому знания, пытайтесь связать каждый раз теорию с практикой. Еще важно определить заранее цель с которой вы начали учить квантовую физику, для того чтобы предотвратить появление мысли о бесполезности полученных знаний. Люди делятся на две категории: люди, которые считают квантовую физику интересным и полезным предметом и те, которые так не считают. Выберите для себя, к какой категории относитесь вы и соответственно определите, есть ли квантовой физике место в вашей жизни или же нет. Можно всегда остаться на уровне начинающего в изучении квантовой физики, а можно добиться реальных успехов, все в ваших руках.

Выбирайте прежде всего действительно интересные и качественные материалы по физике. Некоторые из них вы можете найти по ссылкам ниже.

А на этом у вас пока всё! Изучайте квантовую физику интересно и не будьте чайником!


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:


reshit.ru

Основы квантовой физики в пяти экспериментах для «чайников».

Никто в этом мире не понимает, что такое квантовая механика. Это, пожалуй, самое главное, что нужно знать о ней. Конечно, многие физики научились использовать законы и даже предсказывать явления, основанные на квантовых вычислениях. Но до сих пор неясно, почему наблюдатель эксперимента определяет поведение системы и заставляет ее принять одно из двух состояний.

Перед вами несколько примеров экспериментов с результатами, которые неизбежно будут меняться под влиянием наблюдателя. Они показывают, что квантовая механика практически имеет дело с вмешательством сознательной мысли в материальную реальность.

Сегодня существует множество интерпретаций квантовой механики, но Копенгагенская интерпретация, пожалуй, является самой известной. В 1920-х ее общие постулаты были сформулированы Нильсом Бором и Вернером Гейзенбергом.

В основу Копенгагенской интерпретации легла волновая функция. Это математическая функция, содержащая информацию о всех возможных состояниях квантовой системы, в которых она существует одновременно. Как утверждает Копенгагенская интерпретация, состояние системы и ее положение относительно других состояний может быть определено только путем наблюдения (волновая функция используется только для того, чтобы математически рассчитать вероятность нахождения системы в одном или другом состоянии).

Можно сказать, что после наблюдения квантовая система становится классической и немедленно прекращает свое существование в других состояниях, кроме того, в котором была замечена. Такой вывод нашел своих противников (вспомните знаменитое эйнштейновское «Бог не играет в кости»), но точность расчетов и предсказаний все же возымели свое.

Тем не менее число сторонников Копенгагенской интерпретации снижается, и главной причиной этого является таинственный мгновенный коллапс волновой функции в ходе эксперимента. Знаменитый мысленный эксперимент Эрвина Шредингера с бедным котиком должен продемонстрировать абсурдность этого явления. Давайте вспомним детали.

Внутри черного ящика сидит черный кот и вместе с ним флакон с ядом и механизм, который может высвободить яд случайным образом. Например, радиоактивный атом во время распада может разбить пузырек. Точное время распада атома неизвестно. Известен только период полураспада, в течение которого распад происходит с вероятностью 50%.

Очевидно, что для внешнего наблюдателя кот внутри коробки находится в двух состояниях: он либо жив, если все пошло хорошо, либо мертв, если распад произошел и флакон разбился. Оба этих состояния описываются волновой функцией кота, которая меняется с течением времени.

Чем больше времени прошло, тем больше вероятность того, что радиоактивный распад случился. Но как только мы открываем коробку, волновая функция коллапсирует, и мы сразу же видим результаты этого бесчеловечного эксперимента.

На самом деле, пока наблюдатель не откроет коробку, кот будет бесконечно балансировать между жизнью и смертью, или будет одновременно жив и мертв. Его судьба может быть определена только в результате действий наблюдателя. На этот абсурд и указал Шредингер.

1. Дифракция электронов

Согласно опросу знаменитых физиков, проведенному The New York Times, эксперимент с дифракцией электронов является одним из самых удивительных исследований в истории науки. Какова его природа? Существует источник, который излучает пучок электронов на светочувствительный экран. И есть препятствие на пути этих электронов, медная пластина с двумя щелями.

Какую картинку можно ожидать на экране, если электроны обычно представляются нам небольшими заряженными шариками? Две полосы напротив прорезей в медной пластине. Но на самом деле на экране появляется куда более сложный узор из чередующихся белых и черных полос. Это связано с тем, что при прохождении через щель электроны начинают вести себя не только как частицы, но и как волны (так же ведут себя фотоны или другие легкие частицы, которые могут быть волной в то же время).

Эти волны взаимодействуют в пространстве, сталкиваясь и усиливая друг друга, и в результате сложный рисунок из чередующихся светлых и темных полос отображается на экране. В то же время результат этого эксперимента не изменяется, даже если электроны проходят один за одним — даже одна частица может быть волной и проходить одновременно через две щели. Этот постулат был одним из основных в Копенгагенской интерпретации квантовой механики, когда частицы могут одновременно демонстрировать свои «обычные» физические свойства и экзотические свойства как волна.

Но как насчет наблюдателя? Именно он делает эту запутанную историю еще более запутанной. Когда физики во время подобных экспериментов попытались определить с помощью инструментов, через какую щель фактически проходит электрон, картинка на экране резко изменилась и стала «классической»: с двумя освещенными секциями строго напротив щелей, безо всяких чередующихся полос.

Электроны, казалось, не хотят открывать свою волновую природу бдительному оку наблюдателей. Похоже на тайну, покрытую мраком. Но есть и более просто объяснение: наблюдение за системой не может осуществляться без физического влияния на нее. Это мы обсудим позже.

2. Подогретые фуллерены

Эксперименты по дифракции частиц проводились не только с электронами, но и другими, гораздо более крупными объектами. Например, использовались фуллерены, большие и закрытые молекулы, состоящие из нескольких десятков атомов углерода. Недавно группа ученых из Венского университета под руководством профессора Цайлингера пыталась включить элемент наблюдения в эти эксперименты. Чтобы сделать это, они облучали движущиеся молекулы фуллеренов лазерными лучами. Затем, нагретые внешним источником, молекулы начинали светиться и неизбежно отображать свое присутствие для наблюдателя.

Вместе с этим нововведением изменилось и поведение молекул. До начала такого всеобъемлющего наблюдения фуллерены довольно успешно избегали препятствия (проявляя волновые свойства), аналогично предыдущему примеру с электронами, попадающими на экран. Но с присутствием наблюдателя фуллерены стали вести себя как совершенно законопослушные физические частицы.

3. Охлаждающее измерение

Одним из самых известных законов в мире квантовой физики является принцип неопределенности Гейзенберга, согласно которому невозможно определить скорость и положение квантового объекта одновременно. Чем точнее мы измеряем импульс частицы, тем менее точно мы можем измерить ее позицию. Однако в нашем макроскопическом реальном мире обоснованность квантовых законов, действующих на крошечные частицы, обычно остается незамеченной.

Недавние эксперименты профессора Шваба из США вносят весьма ценный вклад в эту область. Квантовые эффекты в этих экспериментах были продемонстрированы не на уровне электронов или молекул фуллеренов (примерный диаметр которых составляет 1 нм), а на более крупных объектах, крошечной алюминиевой ленте. Эта лента была зафиксирована с обеих сторон так, чтобы ее середина находилась в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом было помещено устройство, способное точно записывать положение ленты. В результате эксперимента обнаружилось несколько интересных вещей. Во-первых, любое измерение, связанное с положением объекта, и наблюдение за лентой влияло на нее, после каждого измерения положение ленты изменялось.

Экспериментаторы определили координаты ленты с высокой точностью, и таким образом, в соответствии с принципом Гейзенберга, изменили ее скорость, а значит и последующее положение. Во-вторых, что было довольно неожиданным, некоторые измерения привели к охлаждению ленты. Таким образом, наблюдатель может изменить физические характеристики объектов одним своим присутствием.

4. Замерзающие частицы

Как известно, нестабильные радиоактивные частицы распадаются не только в экспериментах с котами, но и сами по себе. Каждая частица имеет средний срок жизни, который, как выясняется, может увеличиться под бдительным оком наблюдателя. Этот квантовый эффект был предсказан еще в 60-х годах, а его блестящее экспериментальное доказательство появилось в статье, опубликованной группой под руководством нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучался распад нестабильных возбужденных атомов рубидия. Сразу после подготовки системы атомы возбуждались с помощью лазерного луча. Наблюдение проходило в двух режимах: непрерывном (система постоянно подвергалась небольшим световым импульсам) и импульсном (система время от времени облучалась более мощными импульсами).

Полученные результаты полностью соответствовали теоретическим предсказаниям. Внешние световые эффекты замедляют распад частиц, возвращая их в исходное состояние, которое далеко от состояния распада. Величина этого эффекта также совпадала с прогнозами. Максимальный срок существования нестабильных возбужденных атомов рубидия увеличивался в 30 раз.

5. Квантовая механика и сознание

Электроны и фуллерены перестают показывать свои волновые свойства, алюминиевые пластинки остывают, а нестабильные частицы замедляют свой распад. Бдительное око наблюдателя буквально меняет мир. Почему это не может быть доказательством причастности наших умов к работе мира? Возможно, Карл Юнг и Вольфганг Паули (австрийский физик, лауреат Нобелевской премии, пионер квантовой механики) были правы, в конце концов, когда заявили, что законы физики и сознания следует рассматривать как дополняющие одно другое?

Мы находимся в одном шаге от признания того, что мир вокруг нас — просто иллюзорный продукт нашего разума. Идея страшная и заманчивая. Давайте попробуем снова обратиться к физикам. Особенно в последние годы, когда все меньше и меньше людей верят Копенгагенской интерпретации квантовой механики с ее загадочными коллапсами волновой функции, обращаясь к более приземленной и надежной декогеренции.

Дело в том, что во всех этих экспериментах с наблюдениями экспериментаторы неизбежно влияли на систему. Они зажигали ее с помощью лазера и устанавливали измерительные приборы. Их объединял важный принцип: вы не можете наблюдать за системой или измерять ее свойства, не взаимодействуя с ней. Любое взаимодействие есть процесс модификации свойств. Особенно когда крошечная квантовая система подвергается воздействию колоссальных квантовых объектов. Некий вечно нейтральный буддист-наблюдатель невозможен в принципе. И здесь в игру вступает термин «декогеренция», который является необратимым с точки зрения термодинамики: квантовые свойства системы меняются при взаимодействии с другой крупной системой.

Во время этого взаимодействия квантовая система теряет свои первоначальные свойства и становится классической, словно «подчиняясь» крупной системе. Это объясняет и парадокс кота Шредингера: кот — это слишком большая система, поэтому ее нельзя изолировать от остального мира. Сама конструкция этого мысленного эксперимента не совсем корректна.

В любом случае, если допустить реальность акта творения сознанием, декогеренция представляется гораздо более удобным подходом. Возможно, даже слишком удобным. При таком подходе весь классический мир становится одним большим следствием декогеренции. И как заявил автор одной из самых известных книг в этой области, такой подход логически приводит к заявлениям типа «в мире нет частиц» или «нет времени на фундаментальном уровне».

В чем правда: в создателе-наблюдателе или мощной декогеренции? Нам нужно выбрать между двух зол. Тем не менее ученые все больше убеждаются в том, что квантовые эффекты — проявление наших психических процессов. И то, где заканчивается наблюдение и начинается реальность, зависит от каждого из нас.

По материалам topinfopost.com

Отсюда

razdolbaypegas.livejournal.com

Отправить ответ

avatar
  Подписаться  
Уведомление о