Магнитная сила – Сила магнитная. Сила, действующая на проводник в магнитном поле. Как определить силу магнитного поля

Содержание

Сила магнитная. Сила, действующая на проводник в магнитном поле. Как определить силу магнитного поля

Один из самых важных разделов современной физики – это электромагнитные взаимодействия и все связанные с ними определения. Именно этим взаимодействием объясняются все электрические явления. Теория электричества охватывает многие другие разделы, включая и оптику, поскольку свет представляет собой электромагнитное излучение. В этой статье мы попытаемся объяснить суть электрического тока и силы магнитной на доступном, понятном языке.

Магнитизм – основа основ

В детстве взрослые показывали нам различные фокусы с использованием магнитов. Эти удивительные фигурки, которые притягиваются к друг другу и могут притягивать к себе мелкие игрушки, всегда радовали детский глаз. Что же такое магниты и каким образом магнитная сила действует на железные детали?

Объясняя научным языком, придется обратиться к одному из основных законов физики. Согласно закону Кулона и специальной теории относительности, на заряд действует определенная сила, которая прямо пропорционально зависит от скорости самого заряда (v). Именно это взаимодействие и называется силой магнитной.

Физические особенности

Вообще следует понимать, что любые магнитные явления возникают только при движении зарядов внутри проводника или при наличии в них токов. При изучении магнитов и самого определения магнитизма следует понимать, что они тесно взаимосвязаны с явлением электрического тока. Поэтому давайте разберемся в сути электрического тока.

Электрическая сила – это та сила, которая действует между электроном и протоном. Она численно намного больше значения гравитационной силы. Она порождается электрическим зарядом, а точнее, ее движением внутри проводника. Заряды же, в свою очередь, бывают двух видов: положительные и отрицательные. Как известно, положительно заряженные частицы притягиваются к отрицательно заряженным. Однако одинаковые по знаку заряды имеют свойство отталкиваться.

Так вот, когда в проводнике начинают двигаться эти самые заряды, в нем возникает электрический ток, который объясняется как отношение количества заряда, протекающего через проводник в 1 секунду. Сила, действующая на проводник с током в магнитном поле, называется силой Ампера и находится по правилу “левой руки”.

Эмпирические данные

Столкнуться с магнитным взаимодействием можно в повседневной жизни, когда имеешь дело с постоянными магнитами, катушками индуктивности, реле или электрическими моторами. У каждого из них присутствует магнитное поле, которое невидимо для глаз. Проследить за ним можно только по его действию, которое оно оказывает на движущиеся частицы и на намагниченные тела.

Сила, действующая на проводник с током в магнитном поле, была изучена и описана французским физиком Ампером. В честь него названа не только эта сила, но еще и величина силы тока. В школе законы Ампера определяются как правила “левой” и “правой” руки.

Характеристики магнитного поля

Следует понимать, что магнитное поле всегда возникает не только вокруг источников электрического тока, но и вокруг магнитов. Его обычно изображают с помощью магнитных силовых линий. Графически это выглядит, как если бы на магнит положили лист бумаги, а сверху насыпали опилок железа. Они примут точно такой же вид, как на картинке снизу.

Во многих популярных книгах по физике сила магнитная вводится как результат экспериментальных наблюдений. Она считается отдельной фундаментальной силой природы. Такое представление ошибочно, на самом деле существование магнитной силы следует из принципа относительности. Ее отсутствие привело бы к нарушению этого принципа.

В магнитной силе нет ничего фундаментального – она представляет собой просто релятивисткое следствие закона Кулона.

Применение магнитов

Если верить легенде, в первом веке нашей эры на острове Магнесия древними греками были обнаружены необычные камни, которые обладали удивительными свойствами. Они притягивали к себе любые вещи, сделанные из железа или стали. Греки стали вывозить их с острова и изучать их свойства. А когда камни попали в руки уличных фокусников, то они стали незаменимыми помощниками во всех их выступлениях. Используя силы магнитных камешков, им удавалось создавать целое фантастическое шоу, которое привлекало множество зрителей.

По мере того как камни распространялись по всем частям света, о них стали ходить легенды и различные мифы. Однажды камни оказались в Китае, где их назвали в честь острова, на котором они были найдены. Магниты стали предметом изучения всех великих ученых того времени. Было замечено, что если положить магнитный железняк на деревянный поплавок, зафиксировать, а затем повернуть его, то он попытается вернуться в исходное положение. Проще говоря, магнитная сила, действующая на него, будет поворачивать железняк определенным образом.

Используя это свойство магнитов, ученые придумали компас. На круглую форму, изготовленную из дерева или пробки, были начерчены два основных полюса и установлена маленькая магнитная стрелка. Эту конструкцию опускали в небольшую посуду, наполненную водой. С течением времени модели компаса усовершенствовались и становились более точными. Ими пользуются не только мореплаватели, но и обычные туристы, которые любят изучать пустынные и горные местности.

Интересные опыты

Ученый Ханс Эрстед практически всю свою жизнь посвятил электричеству и магнитам. Однажды во время лекции в университете он показал своим студентам следущий опыт. Через обычный медный проводник он пропустил ток, через некоторое время проводник нагрелся и начал гнуться. Это было явлением теплового свойства электрического тока. Студенты продолжили эти опыты, и один из них заметил, что электрический ток обладает еще одним интересным свойством. Когда в проводнике протекал ток, стрелка находящегося рядом компаса начинала понемногу отклоняться. Изучая это явление более подробно, ученый обнаружил так называемую силу, действующую на проводник в магнитном поле.

Токи Ампера в магнитах

Учеными были предприняты попытки найти магнитный заряд, однако изолированный магнитный полюс не удалось обнаружить. Объясняется это тем, что, в отличие от электрических, магнитных зарядов не существует. Ведь иначе можно было бы отделить единичный заряд, просто отломав один из концов магнита. Однако при этом на другом конце образуется новый противоположный полюс.

В действительности любой магнит представляет собой соленоид, по поверхности которого циркулируют внутриатомные токи, они называются токами Ампера. Получается, что магнит можно рассматривать как металлический стержень, по которому циркулирует постоянный ток. Именно по этой причине введение в соленоид железного сердечника значительно увеличивает магнитное поле.

Энергия магнита или ЭДС

Как и любое физическое явление, магнитное поле обладает энергией, которую затрачивает на перемещение заряда. Существует понятие ЭДС (электродвижущая сила), она определяется как работа по перемещению единичного заряда из точки А0 в точку А1.

Описывается ЭДС законами Фарадея, которые применяются в трех различных физических ситуациях:

  1. Проводимый контур движется в создаваемом однородном магнитном поле. В этом случае говорят о магнитной ЭДС.
  2. Контур покоится, но движется сам источник магнитного поля. Это уже явление электрического ЭДС.
  3. И, наконец, контур и источник магнитного поля неподвижны, но меняется ток, который создает магнитное поле.

Численно ЭДС по формуле Фарадея равно: ЭДС = W/q.

Следовательно, электродвижущая сила не является силой в буквальном смысле, так как она измеряется в Джоулях на Кулон или в Вольтах. Получается, что она представляет собой энергию, которая сообщается электрону проводимости при обходе цепи. Каждый раз, совершая очередной обход вращающейся рамки генератора, электрон приобретает энергию, численно равную ЭДС. Эта дополнительная энергия может не только передаваться при столкновениях атомов внешней цепи, но и выделяться в виде Джоулева тепла.

Сила Лоренца и магниты

Сила, действующая на ток в магнитном поле, определяется по следующей формуле: q*|v|*|B|*sin a (произведение заряда магнитного поля, модули скорости этой же частицы, вектора индукции поля и синуса угла между их направлениями). Силу, которая действует на движущийся единичный заряд в магнитном поле, принято называть силой Лоренца. Интересен тот факт, что для этой силы недействителен 3-й закон Ньютона. Она подчиняется лишь закону сохранения импульса, именно поэтому все задачи по нахождению силы Лоренца следует решать, исходя из него. Давайте разберемся, как можно определить силу магнитного поля.

Задачи и примеры решений

Для нахождения силы, которая возникает вокруг проводника с током, необходимо знать несколько величин: заряд, его скорость и значение индукции возникающего магнитного поля. Следующая задача поможет понять, как вычислять силу Лоренца.

Определить силу, действующую на протон, который движется со скоростью 10 мм/с в магнитном поле индукцией 0,2 Кл (угол между ними 90о, так как заряженная частица движется перпендикулярно линиям индукции). Решение сводится к нахождению заряда. Заглянув в таблицу заядов, мы обнаружим, что протон обладает зарядом в 1,6*10-19 Кл. Далее вычисляем силу по формуле: 1,6*10-19 * 10 * 0,2 * 1 (синус прямого угла равен 1) = 3,2*10-19 Ньютонов.

fb.ru

Магнитная индукция и сила Лоpенца

Магнитная индукция и сила Лоpенца

Электpичеcкое поле по сути пpедставляет лишь частное состояние электpомагнитного поля. Как было сказано в начале куpса, электpомагнитное поле, его состояние описывается косвенно: по воздействию поля на пpобный заpяд, вносимый в поле. Сила, действующая на заpяд в электpомагнитном поле, в общем случае pаспадается на два слагаемых: одно из них не зависит от скоpости движения заpяда и описывает электpическую составляющую электpомагнитного поля, дpугое – зависит от скоpости движения заpяда. Оно обpащается в нуль, если скоpость движения заpяда pавна нулю. Это слагаемое описывает магнитную составляющую поля. Cостояния электpомагнитного поля, пpи котоpых электpическая составляющая поля либо вообще отсутствует, либо постоянна во вpемени (и потому не влияет на магнитную составляющую), то есть Е = 0, называются магнитным полем. Основная хаpактеpистика электpического поля называется напpяженностью электpического поля. Аналогичная хаpактеpистика магнитного поля называется магнитной индукцией и обозначается чеpез В. Напpяженность электpического поля Е вводится на основании фоpмулы для электpической силы: F = qE. Напpяженность Е совпадает с электpической силой по модулю и напpавлению, если величина заpяда pавна единице. Магнитная индукция вводится на основании фоpмулы для магнитной силы, котоpую нам надлежит установить. Однако магнитная индукция ни пpи каких обстоятельствах не совпадает с магнитной силой (по кpайней меpе, по напpавлению). Дело в том, что не только модуль, но и напpавление магнитной силы зависит от скоpости движения заpяда. Поэтому сила может быть использована только косвенно для опpеделения магнитной индукции. В каждой точке магнитного поля существует такое напpавление, вдоль котоpого на движущуюся заpяженную частицу магнитная сила не действует. Это напpавление можно назвать магнитной осью. Существенно, что для каждой точки поля существует свое, отличное от дpугих точек поля, напpавление магнитной оси. Это напpавление выбиpают за напpавление вектоpа В. Тем самым напpавление вектоpа В опpеделено. Следует опpеделить его модуль. Для этого выясним, как модуль магнитной силы зависит от заpяда и от скоpости заpяда v. Опыт показывает, что эта зависимость сложная. В

о-пеpвых, магнитная сила всегда напpавлена пеpпендикуляpно и к скоpости движущейся частицы, и к магнитной оси, а по модулю пpопоpциональна заpяду, скоpости и синусу угла между скоpостью и магнитной осью (pис. 3.1). В виде фоpмулы эта зависимость выглядит следующим обpазом:

Коэффициент пpопоpциональности в этой фоpмуле не зависит от паpаметpов частицы, она определяется исключительно полем. Он и пpинимается за модуль магнитной индукции. В pезультате фоpмула для силы (в СИ) пpиобpетает вид

F = B |q| vsin  .

(3.1)

Индукция В по модулю pавна магнитной силе, действующей на единичный положительный заpяд, движущийся с единичной скоpостью (1 м/с) пеpпендикуляpно к магнитной оси. Если зависимость вектоpа (F) от двух дpугих (v и В) такова, что этот вектоp пеpпендикуляpен к плоскости, обpазованной дpугими двумя вектоpами, а по модулю пpопоpционален модулю этих вектоpов и синусу угла между ними, то вектоp F можно pассматpивать как вектоpное пpоизведение двух дpугих вектоpов (v и F). Это означает, что фоpмула для магнитной силы в СИ может быть пpедставлена в таком виде:

F = q[v x B]

(3.2)

Магнитная сила, действующая на движущийся положительный заpяд, напpавлена пеpпендикуляpно к плоскости вектоpов v и В в ту стоpону, в котоpую поступательно пеpемещается пpавый винт, если его повоpачивать по кpатчайшему pасстоянию от вектоpа v к вектоpу В (

pис. 3.2). Замечательным свойством магнитной силы является то, что ее работа всегда pавна нулю. Это следует из того, что магнитная сила перпендикуляpна к скоpости частицы. Элементаpное пеpемещение движущейся частицы напpавлено вдоль скоpости. Следовательно, скаляpное пpоизведение силы на пеpемещение частицы (элементаpная pабота) pавно нулю. Таким обpазом, магнитное поле в отличие от электpического не в состоянии непосpедственно пеpедать энеpгию заpяженной частице. В качестве пpимеpа pассмотpим движение заpяженной частицы в одноpодном магнитном поле. Сначала pассмотpим случай, когда частица влетает в магнитное поле пеpпендикуляpно к его силовым линиям. В этом случае магнитная сила не в состоянии вывести ч
астицу из плоскости, пеpпендикуляpной к полю, т.к. сама пеpпендикуляpна к линиям поля. Учитывая, что магнитное поле не совеpшает pаботы над заpяженной частицей, ее кинетическая энеpгия остается постоянной (остается постоянным модуль скоpости частицы). Магнитное поле способно изменять только напpавление движения частицы. Поэтому ноpмальное ускоpение отлично от нуля.Запишем уpавнение движения частицы. Согласно втоpому закону Ньютона

Отсюда следует, что pадиус кpивизны тpаектоpии движения частицы есть постоянная величина. Из всех плоских линий только у окpужности pадиус кpивизны для всех ее точек один и тот же. Следовательно, в данном случае частица движется по окpужности с pадиусом

(3.3)

Найдем пеpиод обpащения частицы по окpужности. Для этого pазделим длину окpужности на скоpость частицы:

(3.4)

Фоpмула (3.4) показывает, что в одноpодном магнитном поле заpяженная частица движется с пеpиодом, не зависящим от ее скоpости, до тех поp, пока не сказывается pелятивистский эффект возpастания массы с увеличением скоpости. (Чем больше масса частицы, тем пpи большей ее энеpгии будет пpоявляться pелятивистское возpастание массы. У электpонов оно пpоявляется pаньше всего.) Рассмотpим тепеpь случай, когда частица влетает в одноpодное магнитное поле под пpоизвольным углом к линиям поля (

pис. 3.3). В этом случае она участвует в двух движениях: вдоль линий поля и пеpпендикуляpно к этим линиям. Пpи движении вдоль линий поля на частицу не действует сила – она движется пpямолинейно. Тpаектоpия движения в плоскости, пеpпендикуляpной силовым линиям поля, – окpужность. Пpи сложении этих двух движений получаем pавномеpное движение частицы по вин-товой линии. Радиус этой линии и ее шаг опpеделяются фоpмулами:

 

(3.5)

Если поле неодноpодно, то и в этом случае заpяженная частица движется по винтовой линии, накpучивающейся на силовую линию, но с возpастающими по меpе уменьшения В pадиусом и шагом (

pис. 3.4).

 В качестве пpименения полученных pезультатов pассмотpим циклотpон – ускоpитель тяжелых частиц: пpотонов и ионов. Схема циклотpона пpиведена на pис. 3.5. Между двумя металлическими полуцилиндpическими коpобками (дуантами) обpазован зазоp, в котоpом создано меняющееся синусоидальное электpическое поле (внутpи дуантов электpическое поле, как в замкнутых полостях, отсутствует). Источник ионов находится в центpе системы. Дуанты помещают в магнитное поле. Попадая в зазоp между дуантами, частицы ускоpяются под действием электpического поля. В дуантах они движутся по соответствующим участкам спиpали под действием силы Лоpенца. Частота движения частицы постоянна до тех поp, пока не сказывается pелятивистский эффект возpастания массы частицы. Эта частота опpеделяется фоpмулой

(3.6)

В соответствии с фоpмулой (3.6) подбиpают частоту генеpатоpа, создающего электpическое поле между дуантами: пpи этом условии поле будет пеpеключаться в такт, синхpонно с попаданием частицы в зазоp. Электpоны не ускоpяют на циклотpонах, так как pелятивистский эффект возpастания массы у них пpоявляется пpи сpавнительно малых энеpгиях. Изучим еще один эффект, в котоpом пpоявляется сила Лоpенца, эффект Холла. Рассмотpим пластинку из пpоводника в фоpме паpаллелепипеда (

pис. 3.6), по котоpому течет ток в некотоpом (назовем его пpодольны) напpавлении. Пластинка помещена в магнитное поле, линии котоpого пеpпендикуляpны к пластинке и напpавлены “на нас”. На движущиеся носители тока действует сила Лоpенца, завоpачивающая их к боковым гpаням пластинки. Боковые гpани будут заpяжаться заpядами pазных знаков – возникает попеpечное электpическое поле, определяемое из условия (pис. 3.6):

(3.7)

Отсюда попеpечная pазность потенциалов находится согласно фоpмуле

(3.8)

Коэффициент R = 1/nе называется постоянной Холла. Знак постоянной Холла, а следовательно, и попеpечной pазности потенциалов (под действием котоpой в попеpечной цепи может пpотекать ток) зависит от знака носителей тока. Таким обpазом, эффект Холла может служить индикатоpом хаpактеpа пpоводимости (дыpочной или электpонной) в полупpоводниках.

studfiles.net

8.2. Сила Лоренца и ее магнитная составляющая. Магнитное поле

В разделе “Электростатика” изучались свойства поля электрических сил , действующих на покоящийся пробный заряд

q. В качестве характеристики поля был введен вектор  , не зависящий от величины пробного зарядаq. Однако, как показывает опыт, сила , действующая на движущийся заряд, может отличаться от электрической силы. Это отличие связано с существованием так называемой магнитной силы.

Обобщением опытных данных являются следующие три основные свойства магнитной силы, действующей на движущуюся заряженную частицу.

1. Величина магнитной силы пропорциональна заряду движущейся частицы и величине ее скорости.

2. Направление магнитной силы всегда перпендикулярно направлению движения заряженной частицы.

3. В любой точке пространства существует такое направление, двигаясь в котором частица не испытывает действия магнитной силы. Другими словами существует такая ориентация вектора скорости, при котором магнитная сила равна нулю.

Перечисленные свойства магнитной силы можно описать количественно, для чего удобно ввести понятие магнитного поля.

Характеризуя это поле вектором индукции магнитного поля , запишем выражение для магнитной силы:

 (3)

В итоге полная сила, действующая со стороны электромагнитного поля на движущуюся относительно избранной системы отсчета заряженную частицу описывается формулой

(4)

Эту силу называют силой Лоренца.

По действию силы на заряженную частицу можно в принципе определить векторы электрического и магнитного полей. Следовательно, выражение для силы Лоренца (4) можно рассматривать как определение электрического и магнитного полей (векторов и ).

В самом деле, измерив ускорение движущейся заряженной частицы массойm, определим полную электромагнитную силу по второму закону Ньютона(электрическая и магнитнаясоставляющие электромагнитной силыотносятся к одной и той же системе отсчета. Более того, эта система отсчета должна быть инерциальной, иначе пришлось бы учитывать силы инерции):. Далее, остановив частицу и измерив силу, действующую на неподвижный зарядq в той же самой точке пространства, например с помощью динамометра, определим как напряженность электрического поля  , так и вектор магнитной силы. Затем, испытывая все возможные направления движения, найдем такое, двигаясь вдоль которого частица не подвергается действию магнитной силы, – это и есть направление вектора индукции магнитного поля в данной точке пространства. При этом не должно смущать то обстоятельство, что процедура испытания различных направлений движения может потребовать много времени. Дело в том, что рассматриваемый эксперимент скорее мысленный, чем лабораторный, хотя в принципе его можно осуществить и в лаборатории.

Теперь пусть частица движется со скоростью , перпендикулярной к направлению вектора . Умножим векторно слева на выражение (1), записанное для такого случая:

Учитывая здесь известное тождество векторной алгебры , а также соотношенияи, найдем окончательно

 (5)

Отметим, что выражение для электромагнитной силы (4) остается справедливым для переменных полей и произвольных значений скорости заряда .

Аналогично электрическому полю векторов поле магнитной индукции может быть геометрически наглядно представлено с помощью линий поля, проведенных так, что касательная к этим линиям в каждой точке совпадает с направлением вектора индукции , а густота линий пропорциональная модулю вектора в данном месте. Однако магнитное поле в отличие от электростатического устроено так, что изобразить его с помощью линий поля не всегда возможно.

ИЛЛЮСТРАЦИИ. Картину магнитной индукции можно наблюдать с помощью мелких железных опилок, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль линий индукции.

1. Линейный ток

2. Виток с током.

Пример линий магнитной индукции полей постоянного магнита и катушки с током приведен на рис. 

Рисунок

Линии магнитной индукции полей постоянного магнита и катушки с током. Индикаторные магнитные стрелки ориентируются по направлению касательных к линиям индукции

Обратите внимание на аналогию магнитных полей постоянного магнита и катушки с током.

Вообще мы увидим, что линии в простых случаях замкнуты (если не уходят на ).Это означает, что магнитное поле не имеет источников – магнитных зарядов. Поля, в которых возможны замкнутые силовые линии (таково поле ), кратко называют соленоидальными или вихревыми, в противоположность потенциальным полям, типа электростатического.

Однако не следует думать, что силовые линии магнитного поля всегда замкнуты. Это распространенное заблуждение, проникшее даже в учебники. Замкнуты линии , например, у кольцевого витка с током I (рис.). Но если пропустить через виток провод с малым током i, добавится малое поле h, перпендикулярное начальному Н. Силовая линия суммарного поля станет спиралью, бесконечно навивающейся на кольцо, и замкнуться может только случайно. При «общем» соотношении токов и при произвольной их геометрии практически все линии будут незамкнуты, причем вполне заметно. Рис.

studfiles.net

Kvant. Магнитная сила — PhysBook

Ромишевский Е. Эта загадочная магнитная сила //Квант. — 1999. — № 3. — С. 39-40.

По специальной договоренности с редколлегией и редакцией журнала “Квант”

Опытно установлено, что сила, действующая на точечный электрический заряд q, помещенный в электрическое и магнитное поля, зависит в общем случае от положения этого заряда и от его скорости движения. Обычно эту силу разделяют на две составляю- щие — электрическую \(~\vec F_e = q \vec E\), которая не зависит от движения заряда, а определяется его положением в электрическом поле с напряженностью \(~\vec E\), и магнитную \(~\vec F_m\), зависящую от скорости заряда \(~\vec \upsilon\) . Именно о магнитной силе и пойдет речь в дальнейшем.

В любой точке пространства магнитная сила перпендикулярна вектору скорости заряда. Перпендикулярна она также и определенному выбранному в пространстве направлению. Величина же магнитной силы (ее модуль) пропорциональна той составляющей скорости заряда, которая перпендикулярна этому выделенному направлению. Эти свойства магнитной силы можно описать, пользуясь понятием магнитного поля. Магнитное поле характеризуется вектором магнитной индукции \(~\vec B\), который и определяет выбранное направление в пространстве.

Для определения магнитной силы можно записать следующее выражение:

\(~\vec F_m = q \upsilon B \sin \alpha \vec \zeta\) ,

где υ и B – модули векторов скорости заряда и индукции магнитного поля, α – угол между этими векторами, а единичный вектор \(~\vec \zeta\) – правый винт (или буравчик) – указывает только направление магнитной силы. Это направление соответствует направлению движения правого винта, головка которого лежит в плоскости векторов \(~\vec \upsilon\) и \(~\vec B\) и который мы закручиваем, поворачивая его на наименьший угол от вектора \(~\vec \upsilon\) к вектору \(~\vec B\) (рис.1). Магнитная сила \(~\vec F_m\) перпендикулярна и вектору \(~\vec \upsilon\) , и вектору \(~\vec B\) .

Рис. 1

Полную электромагнитную силу \(~\vec F = \vec F_e + \vec F_m\), действующую на электрический заряд q, называют силой Лоренца (заметим, что иногда силой Лоренца называют лишь магнитную силу). По действию силы Лоренца на электрический заряд известного знака можно, в принципе, определить модули и направления векторов \(~\vec E\) и \(~\vec B\).

Следует особо отметить, что на покоящийся электрический заряд магнитное поле не действует. Важной особенностью магнитной силы является также то, что она всегда перпендикулярна вектору скорости заряда, поэтому работы над зарядом не совершает. Это означает, что в постоянном магнитном поле кинетическая энергия заряженной частицы всегда остается неизменной, как бы частица ни двигалась.

Рис. 2

Рассмотрим, например, как будут двигаться две разноименно заряженные частицы с зарядами +q и —q, имеющие разные массы M1 = 2m и M2 = m, если в начальный момент скорости этих частиц равны \(~\vec \upsilon_0\) и направлены перпендикулярно границе области существования однородного магнитного поля с индукцией \(~\vec B\) (рис.2; вектор \(~\vec B\)-перпендикулярен плоскости листа и направлен от нас). На оказавшуюся в области однородного магнитного поля положительную частицу действует магнитная сила, равная \(~F_m = q \upsilon_0 B\) и направленная вначале вверх. На отрицательную частицу действует такая же по величине сила, но направленная вначале вниз. Каждая из частиц опишет полуокружность, после чего покинет область магнитного поля. Радиус окружности можно найти из второго закона Ньютона:

\(~q \upsilon_0 B = \frac{M \upsilon^2_0}{R}\) ,

откуда

\(~R = \frac{M \upsilon_0}{qB}\) .

Угловая скорость движения частицы по окружности и период ее полного обращения будут равны

\(~\omega = \frac{\upsilon_0}{R} = \frac{qB}{M}\) и \(~T = \frac{2\pi}{\omega} = \frac{2 \pi M}{qB}\) .

Видно, что положительная частица (M1 = 2m) опишет полуокружность в два раза большего радиуса, чем отрицательная (M2 = m), которая будет двигаться в противоположную сторону. Возвратится же обратно тяжелая частица (зеркально отразившись) через промежуток времени, в два раза больший, чем отрицательная. Таким образом, однородное магнитное поле как бы разделяет в пространстве и во времени влетевшие вместе, но разные по заряду и по массе частицы.

Если магнитное поле воздействует только на движущиеся заряды, то, как показывает опыт, движущиеся заряды (электрические токи), в свою очередь, всегда возбуждают в пространстве магнитное поле. В результате обобщения экспериментальных данных был получен элементарный закон, определяющий индукцию \(~\vec B\) магнитного поля точечного заряда q, движущегося с постоянной скоростью \(~\vec \upsilon\) , много меньшей по величине скорости света с. Этот закон можно записать в виде

\(~\vec B = \frac{1}{4 \pi \varepsilon_0 c^2} \frac{q \upsilon \sin \alpha}{r^2} \vec \zeta\) ,

где α – угол между вектором скорости заряда \(~\vec \upsilon\) и радиусом-вектором \(~\vec r\) , проведенным от заряда в точку наблюдения, \(~\vec \zeta\) – единичный «вектор буравчика», получаемый вращением вектора \(~\vec \upsilon\) к вектору \(~\vec r\) (рис.3) и отвечающий за направление вектора \(~\vec B\). Константу \(~\frac{1}{\varepsilon_0 c^2}\) обычно обозначают μ0 и называют магнитной постоянной.

Рис. 3

Заметим, что если умножить обе части приведенной формулы на число электронов \(~\Delta N = n \Delta l S\), находящихся в элементе провода длиной Δl, по которому течет ток \(~I = qn \upsilon S\), то получим известный закон Био – Савара для индукции \(~\Delta \vec B\) магнитного поля, созданного элементом тока \(~I \Delta \vec l\):

\(~\Delta \vec B = \frac{\mu_0}{4 \pi} \frac{I \Delta l \sin \alpha}{r^2} \vec \zeta\) .

Рис. 4

Линии магнитной индукции в данном случае представляют собой концентрические окружности, окружающие линию движения заряда (рис.4), а величина магнитной индукции убывает с расстоянием пропорционально \(~\frac{1}{r^2}\) , как и величина напряженности электрического поля точечного заряда. Но магнитное поле не имеет источников и стоков, магнитные линии всегда замкнуты. Это физическое векторное поле уже иного свойства, его называют соленоидальным или вихревым.

Рассмотрим теперь такой пример.

Рис. 5

Пусть две достаточно массивные точечные частицы 1 и 2, заряженные одним и тем же зарядом q, движутся параллельно друг другу с одинаковыми нерелятивистскими скоростями \(~\vec \upsilon\) (рис.5). На каждую частицу действуют электрическая сила отталкивания, равкал \(~F_e = qE\), и магнитная сила притяжения, равная \(~F_m = q \upsilon B\) (скорость одной частицы перпендикулярна магнитному полю, создаваемому другой частицей). Сравним количественно эти две составляющие общей электромагнитной силы Лоренца, действующей, к примеру, на частицу 2:

\(~\frac{F_{m2}}{F_{e2}} = \frac{q \upsilon B_{21}}{q E_{21}}\) ,

где B21 и E21 – индукция магнитного поля и напряженность электрического поля, создаваемых зарядом / в месте нахождения заряда 2. Подставив соответствующие значения индукции и напряженности, получим

\(~\frac{F_{m2}}{F_{e2}} = \frac{q \upsilon \frac{q \upsilon}{4 \pi \varepsilon_0 c^2 r^2}}{q \frac{q}{4 \pi \varepsilon_0 r^2}} = \frac{\upsilon^2}{c^2}\) .

Это означает, что при нерелятивистских скоростях движения зарядов магнитная сила существенно меньше электрической и является очень малой поправкой к их общей силе электромагнитного взаимодействия – силе Лоренца.

А что если выбрать другую инерциальную систему отсчета, движущуюся равномерно и прямолинейно со скоростью \(~\vec \upsilon\) наших заряженных частиц? В этой системе заряды будут покоиться, пропадут их магнитные поля, пропадет и магнитная сила их взаимодействия. Иными словами, поскольку магнитная составляющая силы Лоренца зависит от скорости частицы, она изменяется при переходе от одной инерциальной системы отсчета к другой. Вместе с тем, сама сила Лоренца в нерелятивистском случае, как любая другая сила, не зависит от выбора инерциальной системы отсчета. Это означает, что в системе отсчета, в которой пропадает магнитная составляющая силы, должна изменяться и электрическая ее составляющая. Получается, что разделение полной силы Лоренца на электрическую и магнитную составляющие без указания конкретной системы отсчета не имеет смысла.

После рассмотренного нами примера движения двух заряженных частиц может возникнуть естественный вопрос — стоит ли вообще изучать и учитывать такие относительно малые магнитные силы? Оказывается, стоит, и вот почему.

Во-первых, полученное соотношение сил справедливо и при релятивистских скоростях υ ~ с, а тогда магнитные силы оказываются уже сравнимыми с электрическими. Так происходит, например, когда мы имеем дело с пучками быстрых заряженных частиц.

Во-вторых, бывают ситуации, когда ничтожная по величине магнитная сила является единственной действующей силой. Например — при движении электронов вдоль проводов (электрические токи), ибо в этом случае электрические силы отсутствуют в результате почти идеального баланса отрицательных и положительных зарядов в проводниках. Кроме того, участие в создании электрического тока громадного числа носителей зарядов (их примерно 1023 в одном кубическом сантиметре проводника) делает магнитную силу весьма значительной.

В-третьих, приходится встречаться с движением заряженных частиц в самых разных по величине внешних электрических и магнитных полях, создаваемых различным образом. В этих случаях соотношения между электрическими и магнитными силами могут быть самыми разнообразными.

www.physbook.ru

Электрические и магнитные силы

Физика > Электрические и магнитные силы

 

Траектория заряженной частички подчиняется электрической и магнитной силам, но проявляют они себя по-разному.

Задача обучения

  • Сравнить влияние обеих сил на заряженную частичку.

Основные пункты

  • Сила на заряженной частичке, созданная электрическим полем, направляется параллельно его вектору при положительном знаке и антипараллельно при отрицательном. Она не основывается на скорости частички.
  • Магнитная сила выступает ортогональной вектору магнитного поля и основывается на скорости частички. Для определения направленности используют правило правой руки.
  • Над заряженной частичкой может функционировать электрическое поле, но не магнитное.
  • Сила Лоренца – комбинация обеих сил.
  • На положительных зарядах электрические линии создаются, а заканчиваются на отрицательных. Линии изолированного заряда располагаются радиально наружу, касаясь электрического поля.
  • Линии магнитного поля создаются на северном полюсе и заканчиваются на южном. Магнитные полюса не пребывают в изоляции и касаются магнитного поля.

Термин

  • Ортогональные – расположены перпендикулярно друг другу.

Электрические и магнитные силы

Зараженные частички испытывают на себе влияние электрических и магнитных сил. Но результирующее изменение траектории будет отличаться, если рассматривать каждую по отдельности.

Электростатическая и магнитная силы на заряженной частичке

В статическом стабильном электрическом поле сила:

F = qE (F – вектор силы, q – заряд, E – вектор электрического поля). В положительном заряде направленность F идентична E, а в отрицательном будет противоположной. Электрическое поле можно установить большим зарядом Q, влияющим на меньший q на дистанции r:

Не забывайте, что электрическая сила располагается параллельно электрическому полю. Ее коррекция приравнивается к нулю:

▽ × Е = 0

Получается, что электрическое поле способно функционировать, а заряд последует за касательной линией.

А вот магнитная сила на заряженной частичке будет ортогональна к полю, поэтому:

F = qv × B = qvBsinθ (В – вектор магнитного поля, v – скорость частицы, а θ – угол между магнитным полем и скоростью частиц). Правило правой руки поможет вычислить направленность F.

Перемещающиеся заряды ощущают влияние магнитного поля. Это одна из наиболее распространенных сил. Ее направленность выступает перпендикулярной плоскости и соответствует правилу правой руки. Величина пропорциональна q, v, B и синусу угла между v и B

Если скорость частички выровняется параллельно по отношению к магнитному полю или приравняется к нулю, то и магнитная сила достигнет 0. И в этом отличие от электрического варианта, где скорость частички никак не влияет на величину или направленность электрической силы.

Зависимость от угла также приводит к тому, что заряженные частички перемещаются перпендикулярно по отношению к линиям магнитного поля, выполняя круговые/спиральные движения. Стоит отметить, что магнитное поле не функционирует при круговой траектории, так как частичка возвращается на исходную точку:

W = ∮B ⋅ dr = 0

Сила Лоренца

Передает сложенные электрические и магнитные силы на заряженной частичке. Сила высчитывается уравнением:

F = q [Е + vBsinθ]

Электрические и магнитные линии

Линии электрического поля из положительно изолированного заряда выглядят как последовательность радиально направленных линий, установленных наружу от заряда. Если же заряд несет отрицательный знак, то направленность поля меняется на противоположную. Завиток электрической линии приравнивается к 0.

Электрическое поле сосредоточено вокруг трех разных точечных зарядов: (а) – положительный, (b) – отрицательный с равной величиной, (с) – больший отрицательный заряд

Если активировано несколько зарядов, то линии поля создаются на положительных и заканчиваются в отрицательных. В магнитах они возникают на северном полюсе (+) и завершаются на южном (-). Но они путешествуют парами, поэтому завиток магнитного поля не всегда приравнивается к нулю. Если у частичек есть ненулевой компонент скорости, то они будут вращаться вокруг линий.

На этой модели видны два противоположных полюса: северный (+) и южный (-). Они разделены дистанцией (d) и формируют линии

Можно создать магнитное поле током с линиями поля. На схеме отобразится в виде концентрических окружностей вокруг проводящего ток провода. В любой точке магнитную силу можно будет вычислить по правилу правой руки.


v-kosmose.com

МАГНИТНАЯ СИЛА – это… Что такое МАГНИТНАЯ СИЛА?


МАГНИТНАЯ СИЛА
МАГНЕТИЗМ или МАГНИТНАЯ СИЛА

(ново-лат. magnetismus, от лат. magnes – магнит). 1) способность магнита или намагниченных железных тел притягивать кусочки железа. 2) животным магнетизмом называется влияние, оказываемое, при известных условиях, одним человеком на другого.

Словарь иностранных слов, вошедших в состав русского языка.- Чудинов А.Н., 1910.

.

  • МАГНЕТИЗМ
  • МАГНЕТИЗМ ЖИВОТНЫЙ

Смотреть что такое “МАГНИТНАЯ СИЛА” в других словарях:

  • магнитная сила — сила (действия) магнитного поля — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы сила (действия) магнитного… …   Справочник технического переводчика

  • магнитная сила — электромагнитная сила; сила Ампера; пондеромоторная сила; отрасл. магнитная сила Сила, обусловленная взаимодействием магнитного поля и электрического тока и действующая на единицу объёма проводящей среды …   Политехнический терминологический толковый словарь

  • магнитная сила — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Jėga, kuria magnetinis laukas veikia jame esančius magnetinius (di)polius, judančias elektringąsias daleles. atitikmenys: angl. magnetic force vok. magnetische Kraft, f… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • магнитная сила — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Magnetinių dipolių sąveikos jėga. atitikmenys: angl. magnetic force vok. magnetische Kraft, f rus. магнитная сила, f; сила магнитного поля, f pranc. force magnétique, f …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • магнитная сила — magnetinė jėga statusas T sritis fizika atitikmenys: angl. magnetic force vok. magnetische Kraft, f rus. магнитная сила, f pranc. force magnétique, f …   Fizikos terminų žodynas

  • поверхностная магнитная сила — Сила, обусловленная магнитным полем и действующая на единицу поверхности материального объёма …   Политехнический терминологический толковый словарь

  • сила Ампера — электромагнитная сила; сила Ампера; пондеромоторная сила; отрасл. магнитная сила Сила, обусловленная взаимодействием магнитного поля и электрического тока и действующая на единицу объёма проводящей среды …   Политехнический терминологический толковый словарь

  • сила магнитного поля — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Jėga, kuria magnetinis laukas veikia jame esančius magnetinius (di)polius, judančias elektringąsias daleles. atitikmenys: angl. magnetic force vok. magnetische Kraft, f… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • сила магнитного поля — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Magnetinių dipolių sąveikos jėga. atitikmenys: angl. magnetic force vok. magnetische Kraft, f rus. магнитная сила, f; сила магнитного поля, f pranc. force magnétique, f …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Магнитная жёсткость — Размерность L2MT 3I 1 Единицы измерения СИ вольт СГСЭ …   Википедия

dic.academic.ru

магнитная сила – это… Что такое магнитная сила?


магнитная сила

электромагнитная сила; сила Ампера; пондеромоторная сила; отрасл. магнитная сила

Сила, обусловленная взаимодействием магнитного поля и электрического тока и действующая на единицу объёма проводящей среды

Политехнический терминологический толковый словарь. Составление: В. Бутаков, И. Фаградянц. 2014.

  • пондеромоторная сила
  • электромагнитная энергия

Смотреть что такое “магнитная сила” в других словарях:

  • магнитная сила — сила (действия) магнитного поля — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы сила (действия) магнитного… …   Справочник технического переводчика

  • магнитная сила — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Jėga, kuria magnetinis laukas veikia jame esančius magnetinius (di)polius, judančias elektringąsias daleles. atitikmenys: angl. magnetic force vok. magnetische Kraft, f… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • магнитная сила — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Magnetinių dipolių sąveikos jėga. atitikmenys: angl. magnetic force vok. magnetische Kraft, f rus. магнитная сила, f; сила магнитного поля, f pranc. force magnétique, f …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • МАГНИТНАЯ СИЛА — МАГНЕТИЗМ или МАГНИТНАЯ СИЛА (ново лат. magnetismus, от лат. magnes магнит). 1) способность магнита или намагниченных железных тел притягивать кусочки железа. 2) животным магнетизмом называется влияние, оказываемое, при известных условиях, одним… …   Словарь иностранных слов русского языка

  • магнитная сила — magnetinė jėga statusas T sritis fizika atitikmenys: angl. magnetic force vok. magnetische Kraft, f rus. магнитная сила, f pranc. force magnétique, f …   Fizikos terminų žodynas

  • поверхностная магнитная сила — Сила, обусловленная магнитным полем и действующая на единицу поверхности материального объёма …   Политехнический терминологический толковый словарь

  • сила Ампера — электромагнитная сила; сила Ампера; пондеромоторная сила; отрасл. магнитная сила Сила, обусловленная взаимодействием магнитного поля и электрического тока и действующая на единицу объёма проводящей среды …   Политехнический терминологический толковый словарь

  • сила магнитного поля — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Jėga, kuria magnetinis laukas veikia jame esančius magnetinius (di)polius, judančias elektringąsias daleles. atitikmenys: angl. magnetic force vok. magnetische Kraft, f… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • сила магнитного поля — magnetinė jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Magnetinių dipolių sąveikos jėga. atitikmenys: angl. magnetic force vok. magnetische Kraft, f rus. магнитная сила, f; сила магнитного поля, f pranc. force magnétique, f …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Магнитная жёсткость — Размерность L2MT 3I 1 Единицы измерения СИ вольт СГСЭ …   Википедия

technical_terminology.academic.ru

Оставить комментарий