Магнитное и электрическое поля человека – Биологическое влияние электрических и магнитных полей на организм людей и животных. — Мои статьи — Каталог статей

Магнитные и электрические поля человека — 25 Августа 2016 | Земля

Электрическое поле человека существует на поверхности тела и снаружи, вне его. Электрическое поле вне тела человека обусловлено главным образом трибозарядами, то есть зарядами, возникающими на поверхности тела вследствие трения об одежду или о какой-либо диэлектрический предмет, при этом на теле создается электрический потенциал порядка нескольких вольт. Электрическое поле непрерывно меняется во времени: во-первых, происходит нейтрализация трибозарядов — они стекают с высокоомной поверхности кожи с характерными временами ~ 100 — 1000 с; во-вторых, изменения геометрии тела вследствие дыхательных движений, биения сердца и т.п. приводят к модуляции постоянного электрического поля вне тела.

Еще одним источником электрического поля вне тела человека является электрическое поле сердца. Приблизив два электрода к поверхности тела, можно бесконтактно и дистанционно зарегистрировать такую же кардиограмму, что и традиционным контактным методом. Отметим, что этот сигнал ни много раз меньше, чем поле трибозарядов.

В медицине бесконтактный метод измерения электрических полей, связанных с телом человека, нашел свое применение для измерения низкочастотных движений грудной клетки.

При этом на тело пациента подается переменное электрическое напряжение частотой — 10 МГц, а несколько антенн-электродов подносят к грудной клетке на расстоянии 2-5 см. Антенна и тело представляют собой две обкладки конденсатора. Перемещения грудной клетки меняет расстояние между обкладками, то есть емкость этого конденсатора и, следовательно, емкостной ток, измеряемый каждой антенной. На основании измерений этих токов можно построить карту перемещений грудной клетки во время дыхательного цикла. В норме она должна быть симметрична относительно грудины. Ее симметрия нарушена и с одной стороны амплитуда движений мала, то это может свидетельствовать, например, о скрытом переломе ребра, при котором блокируется сокращение мышц с соответствующей стороны грудной клетки.

Контактные измерения электрического поля в настоящее время находят наибольшее применение в медицине: в кардиографии и электроэнцефалографии. Основной прогресс в этих исследованиях обусловлен применением вычислительной техники, в том числе персональных компьютеров. Они позволяют получать электрокардиограммы высокого разрешении (ЭКГ ВР).

Как известно, амплитуда сигнала ЭКГ не более 1 мВ, а ST-сегмента еще меньше, причем сигнал маскируется электрическим шумом, связанным с нерегулярной мышечной активностью. Поэтому применяют метод накопления — то есть суммирование многих последовательно идущих сигналов ЭКГ. Для этого ЭВМ сдвигает каждый последующий сигнал так, чтобы его R-пик был совмещен с R-пиком предыдущего сигнала, и прибавляет его к предыдущему, и так для многих сигналов в течение нескольких минут. При этой процедуре полезный повторяющийся сигнал увеличивается, а нерегулярные по мехи гасят друг друга. За счет подавления шума удается выделить тонкую структуру ST-комплекса, которая важна для прогноза риска мгновенной смерти.

В электроэнцефалографии, используемой для целей нейрохирургии, персональные компьютеры позволяют строить в реальном времени мгновенные карты распределения электрического поля мозга с использованием потенциалов от 16 до 32 электродов, размещенных на обоих полушариях, через временные интервалы порядка нескольких мс.

Построение каждой карты включает в себя четыре процедуры:

1) измерение электрического потенциала во всех точках, где стоят электроды;

2) интерполяцию (продолжения) измеренных значений на точки, лежащие между электродами;

3) сглаживание получившейся карты;

4) раскрашивание карты в цвета, соответствующие определенным значениям потенциала. Получаются эффектные цветные изображения. Такое представление в квазицвете, когда всему диапазону значений поля от минимального до максимального ставят в соответствие набор цветов, например от фиолетового до красного, сейчас очень распространено, поскольку сильно облегчает врачу анализ сложных пространственных распределений. В результате получается последовательность карт, из которой видно, как по поверхности коры перемещаются источники электрического потенциала.

Персональный компьютер позволяет строить карты не только мгновенного распределения потенциала, но и более тонких параметров ЭЭГ, которые давно апробированы в клинической практике. К ним в первую очередь относится пространственное распределение электрической мощности тех или иных спектральных составляющих ЭЭГ (α, Я, γ , δ, и θ-ритмы). Для построения такой карты в определенном временном окне измеряют потенциалы в 32 точках скальпа, затем по этим записям определяют частотные спектры и строится пространственное распределение отдельных спектральных компонент.

Карты α, δ, Я ритмов сильно отличаются. Нарушения симметрии таких карт между правым и левым полушарием может быть диагностическим критерием в случае опухолей мозга и при некоторых других заболеваниях.

Таким образом, в настоящее время разработаны бесконтактные методы регистрации электрического поля, которое создает тело человека в окружающем пространстве, и найдены некоторые приложения этих методов в медицине. Контактные измерения электрического поля получили новый импульс в связи с развитием персональных ЭВМ — их высокое быстродействие позволило получать карты электрических полей мозга.

Магнитное поле человека

Магнитное поле тела человека создается токами, генерируемыми клетками сердца и коры головного мозга. Оно исключительно мало — 10 млн. — 1 млрд. раз слабее магнитного поля Земли. Для его измерения используют квантовый магнитометр. Его датчиком является сверхпроводящий квантовый магнитометр (СКВИД), на вход которого включены приемы и с катушки. Этот датчик измеряет сверхслабый магнитный поток, пронизывающий катушки. Чтобы СКВИД работал, его надо ох ладить до температуры, при которой появляется сверхпроводимость, т.е. до температуры жидкого гелия (4 К). Для этого его и приемные катушки помещают в специальный термос для хранения жидкого гелия — криостат, точнее, в его узкую хвостовую часть, которую удается максимально близко поднести к телу человека.

В последние годы после открытия «высокотемпературной сверхпроводимости» появились СКВИДы, которые достаточно охлаждать до температуры жидкого азота (77 К). Их чувствительность достаточна для измерения магнитных полей сердца.

Магнитное поле, создаваемое организмом человека, на много порядков меньше, чем магнитном поле Земли, его флуктуации (геомагнитный шум) или поля технических устройств.

Существуют два подхода к устранению влияния шумов. Наиболее радикальный — создание сравнительно большого объема (комнаты), в котором магнитные шумы резко уменьшены с помощью магнитных экранов. Для наиболее тонких биомагнитных исследований (на мозге) шумы необходимо с шикать примерно в миллион раз, что может быть обеспечено многослойными стопками из магнитомягкого ферромагнитного сплава (например, пермаллоя). Экранированная комната — дорогостоящее сооружение, и лишь крупнейшие научные центры могут позволить себе се сооружение. Количество таких комнат в мире в настоящее время исчисляется единицами.

Есть и другой, более доступный способ ослабить влияние внешних шумов. Он основан на том, что в большинстве своем магнитные шумы в окружающем нас пространстве порождаются хаотическими колебаниями (флуктуациями) земного магнитного поля и промышленными электроустановками. Вдали от резких магнитных аномалий и электрических машин магнитное поле хотя и флуктуирует со временем, но пространственно однородно, слабо меняясь на расстояниях, сравнимых с размерами человеческого тела. Собственно же биомагнитные поля быстро ослабевают при удалении от живого организма. Это означает, что внешние поля, хотя и намного более сильные, имеют меньшие градиенты (т.е. скорость изменения с удалением от объекта), чем биомагнитные поля.

Приемное устройство прибора со сквидом в качестве чувствительного элемента изготовляется так, что оно чувствительно только к градиенту магнитного поля, — в этом случае прибор называют градиометром. Однако часто внешние (шумовые) поля обладают все же заметными градиентами, тогда приходится применять прибор, измеряющий вторую пространственную производную индукции магнитного поля — градиометр второго порядка. Такой прибор можно применять уже в обычной лабораторной обстановке. Но все же и градиометры предпочтительно применять в местах с «магнитно-спокойной» обстановкой, и некоторые исследовательские группы работают в специально сооружаемых немагнитных домах в сельской местности.

В настоящее время интенсивные биомагнитные исследования ведутся как в магнитоэкранированных комнатах, так и без них, с применением градиометров. В широком спектре биомагнитных явлений есть много задач, допускающих разный уровень ослабления внешних шумов.

earth-chronicles.ru

Магнитные и электрические поля человека — Альтернативный взгляд Salik.biz

Электрическое поле человека существует на поверхности тела и снаружи, вне его. Электрическое поле вне тела человека обусловлено главным образом трибозарядами, то есть зарядами, возникающими на поверхности тела вследствие трения об одежду или о какой-либо диэлектрический предмет, при этом на теле создается электрический потенциал порядка нескольких вольт. Электрическое поле непрерывно меняется во времени: во-первых, происходит нейтрализация трибозарядов — они стекают с высокоомной поверхности кожи с характерными временами ~ 100 — 1000 с; во-вторых, изменения геометрии тела вследствие дыхательных движений, биения сердца и т.п. приводят к модуляции постоянного электрического поля вне тела.

Еще одним источником электрического поля вне тела человека является электрическое поле сердца. Приблизив два электрода к поверхности тела, можно бесконтактно и дистанционно зарегистрировать такую же кардиограмму, что и традиционным контактным методом. Отметим, что этот сигнал ни много раз меньше, чем поле трибозарядов.

В медицине бесконтактный метод измерения электрических полей, связанных с телом человека, нашел свое применение для измерения низкочастотных движений грудной клетки.

При этом на тело пациента подается переменное электрическое напряжение частотой — 10 МГц, а несколько антенн-электродов подносят к грудной клетке на расстоянии 2-5 см. Антенна и тело представляют собой две обкладки конденсатора. Перемещения грудной клетки меняет расстояние между обкладками, то есть емкость этого конденсатора и, следовательно, емкостной ток, измеряемый каждой антенной. На основании измерений этих токов можно построить карту перемещений грудной клетки во время дыхательного цикла. В норме она должна быть симметрична относительно грудины. Ее симметрия нарушена и с одной стороны амплитуда движений мала, то это может свидетельствовать, например, о скрытом переломе ребра, при котором блокируется сокращение мышц с соответствующей стороны грудной клетки.

Контактные измерения электрического поля в настоящее время находят наибольшее применение в медицине: в кардиографии и электроэнцефалографии. Основной прогресс в этих исследованиях обусловлен применением вычислительной техники, в том числе персональных компьютеров. Они позволяют получать электрокардиограммы высокого разрешении (ЭКГ ВР).

Как известно, амплитуда сигнала ЭКГ не более 1 мВ, а ST-сегмента еще меньше, причем сигнал маскируется электрическим шумом, связанным с нерегулярной мышечной активностью. Поэтому применяют метод накопления — то есть суммирование многих последовательно идущих сигналов ЭКГ. Для этого ЭВМ сдвигает каждый последующий сигнал так, чтобы его R-пик был совмещен с R-пиком предыдущего сигнала, и прибавляет его к предыдущему, и так для многих сигналов в течение нескольких минут. При этой процедуре полезный повторяющийся сигнал увеличивается, а нерегулярные по мехи гасят друг друга. За счет подавления шума удается выделить тонкую структуру ST-комплекса, которая важна для прогноза риска мгновенной смерти.

В электроэнцефалографии, используемой для целей нейрохирургии, персональные компьютеры позволяют строить в реальном времени мгновенные карты распределения электрического поля мозга с использованием потенциалов от 16 до 32 электродов, размещенных на обоих полушариях, через временные интервалы порядка нескольких мс.

Построение каждой карты включает в себя четыре процедуры:

1) измерение электрического потенциала во всех точках, где стоят электроды;

2) интерполяцию (продолжения) измеренных значений на точки, лежащие между электродами;

3) сглаживание получившейся карты;

4) раскрашивание карты в цвета, соответствующие определенным значениям потенциала. Получаются эффектные цветные изображения. Такое представление в квазицвете, когда всему диапазону значений поля от минимального до максимального ставят в соответствие набор цветов, например от фиолетового до красного, сейчас очень распространено, поскольку сильно облегчает врачу анализ сложных пространственных распределений. В результате получается последовательность карт, из которой видно, как по поверхности коры перемещаются источники электрического потенциала.

Персональный компьютер позволяет строить карты не только мгновенного распределения потенциала, но и более тонких параметров ЭЭГ, которые давно апробированы в клинической практике. К ним в первую очередь относится пространственное распределение электрической мощности тех или иных спектральных составляющих ЭЭГ (α, Я, γ, δ, и θ-ритмы). Для построения такой карты в определенном временном окне измеряют потенциалы в 32 точках скальпа, затем по этим записям определяют частотные спектры и строится пространственное распределение отдельных спектральных компонент.

Карты α, δ, Я ритмов сильно отличаются. Нарушения симметрии таких карт между правым и левым полушарием может быть диагностическим критерием в случае опухолей мозга и при некоторых других заболеваниях.

Таким образом, в настоящее время разработаны бесконтактные методы регистрации электрического поля, которое создает тело человека в окружающем пространстве, и найдены некоторые приложения этих методов в медицине. Контактные измерения электрического поля получили новый импульс в связи с развитием персональных ЭВМ — их высокое быстродействие позволило получать карты электрических полей мозга.

Магнитное поле человека

Магнитное поле тела человека создается токами, генерируемыми клетками сердца и коры головного мозга. Оно исключительно мало — 10 млн. — 1 млрд. раз слабее магнитного поля Земли. Для его измерения используют квантовый магнитометр. Его датчиком является сверхпроводящий квантовый магнитометр (СКВИД), на вход которого включены приемы и с катушки. Этот датчик измеряет сверхслабый магнитный поток, пронизывающий катушки. Чтобы СКВИД работал, его надо ох ладить до температуры, при которой появляется сверхпроводимость, т.е. до температуры жидкого гелия (4 К). Для этого его и приемные катушки помещают в специальный термос для хранения жидкого гелия — криостат, точнее, в его узкую хвостовую часть, которую удается максимально близко поднести к телу человека.

В последние годы после открытия «высокотемпературной сверхпроводимости» появились СКВИДы, которые достаточно охлаждать до температуры жидкого азота (77 К). Их чувствительность достаточна для измерения магнитных полей сердца.

Магнитное поле, создаваемое организмом человека, на много порядков меньше, чем магнитном поле Земли, его флуктуации (геомагнитный шум) или поля технических устройств.

Существуют два подхода к устранению влияния шумов. Наиболее радикальный — создание сравнительно большого объема (комнаты), в котором магнитные шумы резко уменьшены с помощью магнитных экранов. Для наиболее тонких биомагнитных исследований (на мозге) шумы необходимо с шикать примерно в миллион раз, что может быть обеспечено многослойными стопками из магнитомягкого ферромагнитного сплава (например, пермаллоя). Экранированная комната — дорогостоящее сооружение, и лишь крупнейшие научные центры могут позволить себе се сооружение. Количество таких комнат в мире в настоящее время исчисляется единицами.

Есть и другой, более доступный способ ослабить влияние внешних шумов. Он основан на том, что в большинстве своем магнитные шумы в окружающем нас пространстве порождаются хаотическими колебаниями (флуктуациями) земного магнитного поля и промышленными электроустановками. Вдали от резких магнитных аномалий и электрических машин магнитное поле хотя и флуктуирует со временем, но пространственно однородно, слабо меняясь на расстояниях, сравнимых с размерами человеческого тела. Собственно же биомагнитные поля быстро ослабевают при удалении от живого организма. Это означает, что внешние поля, хотя и намного более сильные, имеют меньшие градиенты (т.е. скорость изменения с удалением от объекта), чем биомагнитные поля.

Приемное устройство прибора со сквидом в качестве чувствительного элемента изготовляется так, что оно чувствительно только к градиенту магнитного поля, — в этом случае прибор называют градиометром. Однако часто внешние (шумовые) поля обладают все же заметными градиентами, тогда приходится применять прибор, измеряющий вторую пространственную производную индукции магнитного поля — градиометр второго порядка. Такой прибор можно применять уже в обычной лабораторной обстановке. Но все же и градиометры предпочтительно применять в местах с «магнитно-спокойной» обстановкой, и некоторые исследовательские группы работают в специально сооружаемых немагнитных домах в сельской местности.

В настоящее время интенсивные биомагнитные исследования ведутся как в магнитоэкранированных комнатах, так и без них, с применением градиометров. В широком спектре биомагнитных явлений есть много задач, допускающих разный уровень ослабления внешних шумов.

salik.biz

Магнитное поле человека

Всем известно, что магниты, повёрнутые друг к другу разными полюсами, будут притягиваться, а с одноимёнными — отталкиваться. Сила взаимодействия одинаковых и различных полюсов будет соответственно зависеть от того, на какой дистанции друг от друга находятся магниты. Таким образом, оба предмета создают вокруг себя магнитное поле, или ореол. Его размер будет зависеть от силы притяжения магнита к другому или любому железному предмету, чем больше сила, тем больше и поле вокруг магнитов. Её обычно изменяют при помощи простых механических весов: на одну чашу кладут кусок металла, а на другой уравновешивают его с помощью небольших гирь.

Магнитное поле обладает определёнными свойствами, в первую очередь, оно происходит от электрического тока и движущихся зарядов, а также способно обнаруживаться с помощью электрического воздействия. Магнитное поле имеют практически все живые организмы, в том числе и человек, независимо от пола.

В 60-х годах физика развивалась, и знания совершенствовались наиболее интенсивно, поэтому учёные разработали специальный прибор, способный измерять магнитную силу, и его действие опирается на квантовых законах физики. Он состоит из сенситивных магнитных элементов, которые предназначены для исследования магнитных полей и электрического тока.

Есть подобное магнитному полю человека, определение биомагнетизма, одно из его разновидностей.

Биомагнетизм

Биомагнетизм — это явление магнитных полей, создаваемое живыми организмами; это одна из разновидностей биоэлектромагнетизма. Использование свойств магнитного поля в мореплавании и изучение влияния магнитных полей на организмы — это магнитобиология.

Происхождение слова «биомагнетизм» неизвестно, но, по данным, появилось несколько сотен лет назад, связанное с выражением «животный магнетизм». Настоящее научное определение сформировалось в 1970-х годах, когда всё большее число исследователей начали измерять магнитные поля, создаваемые организмом человека.

Записи учёных

Первое действительное измерение было фактически сделано в 1963 году , но область исследований начала расширяться только после того, как в 1970 году была разработана технология с низким уровнем шума. Сегодня сообщество исследователей биомагнетиков не имеет официальной организации, но международные конференции проводятся каждые два года, в ней находятся около 600 человек. Большая часть деятельности конференции сосредоточена на МЭГ (магнитоэнцефалограмме), измерении магнитного поля мозга.

МЭГ показывает дополнительные сведения к электроэнцефалограмме (ЭЭГ) и дает ценную новую информацию о состоянии человеческого мозга. Это также показывает перспективы в клинической диагностике отклонений в головном мозге. Таким образом, биомагнетизм является перспективным новым решением для организма человека в целом и в частности, мозга. Инженерная школа Тайер в Дартмуте на данный момент приобретает систему МЭГ, и ожидаются новые захватывающие разработки.​

Советскую разработку «СКВИД» стали часто применять для измерения магнитных полей, что стало причиной для создания новых исследований в той же области, опираясь на информацию, полученную из созданного прибора.

Но ранее учёные не уделяли особого внимания исследованию магнитных полей, так как оно оказалось недостаточно сильным, да и измерение его без разработки было достаточно трудной задачей. Само магнитное поле состоит из множества шумов, исходящих из него в окружающее пространство. Кроме того, магнитное поле имеет энергетические опасности и электромагнитные поля. Это основано на энергии, излучающейся из магнитного поля, она может быть как положительной, так и отрицательной.

Поэтому, чтобы углубиться в познания, необходимо принять специальные защитные меры и приобрести соответствующие приспособления.

Человеческий магнетизм. Существуют ли магнитные люди?

Организм человека является отличной средой для распространения магнитных волн, а также служит их источником. ​Человеческий магнетизм — популярное название предполагаемой способности некоторых людей притягивать разнообразные металлические предметы к своей коже. Люди, которые, как утверждается, обладают такой способностью, часто называют человеческими магнитами. Хотя металлические предметы являются самыми популярными, некоторые из них также могут использовать другие типы материалов, такие как стекло, фарфор, дерево или пластик, а также металлы без ферромагнитных свойств, таких как латунь и алюминий. Фактически ни одно из указанных условий человеческого магнетизма не соответствует реальной физике магнетизма, что указывает на то, что эта «способность» на самом деле представляет собой не что иное, как непонимание физики и смысла этого термина и неправильное применение, что может быть объяснено не более чем необычайно липкой кожей. ​

Объяснение

​По мнению учёных, если люди могут притягивать различные предметы к своему телу, это может быть не только металл, но и другие материалы, это фактически не имеет никакого отношения к магнетизму. Скептик Бенджамин Рэдфорд использовал компас для проверки магнитного поля человека, и утверждал, что он является человеческим магнитом. Он говорил, что сам фактически не создавал магнитные поля. Это показывает, что человеческий магнетизм использует различные виды физических эффектов и явлений. Многие ученые и сторонники науки, в том числе Джеймс Рэнди, утверждают, что эта способность вызвана исключительно липкостью кожи.​

 

Причины возникновения магнитного поля вокруг человека или любого другого живого организма:

  • Мембраны клеток имеют свою электрическую активность, и вследствие чего появляются новые ионные точки;
  • Также на появление магнитного поля влияет нахождение ферромагнитных крошечных элементов, которые попали в организм или были введены;
  • Положенные сферы искривляются, магнитные поля с внешней стороны накладываются друг на друга, и возникает неоднородная чувствительность некоторых органов.

Кроме того, человек способен принимать информацию магнитным полем, это явление уже ближе не к физическим законам, а к эзотерике. Если у человека высокая и положительная энергетика, он может принимать и обмениваться информацией с другим человеком или любым другим живым организмам. ​Для человека наиболее благоприятна балансировка магнитного поля, то есть его полюсов, так как в дальнейшем это не приведёт к негативным последствиям, а именно головной боли, дискомфорту в области желудка, и ухудшению общего состояния. Магнитное поле влияет на чакры, и именно на ухудшение состояния в их зонах. Стоит отметить, что ​​магниторецепция — это чувство, которое позволяет организму обнаружить магнитное поле и воспринимать направление, высоту или расположение. Эти сенсорные модальности используются различными животными для ориентации и навигации.

[Всего голосов: 0    Средний: 0/5]

ezoterist.ru

Что такое магнитное поле и почему оно есть у человека

Наверное, нет человека, которому бы хоть раз не приходил в голову вопрос о том, что такое магнитное поле. За всю историю его пытались объяснить эфирными вихрями, причудами многомерных пространств, магнитными монополиями и многим другим.

Все мы знаем, что магниты, повернутые друг к другу одноименными полюсами, отталкиваются, а разноименными – притягиваются. Эта сила будет различаться в зависимости от того, на каком расстоянии две части находятся друг от друга. Получается, что описываемый предмет создает вокруг себя магнитный ореол. Вместе с тем при наложении же двух переменных полей, имеющих одинаковую частоту, когда одно сдвинуто в пространстве относительно другого, получается эффект, который принято называть «вращающееся магнитное поле».

Величина изучаемого предмета определяется силой, с которой магнит притягивается к другому или к железу. Соответственно, чем больше притяжение, тем больше поле. Силу можно измерить при помощи обычных механических весов: для этого на одну сторону кладется небольшой кусочек железа, а на другую – гирьки, предназначенные для уравновешивания силы притяжения металла к магниту.

Для более точного понимания предмета темы следует изучить свойства магнитного поля:

  • порождается электрическим током, т.е. движущимися зарядами;
  • обнаруживается по своему воздействию на электрический ток;
  • существует независимо от наших знаний о нем и от нас самих.

Что такое магнитное поле человека?

Отвечая на вопрос о том, что такое магнитное поле, стоит сказать, что оно есть и у человека. В конце 1960 года, благодаря интенсивному развитию физики, был создан измерительный прибор «СКВИД». Его действие объясняется законами квантовых явлений. Представляет он собой чувствительный элемент магнитометров, используемых для исследования магнитного поля и таких величин, например, как электрический ток.

«СКВИД» достаточно быстро стали употреблять для измерения полей, которые порождаются живыми организмами и, конечно, человеком. Это дало толчок для развития новых областей исследования, основанных на интерпретации информации, поставляемой таким прибором. Данное направление получило название «биомагнетизм».

Почему же раньше при определении того, что такое магнитное поле, не проводились исследования в данной области? Оказалось, что оно очень слабое у организмов, и его измерение является непростой физической задачей. Связано это с наличием огромного количества магнитных шумов в окружающем пространстве. Поэтому ответить на вопрос о том, что такое магнитное поле человека, и изучить его без использования специализированных мер защиты просто не представляется возможным.

Вокруг живого организма такой «ореол» возникает по трем основным причинам. Во-первых, благодаря ионным точкам, появляющимся как следствие электрической активности мембран клеток. Во-вторых, из-за наличия ферримагнитных мельчайших частиц, попавших случайно или введенных в организм. В-третьих, когда внешние магнитные поля накладываются, получается неоднородная восприимчивость различных органов, которая искажает наложенные сферы.

fb.ru

Магнитные и электрические поля человека

Электрическое поле

Электрическое поле человека существует на поверхности тела и
снаружи, вне его.

Электрическое поле вне тела человека обусловлено главным
образом трибозарядами, то есть зарядами, возникающими на поверхности тела
вследствие трения об одежду или о какой-либо диэлектрический предмет, при этом
на теле создается электрический потенциал порядка нескольких вольт. Электрическое
поле непрерывно меняется во времени: во-первых, происходит нейтрализация
трибозарядов — они стекают с высокоомной поверхности кожи с характерными
временами ~ 100 — 1000 с; во-вторых, изменения геометрии тела вследствие
дыхательных движений, биения сердца и т.п. приводят к модуляции постоянного
электрического поля вне тела.

Еще одним источником электрического поля вне тела человека
является электрическое поле сердца. Приблизив два электрода к поверхности тела,
можно бесконтактно и дистанционно зарегистрировать такую же кардиограмму, что и
традиционным контактным методом. Отметим, что этот сигнал ни много раз меньше,
чем поле трибозарядов. [1]

В медицине бесконтактный метод измерения
электрических полей, связанных с телом человека, нашел свое применение для
измерения низкочастотных движений грудной клетки.

При этом на тело пациента подается переменное электрическое
напряжение частотой — 10 МГц, а несколько антенн-электродов подносят к грудной
клетке на расстоянии 2-5 см. Антенна и тело представляют собой две обкладки
конденсатора. Перемещения грудной клетки меняет расстояние между обкладками, то
есть емкость этого конденсатора и, следовательно, емкостной ток, измеряемый
каждой антенной. На основании измерений этих токов можно построить карту
перемещений грудной клетки во время дыхательного цикла. В норме она должна быть
симметрична относительно грудины. Ее симметрия нарушена и с одной стороны
амплитуда движений мала, то это может свидетельствовать, например, о скрытом
переломе ребра, при котором блокируется сокращение мышц с соответствующей стороны
грудной клетки.

Контактные измерения электрического поля в настоящее
время находят наибольшее применение в медицине: в кардиографии и
электроэнцефалографии. Основной прогресс в этих исследованиях обусловлен
применением вычислительной техники, в том числе персональных компьютеров. Они позволяют получать электрокардиограммы
высокого разрешении (ЭКГ ВР).

Как известно, амплитуда сигнала ЭКГ не более 1 мВ, а ST-сегмента еще меньше,
причем сигнал маскируется электрическим шумом, связанным с нерегулярной
мышечной активностью. Поэтому применяют метод накопления — то есть суммирование
многих последовательно идущих сигналов ЭКГ. Для этого ЭВМ сдвигает каждый
последующий сигнал так, чтобы его R-пик был совмещен с R-пиком предыдущего сигнала, и прибавляет его к предыдущему, и
так для многих сигналов в течение нескольких минут. При этой процедуре полезный
повторяющийся сигнал увеличивается, а нерегулярные по мехи гасят друг друга. За
счет подавления шума удается выделить тонкую структуру ST-комплекса, которая важна для прогноза
риска мгновенной смерти.

В электроэнцефалографии, используемой для целей
нейрохирургии, персональные компьютеры позволяют строить в реальном времени
мгновенные карты распределения электрического поля мозга с использованием
потенциалов от 16 до 32 электродов, размещенных на обоих полушариях, через
временные интервалы порядка нескольких мс.

Построение каждой карты включает в себя четыре процедуры:

1) измерение электрического потенциала во всех точках, где
стоят электроды;

2) интерполяцию (продолжения) измеренных значений на точки,
лежащие между электродами;

3) сглаживание получившейся карты;

4) раскрашивание карты в цвета, соответствующие определенным
значениям потенциала. Получаются эффектные цветные изображения. Такое
представление в квазицвете, когда всему диапазону значений поля от минимального
до максимального ставят в соответствие набор цветов, например от фиолетового до
красного, сейчас очень распространено, поскольку сильно облегчает врачу анализ
сложных пространственных распределений. В результате получается
последовательность карт, из которой видно, как по поверхности коры перемещаются
источники электрического потенциала.

Персональный компьютер позволяет строить карты не только
мгновенного распределения потенциала, но и более тонких параметров ЭЭГ, которые
давно апробированы в клинической практике. К ним в первую очередь относится
пространственное распределение электрической мощности тех или иных спектральных
составляющих ЭЭГ (α, Я, γ , δ, и θ-ритмы). Для построения
такой карты в определенном временном окне измеряют потенциалы в 32 точках
скальпа, затем по этим записям определяют частотные спектры и строится
пространственное распределение отдельных спектральных компонент.

Карты α, δ, Я ритмов сильно отличаются. Нарушения
симметрии таких карт между правым и левым полушарием может быть диагностическим
критерием в случае опухолей мозга и при некоторых других заболеваниях.

Таким образом, в настоящее время разработаны бесконтактные
методы регистрации электрического поля, которое создает тело человека в
окружающем пространстве, и найдены некоторые приложения этих методов в медицине.
Контактные измерения электрического поля получили новый импульс в связи с
развитием персональных ЭВМ — их высокое быстродействие позволило получать карты
электрических полей мозга.

Магнитное поле человека

Магнитное поле тела человека создается токами, генерируемыми
клетками сердца и коры головного мозга. Оно исключительно мало — 10 млн. — 1
млрд. раз слабее магнитного поля Земли. Для его измерения используют квантовый
магнитометр. Его датчиком является сверхпроводящий квантовый магнитометр (СКВИД),
на вход которого включены приемы и с катушки. Этот датчик измеряет сверхслабый
магнитный поток, пронизывающий катушки. Чтобы СКВИД работал, его надо ох ладить
до температуры, при которой появляется сверхпроводимость, т.е. до температуры
жидкого гелия (4 К). Для этого его и приемные катушки помещают в специальный
термос для хранения жидкого гелия — криостат, точнее, в его узкую хвостовую
часть, которую удается максимально близко поднести к телу человека.



Магнитное поле человека

В последние годы после открытия «высокотемпературной
сверхпроводимости» появились СКВИДы, которые достаточно охлаждать до
температуры жидкого азота (77 К). Их чувствительность достаточна для измерения
магнитных полей сердца.

Магнитное поле, создаваемое организмом человека, на много
порядков меньше, чем магнитном поле Земли, его флуктуации (геомагнитный шум) или
поля технических устройств.

Существуют два подхода к устранению влияния шумов. Наиболее радикальный
— создание сравнительно большого объема (комнаты), в котором магнитные шумы
резко уменьшены с помощью магнитных экранов. Для наиболее тонких биомагнитных
исследований (на мозге) шумы необходимо с шикать примерно в миллион раз, что
может быть обеспечено многослойными стопками из магнитомягкого ферромагнитного
сплава (например, пермаллоя). Экранированная комната — дорогостоящее
сооружение, и лишь крупнейшие научные центры могут позволить себе се сооружение.
Количество таких комнат в мире в настоящее время исчисляется единицами.

Есть и другой, более доступный способ ослабить влияние
внешних шумов. Он основан на том, что в большинстве своем магнитные шумы в
окружающем нас пространстве порождаются хаотическими колебаниями (флуктуациями)
земного магнитного поля и промышленными электроустановками. Вдали от резких
магнитных аномалий и электрических машин магнитное поле хотя и флуктуирует со
временем, но пространственно однородно, слабо меняясь на расстояниях, сравнимых
с размерами человеческого тела. Собственно же биомагнитные поля быстро
ослабевают при удалении от живого организма. Это означает, что внешние поля,
хотя и намного более сильные, имеют меньшие градиенты (т.е. скорость изменения
с удалением от объекта), чем биомагнитные поля.

Приемное устройство прибора со сквидом в качестве
чувствительного элемента изготовляется так, что оно чувствительно только к
градиенту магнитного поля, — в этом случае прибор называют градиометром. Однако
часто внешние (шумовые) поля обладают все же заметными градиентами, тогда приходится
применять прибор, измеряющий вторую пространственную производную индукции
магнитного поля — градиометр второго порядка. Такой прибор можно применять уже
в обычной лабораторной обстановке. Но все же и градиометры предпочтительно
применять в местах с «магнитно-спокойной» обстановкой, и некоторые
исследовательские группы работают в специально сооружаемых немагнитных домах в
сельской местности.

В настоящее время интенсивные биомагнитные исследования ведутся как в
магнитоэкранированных комнатах, так и без них, с применением градиометров. В
широком спектре биомагнитных явлений есть много задач, допускающих разный
уровень ослабления внешних шумов.



biofile.ru

Электрическое и магнитное поле тела человека. Методы регистрации

Электрическое и магнитное поле тела человека. Методы регистрации

Электрическое поле человека существует на поверхности тола и снаружи, вне его. Электрическое поле вне тела человека обусловлено главным образом трибозарядами, то есть зарядами, возникающими на поверхности тела вследствие трения об одежду или о какой-либо диэлектрический предмет, при этом на теле создается электрический потенциал порядка нескольких вольт. Электрическое поле непрерывно меняется во времени: во-первых, происходит нейтрализация трибозарядов — они стекают с высокоомной поверхности кожи с характерными временами — 100 — 1000 с; во-вторых, изменения геометрии тела вследствие дыхательных движений, биения сердца и т.п. приводящих к модуляции постоянного электрического ноля вне тела.

Еще одним источником электрического ноля вне тела человека является электрическое поле сердца. Приблизив два электрода к поверхности тела, можно бесконтактно и дистанционно зарегистрировать такую же кардиограмму, что и традиционным контактным методом.

В медицине бесконтактный метод измерения электрических полей, связанных с телом человека, нашел свое применение для измерений низкочастотных движений грудной клетки. Контактный метод измерения электрического поля в настоящее время используется в кардиографии и электроэнцефалографии.

Магнитное поле тела человека создается токами, генерируемыми клетками сердца и коры головного мозга. Оно исключительно мало -10 млн. 1 млрд. раз слабее магнитного поля Земли. Для его измерения используют квантовый магнитометр. Его датчиком является сверхпроводящий квантовый магнитометр, на вход которого включены приемные катушки. Этот датчик измеряет сверхслабый магнитный поток, пронизывающий катушки. Основные медицинские применения измерений магнитных полей организма – это магнитокардиография и магнитоэнцефалография. Достоинством по сравнению с ЭКГ является возможность локализовать источники поля с высокой точностью порядка 1 см.

cribs.me

Воздействие на организм человека статических, электрических и магнитных полей.

Электрические и магнитные поля образуются под воздействием таких явлений, как магнитное поле Земли, грозы и использование электричества. Если эти поля не меняются со временем, их называют статическими. Частота таких полей равна 0 Гц.
В атмосфере статические электрические поля (их также называют электростатическими полями) возникают естественным путем в ясную по-году и, особенно, под грозовыми тучами. Трение также способствует разде-лению положительных и отрицательных зарядов и образованию мощных статических электрических полей. Их мощность измеряется в вольтах на метр (В/м) или киловольтах на метр (кВ/м). В повседневной жизни можно ощутить электрический разряд при касании заземленных предметов или по-чувствовать, как «встают дыбом» волосы в результате трения, например, при ходьбе по ковру. Использование электричества ПТ является еще одним источником статических электрических полей. Примерами таких источников могут быть железнодорожные системы, работающие на ПТ, а также телевизоры и компьютерные дисплеи с электронно-лучевыми трубками.
Статическое магнитное поле измеряется в амперах на метр (А/м), но, как правило, выражается в единицах соответствующей магнитной индукции, измеряемой в теслах (Т) или миллитеслах (мТ). Активность естественного геомагнитного поля над поверхностью Земли изменяется в пределах 0,035 — 0,07 мТ.
В отношении статических магнитных полей, сильное воздействие про-исходит лишь в случае совершения движений в пределах поля, таких как передвижения человека или движения внутри организма человека (например, кровоток или сердцебиение). Человек, двигающийся в поле мощностью свыше 2Т, может испытывать головокружение и тошноту, а иногда металлический привкус во рту и ощущение вспышек света. Это может оказывать воздействие (правда, только временное) на безопасность при выполнении некоторых точных действий (например, при проведении хирургических операций с использованием магнитно-резонансных приборов).

Статические магнитные поля влияют на движение заряженных частиц в крови, таких как ионов, создавая электрические поля и токи вокруг сердца и основных кровяных сосудов, которые могут слегка затруднять поток крови. Возможные последствия варьируются от незначительных изменений в сердцебиении до возрастания риска появления патологического сердечного ритма (аритмии), который может угрожать жизни человека (например, фибрилляция желудочков). Однако сильные воздействия такого типа возможны только в пределах полей, мощность которых превышает 8 Т.
Невозможно определить, существуют ли какие-либо долгосрочные последствия воздействия магнитных полей для здоровья (даже при мощности, измеряемой в миллитеслах), так как на сегодняшний день не проводятся надлежащие эпидемиологические исследования или долгосрочные исследования на животных. Поэтому, в настоящее время классификация канцерогенных воздействий статических магнитных полей на людей невозможна.
Действие на организм человека электромагнитных полей определяется частотой излучения, его интенсивностью, продолжительностью и характером действия, индивидуальными особенностями организма. Спектр электромагнитных полей включает низкие частоты до 3 Гц, промышленные частоты – от 3 Гц до 300 Гц, радиочастоты – от 30 Гц до 300 МГц, а также относящиеся к радиочастотам ультравысокие частоты (УВЧ) – от 300 МГц до 300 ГГц.
Электромагнитное излучение радиочастот широко используется в свя-зи, телерадиовещании, в медицине, радиолокации, радионавигации и т.д.
Электромагнитные поля оказывают на организм человека тепловое и биологическое воздействие. Переменное электрическое поле вызывает на-грев диэлектриков (хрящей, сухожилий и др.) за счет токов проводимости и за счет переменной поляризации. Выделение теплоты может приводить к перегреванию, особенно тех органов и тканей, которые недостаточно хорошо снабжены кровеносными сосудами (хрусталик глаза, желчный пузырь, мочевой пузырь). Наиболее чувствительны к биологическому воздействию радиоволн центральная нервная и сердечно – сосудистая системы. При длительном действии радиоволн не слишком большой интенсивности (порядка 10 Вт/м2) появляются головные боли, быстрая утомляемость, изменение давления и пульса, нервно-психические расстройства. Может наблюдаться похудение, выпадение волос, изменение в составе крови.
Воздействие СВЧ — излучения интенсивностью более 100 Вт/м2 может привести к помутнению хрусталика глаза и потере зрения, тот же результат может дать длительное облучение умеренной интенсивности (порядка 10 Вт/м2), при этом возможны нарушения со стороны эндокринной системы, изменения углеводного и жирового обмена, сопровождающиеся похудени-ем, повышение возбудимости, изменение ритма сердечной деятельности, изменения в крови (уменьшение количества лейкоцитов).
Действию электромагнитных полей промышленной частоты человек подвергается в производственной, городской и бытовой зонах. Санитарными нормами установлены предельно допустимые уровни напряженности электрического поля внутри жилых зданий, на территории жилой зоны. Люди, страдающие от нарушений сна и головных болей, должны перед сном убирать или отключать электрические приборы, генерирующие электрические поля.
Воздействие электромагнитных полей может быть изолированным – от одного источника, сочетанным – от двух и более источников одного частотного диапазона, смешанным – от двух и более источников электромагнитных полей различных частотных диапазонов, и комбинированным – в случае одновременного действия какого-либо другого неблагоприятного фактора.
Воздействие может быть постоянным или прерывистым, общим (облучается все тело) или местным (облучается часть тела). В зависимости от места нахождения человека относительно источника излучения он может подвергаться воздействию электрической или магнитной составляющих поля или их сочетанию, а в случае пребывания в волновой зоне – воздействию сформированной электромагнитной волны. Контроль уровней электрического поля осуществляется по значению напряженности электрического поля, выраженной в В/м. Контроль уровней магнитного поля осуществляется по значению напряженности магнитного поля, выраженной в А/м.
Энергетическим показателем для волновой зоны излучения является плотность потока энергии, или интенсивность, – энергия, проходящая через единицу поверхности, перпендикулярной к направлению, распространения электромагнитной волны за одну секунду. Измеряется в Вт/м2. Нормирова-ние уровней в соответствии с ГОСТ 12.1.006-84.
Длительное действие электрических полей может вызывать головную боль в височной и затылочной области, ощущение вялости, расстройство сна, ухудшение памяти, депрессию, апатию, раздражительность, боли в области сердца. Для персонала ограничивается время пребывания в электрическом поле в зависимости от напряженности поля (180 минут в сутки при напряженности 10 кВ/м, 10 минут в сутки при напряженности 20 кВ/м).

morez.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о