Основные характеристики магнитного поля | Электрикам
Магнитное поле представляет собой особую форму материи которая проявляется через механическое взаимодействие токов и через возникновение ЭДС в проводниках движущихся в этом поле. Оно обнаруживается вокруг движущихся электрических зарядов, следовательно и вокруг проводника с током.
Графическое изображение магнитного поля
Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми.
Для того что бы определить направление магнитного поля можно воспользоваться магнитной стрелкой, или правилом буравчика.
Правило буравчикаОсновные характеристики магнитного поля
Магнитная индукция B — это векторная величина определяющая силу действующую на заряженную частицу со стороны магнитного поля. Измеряется в теслах Тл.
магнитная постоянная.
µ — относительная магнитная проницаемость — табличная величина (для вакуума = 1)
Магнитный поток Ф — скалярная физическая величина числено равная произведению магнитной индукции на площадь поверхности ограниченной замкнутым контуром. Измеряется в веберах Вб.
Магнитный поток через контур максимален,если плоскость контура перпендикулярна магнитному полю.
Тогда магнитный поток рассчитывается по формуле:
Φmax = B · S
Магнитный поток через контур равен нулю,если контур располагается параллельно магнитному полю.
Напряженность H – это векторная величина независящая от магнитных свойств среды. Измеряется в ампер на метр А/М.
Магнитная проницаемость. Магнитная индукция зависит не только от силы тока, проходящего по проводнику или катушке, но и от свойств среды, в которой создается магнитное поле. Величиной, характеризующей магнитные свойства среды, служит магнитная проницаемость
electrikam.com
Магнитное поле, его свойства и характеристики.
Магнитное поле – форма существования материи, окружающей движущиеся электрические заряды (проводники с током, постоянные магниты).
Это название обусловлено тем, что, как обнаружил в 1820 году датский физик Ханс Эрстед, оно оказывает ориентирующее действие на магнитную стрелку. Опыт Эрстеда: под проволокой с током помещалась магнитная стрелка, вращающаяся на игле. При включении тока она устанавливалась перпендикулярно проволоке; при изменении направления тока поворачивалась в противоположную сторону.
Основные свойства магнитного поля:
1) порождается движущимися электрическими зарядами, проводниками с током, постоянными магнитами и переменным электрическим полем;
2) действует с силой на движущиеся электрические заряды, проводники с током, намагниченные тела;
3) переменное магнитное поле порождает переменное электрическое поле.
Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно иметь векторную силовую характеристику. Ее обозначают и называют магнитной индукцией.
Магнитное поле изображается графически с помощью магнитных силовых линий или линий магнитной индукции.
Линии магнитной индукции всегда замкнуты, что говорит об отсутствии в природе магнитных зарядов и вихревом характере магнитного поля.
Условно они выходят из северного полюса магнита и входят в южный. Густота линий выбирается так, чтобы число линий через единицу площади, перпендикулярную магнитному полю, было пропорционально величине магнитной индукции.
|
Направление линий определяется правилом правого винта. Соленоид – катушка с током, витки которой расположены вплотную друг к другу, а диаметр витка много меньше длины катушки.
Магнитное поле внутри соленоида является однородным. Магнитное поле называется однородным, если вектор в любой точке постоянен.
Магнитное поле соленоида аналогично магнитному полю полосового магнита.
Соленоид с током представляет собой электромагнит.
Опыт показывает, что для магнитного поля, как и для электрического, справедлив
Вектор вводится одним из 3-х способов:
а) из закона Ампера;
б) по действию магнитного поля на рамку с током;
в) из выражения для силы Лоренца.
Ампер экспериментально установил, что сила с которой магнитное поле действует на элемент проводника с током I, находящегося в магнитном поле, прямо пропорциональна силе
тока I и векторному произведению элемента длины на магнитную индукцию :
– закон Ампера
Направление вектора может быть найдено согласно общим правилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы магнитные силовые линии входили в нее, а 4 вытянутых пальца направить по току, то отогнутый большой палец покажет направление силы.
Сила, действующая на провод конечной длины, найдется интегрированием по всей длине.
При I = const, B=const, F = B×I×l×sina
Если a =900, F = B×I×l
Индукция магнитного поля – векторная физическая величина, численно равная силе, действующей в однородном магнитном поле на проводник единичной длины с единичной силой тока, расположенный перпендикулярно магнитным силовым линиям.
1Тл – индукция однородного магнитного поля, в котором на проводник длиной 1м с током в 1А, расположенный перпендикулярно магнитным силовым линиям, действует сила 1Н.
До сих пор мы рассматривали макротоки, текущие в проводниках. Однако, согласно предположению Ампера, в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах. Эти микроскопические молекулярные токи создают свое магнитное поле и могут поворачиваться в полях макротоков, создавая в теле дополнительное магнитное поле. Вектор характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками, т.е. при одном и том же макротоке вектор в различных средах имеет разные значения.
Магнитное поле макротоков описывается вектором магнитной напряженности .
Для однородной изотропной среды
,
m0= 4p×10-7Гн/м – магнитная постоянная, m0= 4p×10-7Н/А2,
m – магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков изменяется за счет поля микротоков среды.
Похожие статьи:
poznayka.org
Магнитное поле, характеристика магнитного поля
Для понимания того, что является характеристикой магнитного поля, следует дать определения многим явлениям. При этом заранее нужно вспомнить, как и почему оно появляется. Узнать, что является силовой характеристикой магнитного поля. При этом немаловажно то, что подобное поле может встречаться не только у магнитов. В связи с этим не помешает упомянуть характеристику магнитного поля земли.
Возникновение поля
Для начала следует описать возникновение поля. После можно описать магнитное поле и его характеристики. Оно появляется во время перемещения заряженных частиц. Может влиять на перемещающиеся электрические заряды, в особенности на токопроводящие проводники. Взаимодействие между магнитным полем и движущимися зарядами, либо проводниками, по которым течет ток, происходит благодаря силам, именуемым электромагнитными.
Интенсивность или силовая характеристика магнитного поля в определенной пространственной точке определяются с помощью магнитной индукции. Последняя обозначается символом В.
Графическое представление поля
Магнитное поле и его характеристики могут быть представлены в графической форме с помощью линий индукции. Данным определением называют линии, касательные к которым в любой точке будут совпадать с направлением вектора у магнитной индукции.
Названные линии входят в характеристику магнитного поля и применяются для определения его направления и интенсивности. Чем выше интенсивность магнитного поля, тем больше данных линий будет проведено.
Что такое магнитные линии
Магнитные линии у прямолинейных проводников с током имеют форму концентрической окружности, центр которой располагается на оси данного проводника. Направление магнитных линий возле проводников с током определяется по правилу буравчика, которое звучит так: если буравчик будет расположен так, что он будет ввинчиваться в проводник по направлению тока, тогда направление обращения рукоятки соответствует направлению магнитных линий.
У катушки с током направление магнитного поля будет определяться также по правилу буравчика. Также требуется вращать рукоятку по направлению тока в витках соленоида. Направление линий магнитной индукции будет соответствовать направлению поступательного движения буравчика.
Определение однородности и неоднородности является основной характеристикой магнитного поля.
Создаваемое одним током, при равных условиях, поле будет различаться по своей интенсивности в разных средах из-за различающихся магнитных свойств в этих веществах. Магнитные свойства среды характеризуются абсолютной магнитной проницаемостью. Измеряется в генри на метр (г/м).
В характеристику магнитного поля входит абсолютная магнитная проницаемость вакуума, называемая магнитной постоянной. Значение, определяющее, во сколько раз абсолютная магнитная проницаемость среды будет отличаться от постоянной, именуется относительной магнитной проницаемостью.
Магнитная проницаемость веществ
Это безразмерная величина. Вещества, имеющие значение проницаемости менее единицы, зовутся диамагнитными. В данных веществах поле будет слабее, чем в вакууме. Данные свойства присутствуют у водорода, воды, кварца, серебра и др.
Среды с магнитной проницаемостью, превышающей единицу, зовутся парамагнитными. В данных веществах поле будет сильнее, чем в вакууме. К данным средам и веществам относят воздух, алюминий, кислород, платину.
В случае с парамагнитными и диамагнитными веществами значение магнитной проницаемости не будет зависеть от напряжения внешнего, намагничивающего поля. Это означает, что величина является постоянной для определенного вещества.
К особой группе относятся ферромагнетики. У данных веществ магнитная проницаемость будет достигать нескольких тысяч и более. У названных веществ, имеющих свойство намагничиваться и усиливать магнитное поле, существует широкое использование в электротехнике.
Напряженность поля
Для определения характеристик магнитного поля вместе с вектором магнитной индукции может применяться значение, именуемое напряженностью магнитного поля. Данный термин является векторной величиной, определяющей интенсивность внешнего магнитного поля. Направление магнитного поля в среде с одинаковыми свойствами по всем направлениям вектор напряженности будет совпадать с вектором магнитной индукции в точке поля.
Сильные магнитные свойства у ферромагнитов объясняются присутствием в них произвольно намагниченных малых частей, которые могут быть представлены в виде малых магнитов.
С отсутствующим магнитным полем ферромагнитное вещество может не иметь выраженных магнитных свойств, поскольку поля доменов приобретают разную ориентацию, и их общее магнитное поле равняется нулю.
По основной характеристике магнитного поля, если ферромагнит будет помещен во внешнее магнитное поле, к примеру, в катушку с током, то под влиянием наружного поля домены развернутся по направлению внешнего поля. Притом магнитное поле у катушки усилится, и магнитная индукция увеличится. Если же наружное поле достаточно слабое, то перевернётся лишь часть от всех доменов, магнитные поля которых по направлению близятся к направлению наружного поля. На протяжении увеличения силы внешнего поля число повернутых доменов будет возрастать, и при определенном значении напряжения внешнего поля почти все части будут развернуты так, что магнитные поля расположатся по направлению наружного поля. Данное состояние именуется магнитным насыщением.
Связь магнитной индукции и напряженности
Взаимосвязанность магнитной индукции ферромагнитного вещества и напряженности внешнего поля может изображаться при помощи графика, называемого кривой намагничивания. В месте изгиба графика кривой скорость возрастания магнитной индукции уменьшается. После изгиба, где напряженность достигает определённого показателя, происходит насыщение, и кривая незначительно поднимается, постепенно приобретая форму прямой. На данном участке индукция все еще растет, однако достаточно медленно и лишь за счет возрастания напряженности внешнего поля.
Графическая зависимость данных показателя не является прямой, значит, их отношение не постоянно, и магнитная проницаемость материала не постоянный показатель, а находится в зависимости от наружного поля.
Изменения магнитных свойств материалов
При увеличении силы тока до полного насыщения в катушке с ферромагнитным сердечником и последующим ее уменьшением кривая намагничивания не будет совпадать с кривой размагничивания. С нулевой напряженностью магнитная индукция не будет иметь такое же значение, а приобретет некоторый показатель, именуемый остаточной магнитной индукцией. Ситуация с отставанием магнитной индукции от намагничивающей силы именуется гистерезисом.
Для полного размагничивания ферромагнитного сердечника в катушке требуется дать ток обратной направленности, который создаст необходимую напряженность. Для разных ферромагнитных веществ необходим отрезок различной длины. Чем он больше, тем больший объем энергии необходим для размагничивания. Значение, при котором происходит полное размагничивание материала, именуется коэрцитивной силой.
При дальнейшем увеличении тока в катушке индукция вновь увеличится до показателя насыщения, но с иным направлением магнитных линий. При размагничивании в обратном направлении будет получена остаточная индукция. Явление остаточного магнетизма применяется при создании постоянных магнитов из веществ с большим показателем остаточного магнетизма. Из веществ, имеющих способность к перемагничиванию, создаются сердечники для электрических машин и приборов.
Правило левой руки
Сила, влияющая на проводник с током, обладает направлением, определяемым по правилу левой руки: при расположении ладони девой руки таким образом, что магнитные линии входят в нее, и четыре пальца вытянуты по направлению тока в проводнике, отогнутый большой палец укажет направление силы. Данная сила перпендикулярна вектору индукции и току.
Перемещающийся в магнитном поле проводник с током считается прообразом электродвигателя, который изменяет электрическую энергию в механическую.
Правило правой руки
Во время движения проводника в магнитном поле внутри него индуцируется электродвижущая сила, которая имеет значение, пропорциональное магнитной индукции, задействованной длине проводника и скорости его перемещения. Данная зависимость называется электромагнитной индукцией. При определении направления индуцированной ЭДС в проводнике используют правило правой руки: при расположении правой руки так же, как в примере с левой, магнитные линии входят в ладонь, а большой палец указывает направление перемещения проводника, вытянутые пальцы укажут направление индуктированной ЭДС. Перемещающийся в магнитном потоке под влиянием внешней механической силы проводник является простейшим примером электрического генератора, в котором преобразуется механическая энергия в электрическую.
Закон электромагнитной индукции может быть сформулирован по-другому: в замкнутом контуре происходит индуцирование ЭДС, при любой смене магнитного потока, охватываемого данным контуром, ЭДЕ в контуре численно равняется скорости смены магнитного потока, который охватывает данный контур.
Данная форма предоставляет усреднённый показатель ЭДС и указывает на зависимость ЭДС не от магнитного потока, а от скорости его изменения.
Закон Ленца
Также нужно вспомнить закон Ленца: ток, индуцируемый при изменении магнитного поля, проходящего через контур, своим магнитным полем препятствует этому изменению. Если витки у катушки пронизываются разными по величине магнитными потоками, то индуцированная по целой катушке ЭДС равняется сумме ЭДЕ в разных витках. Сумма магнитных потоков разных витков катушки именуется потокосцеплением. Единица измерения данной величины, как и магнитного потока, – вебер.
При изменении электрического тока в контуре происходит смена и созданного им магнитного потока. При этом, согласно закону электромагнитной индукции, внутри проводника происходит индуцирование ЭДС. Она появляется в связи со сменой тока в проводнике, потому данное явление называют самоиндукцией, и индуцированная в проводнике ЭДС именуется ЭДС самоиндукции.
Потокосцепление и магнитный поток находятся в зависимости не от одной только силы тока, но и от величины и формы данного проводника, и магнитной проницаемости окружающего вещества.
Индуктивность проводника
Коэффициент пропорциональности именуется индуктивностью проводника. Он обозначает способность проводника создавать потокосцепление при прохождении сквозь него электричества. Это является одним из основных параметров электрических цепей. Для определенных цепей индуктивность является постоянным показателем. Она будет зависеть от величины контура, его конфигурации и магнитной проницаемости среды. При этом сила тока в контуре и магнитный поток не будут иметь значения.
Вышеописанные определения и явления дают объяснение тому, что является магнитным полем. Также приводятся основные характеристики магнитного поля, с помощью которых можно дать определение данного явления.
fb.ru
24 Магнитное поле и его характеристики
Опыт показывает, что, подобно тому, как в пространстве, окружающем электрические заряды, возникает электростатическое поле, так и в пространстве, окружающем токи и постоянные магниты, возникает силовое поле, называемое магнитным. Наличие магнитного поля обнаруживается по силовому действию на внесенные в него проводники с током или постоянные магниты. Название «магнитное поле» связывают с ориентацией магнитной стрелки под действием поля, создаваемого током (это явление впервые обнаружено датским физиком X. Эрстедом (1777—1851)).
Электрическое поле действует как на неподвижные, так и на движущиеся в нем электрические заряды. Важнейшая особенность магнитного поля состоит в том, что оно действует только на движущиеся в этом поле электрические заряды. Опыт показывает, что характер воздействия магнитного поля на ток различен в зависимости от формы проводника, по которому течет ток, от расположения проводника и от направления тока. Следовательно, чтобы охарактеризовать магнитное поле, надо рассмотреть его действие на определенный ток.
Подобно тому, как при исследовании электростатического поля использовались точечные заряды, при исследовании магнитного поля используется
Опыты показывают, что магнитное поле оказывает на рамку с током ориентирующее действие, поворачивая ее определенным образом. Этот результат используется для выбора направления магнитного поля. За направление магнитного поля в данной точке принимается направление, вдоль которого располагается положительная нормаль к рамке (рис. 161). За направление магнитного поля может быть также принято направление, совпадающее с направлением силы, которая действует на северный полюс магнитной стрелки, помещенной в данную точку. Так как оба полюса магнитной стрелки лежат в близких точках поля, то силы, действующее на оба полюса, равны друг другу. Следовательно, на магнитную стрелку действует пара сил, поворачивающая ее так, чтобы ось стрелки, соединяющая южный полюс с северным, совпадала с направлением поля.
Рамкой с током можно воспользоваться также и для количественного описания магнитного поля. Так как рамка с током испытывает ориентирующее действие поля, то на нее в магнитном поле действует пара сил. Вращающий момент сил зависит как от свойств поля в данной точке, так и от свойств рамки и определяется формулой
(109.1)
где pm — вектор магнитного момента рамки с током (В — вектор магнитной индукции, количественная характеристика магнитного поля). Для плоского контура с током I
(109.2)
где S — площадь поверхности контура (рамки), n — единичный вектор нормали к поверхности рамки. Направление рm совпадает, таким образом, с направлением положительной нормали.
Если в данную точку магнитного поля помещать рамки с различными магнитными моментами, то на них действуют различные вращающие моменты, однако отношение Мmax/рm (Мmax — максимальный вращающий момент) для всех контуров одно и то же и поэтому может служить характеристикой магнитного поля, называемой магнитной индукцией:
Магнитная индукция в данной точке однородного магнитного поля определяется максимальным вращающим моментом, действующим на рамку с магнитным моментом, равным единице, когда нормаль к рамке перпендикулярна направлению поля. Следует отметить, что вектор В может быть выведен также из закона Ампера (см. § 111) и из выражения для силы Лоренца (см. § 114).
Так как магнитное поле является силовым, то его, по аналогии с электрическим, изображают с помощью линий магнитной индукции — линий, касательные к которым в каждой точке совпадают с направлением вектора В. Их направление задается правилом правого винта: головка винта, ввинчиваемого по направлению тока, вращается в направлении линий магнитной индукции.
Линии магнитной индукции можно «проявить» с помощью железных опилок, намагничивающихся в исследуемом поле и ведущих себя подобно маленьким магнитным стрелкам. На рис. 162, а показаны линии магнитной индукции поля кругового тока, на рис. 162, б — линии магнитной индукции поля соленоида (соленоид — равномерно намотанная на цилиндрическую поверхность проволочная спираль, по которой течет электрический ток).
Линии магнитной индукции всегда замкнуты и охватывают проводники с током. Этим они отличаются от линий напряженности электростатического поля, которые являются разомкнутыми (начинаются на положительных зарядах и кончаются на отрицательных (см. § 79)).
На ряс. 163 изображены линии магнитной индукции полосового магнита; они выходят из северного полюса и входят в южный. Вначале казалось, что здесь наблюдается полная аналогия с линиями напряженности электростатического поля и полюсы магнитов играют роль магнитных «зарядов» (магнитных монополей). Опыты показали, что, разрезая магнит на части, его полюсы разделять нельзя, т. е. в отличие от электрических зарядов свободные магнитные «заряды» не существуют, поэтому линии магнитной индукции не могут обрываться на полюсах. В дальнейшем было установлено, что внутри полосовых магнитов имеется магнитное поле, аналогичное полю внутри соленоида, и линии магнитной индукции этого магнитного поля являются продолжением линий магнитной индукции вне магнита. Таким образом, линии магнитной индукции магнитного поля постоянных магнитов являются также замкнутыми.
До сих пор мы рассматривали макроскопические токи, текущие в проводниках. Однако, согласно предположению французского физика А. Ампера (1775—1836), в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах и молекулах. Эти микроскопические молекулярные токи создают свое магнитное поле и могут поворачиваться в магнитных полях макротоков. Например, если вблизи какого-то тела поместить проводник с током (макроток), то под действием его магнитного поля микротоки во всех атомах определенным образом ориентируются, создавая в теле дополнительное магнитное поле. Вектор магнитной индукции В характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками, т. е. при одном и том же токе и прочих равных условиях вектор В в различных средах будет иметь разные значения.
П09.3)
Магнитное поле макротоков описывается вектором напряженности Н. Для однородной изотропной среды вектор магнитной индукции связан с вектором напряженности следующим соотношением:
где 0 — магнитная постоянная, — безразмерная величина — магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков Н усаливается за счет поля микротоков среды.
Сравнивая векторные характеристики электростатического (Е и D) и магнитного (В и Н) полей, укажем, что аналогом вектора напряженности электростатического поля Е является вектор магнитной индукции В, так как векторы Е и В определяют силовые действия этих полей и зависят от свойств среды. Аналогом вектора электрического смещения D является вектор напряженности Н магнитного поля.
studfiles.net
Магнитное поле и его основные характеристики
При прохождении электрического тока по проводнику вокруг него образуется магнитное поле. Магнитное поле представляет собой один из видов материи, оно обладает энергией. Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле. Различают однородные и неоднородные магнитные поля.
Графически магнитное поле изображают магнитными силовыми линиям, За направление магнитного поля принимают направление северного конца магнитной стрелки, то есть магнитное поля направлено от северного полюса к южному полюсу.
Для более наглядного изображения магнитного поля силовые линии располагают реже или гуще. В тех местах, где магнитное поле сильнее, силовые линии располагают ближе друг к другу, там же, где оно слабее,— дальше друг от друга. Силовые линии нигде не пересекаются.
При прохождении тока по прямолинейному проводнику вокруг него возникает круговое магнитное поле. Магнитные силовые линии располагаются по окружностям. Направление определяется по правилу Буравчика: ввинчивать буравчик по направлению тока, то направление вращения его рукоятки будет совпадать с направлением силовых линий.
Чтобы получить сильное магнитное поле при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков и называют это устройство катушкой или обмоткой. Направление магнитного поля в катушке определяют по правилу правой руки: если четыре пальца направить по направлению тока в катушке, то большой палец укажет на северный полюс.
Если внутрь катушки вставить стальной сердечник, то магнитное поле будет концентрироваться в нём и такое устройство называется электромагнитом. Электромагниты служат для создания магнитного поля в электрических генераторах, в электроизмерительных приборах, электромагнитных кранах, реле и других устройствах.
Работа реле: при прохождении тока по обмотке катушки возникает магнитный поток, который намагничивает сердечник реле и к нему притягивается якорь, который через систему рычагов переключает контакты.
Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток, магнитная проницаемость и напряженность магнитного поля.
Магнитная индукция. Интенсивность магнитного поля, т. е. способность его производить работу, определяется величиной, называемой магнитной индукцией. Чем сильнее магнитное поле, созданное постоянным магнитом или электромагнитом, тем большую индукцию оно имеет. Магнитную индукцию В можно характеризовать плотностью силовых магнитных линий.
Магнитный поток Ф, проходящий через какую-либо поверхность, определяется общим числом магнитных силовых линий, пронизывающих эту поверхность, например катушку следовательно, в однородном магнитном поле
Рисунок 11 – Магнитный поток, пронизывающий катушку при различных положениях поверхности
Магнитная проницаемость. Величиной, характеризующей магнитные свойства среды, служит абсолютная магнитная проницаемость . Единицей ее измерения является генри на метр (1 Гн/м = 1 Ом-с/м).
Абсолютную магнитную проницаемость вакуума называют магнитной постоянной , = 4л-10-7 Гн/м. Магнитная проницаемость ферромагнитных материалов в тысячи и даже десятки тысяч раз больше магнитной проницаемости неферромагнитных веществ. Отношение магнитной проницаемости какого-либо вещества к магнитной проницаемости вакуума называют относительной магнитной проницаемостью.
Напряженность магнитного поля. Напряженность Н не зависит от магнитных свойств среды, но учитывает влияние силы тока и формы проводников на интенсивность магнитного поля в данной точке пространства.
Способность токов создавать в окружающей их среде магнитный поток характеризующийся физической величиной – магнитодвижущей силой (МДС) направление совпадает с направлением линий магнитной индукции.
где – ток обмотки,
– число витков электромагнита.
Для сопоставления энергетических свойств магнитных полей на отдельных участках магнитной цепи введено понятие магнитного напряжения .
Магнитное напряжение противодействует МДС, которая его создает, обуславливая этим магнитное сопротивление окружающей среды и вакуума.
где – расстояние между током однородного магнитного поля.
Если внести проводник с током в магнитное поле, то в результате сложения магнитных полей магнита и проводника произойдёт усиление результирующего магнитного потока с одной стороны проводника и ослабление магнитного поля с другой стороны проводника. В результате чего проводник будет выталкиваться из области сгущения силовых линий в сторону их разряжения, т. е. возникает выталкивающая (электромагнитная) сила.
[Н] – сила, действующая на проводник в магнитном поле, зависит от магнитной индукции, силы тока и длины проводника, а также , где угол между направлением тока и магнитной индукции.
Направление силы определяется по правилу левой руки: ладонь левой руки нужно расположить так, чтобы магнитные линии входили в нее, а четыре вытянутых пальца совпадали с направлением тока, тогда расположенный под прямым углам большой палец левой руки укажет направление действия электромагнитной силы (выталкивающей силы).
Похожие статьи:
poznayka.org
индукция, поток индукции. Линии магнитного поля.
Магнитное поле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения, магнитная составляющая электромагнитного поля.
Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).
Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля.
Характеристики магнитного поля:
Магнитная индукция — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой F(вектор) магнитное поле действует на заряд q, движущийся со скоростью v(вектор) .
Также магнитная индукция может быть определена как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.
В системе СИ магнитная индукция поля измеряется в гауссах (Гс), в системе СИ — в теслах (Тл)
1 Тл = 104 Гс
Поток магнитной индукции
Поток Ф вектора магнитной индукции В через поверхность. Магнитный поток dФ через малую площадку dS, в пределах которой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Bn вектора на нормаль к этой площадке, т. е. dФ=BndS. Магнитный поток Ф через конечную поверхность S определяется интегралом: Ф=SBndS.
Для замкнутой поверхности этот интеграл равен нулю, что отражает соленоидальный характер магнитного поля, т. е. отсутствие в природе магнитных зарядов — источников магнитные поля (магнитные поля создаются электрическими токами). Единица магнитного потока в Международной системе единиц (СИ) — вебер, в СГС системе единиц — максвелл; 1 Вб=108 Мкс.
Силовые линии магнитного поля
Силовыми линиями магнитного поля называются линии, касательные к которым в каждой точке совпадают с направлением вектора магнитной индукции.
По определению направление вектора магнитной индукции совпадает с направлением магнитной стрелки.
14. Взаимосвязь электрического и магнитного полей. Электромагнитная волна. Скорость электромагнитных волн.
Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности, свет и все другие электромагнитные волны.
Электромагнитное поле — фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, а также с телами, имеющими собственные дипольные и мультипольные электрические и магнитные моменты.
Электромагнитное излучение (электромагнитные волны) — электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью, зависящей от свойств среды.
Электромагнитное излучение подразделяется на
радиоволны (начиная со сверхдлинных),
инфракрасное излучение,
видимый свет,
ультрафиолетовое излучение,
рентгеновское излучение и жесткое (гамма-излучение)
Скорость электромагнитных волн равна: n = 1/v(eeommo)=с/v(em), где eo и mo — электрическая и магнитная постоянные, e и m — электрическая и магнитная проницаемость среды. В вакууме эта скорость равна скорости света, так как e= 1 и m= 1. В веществе скорость распространения электромагнитных волн всегда меньше, чем в вакууме.
В вакууме скорость электромагнитной волны равна скорости света: с = 299792458±1,2 м/с.
studfiles.net
Магнитное поле и его характеристикиИз многочисленных опытов известно, что, подобно тому, как в пространстве, которое окружает электрические заряды, возникает электростатическое поле, так и в пространстве, которое окружает токи и постоянные магниты, возникает силовое поле, называемое магнитным. Наличие магнитного поля определяется по силовому действию на помещенные в него проводники с током или постоянные магниты. Термин «магнитное поле» связывают с ориентацией магнитной стрелки под действием поля, которое создается током (это явление впервые открыто датским физиком X. Эрстедом (1777—1851)). Как мы уже знаем, электрическое поле оказывает силовое воздействие как на неподвижные, так и на движущиеся в нем электрические заряды. У магнитного поля важнейшая особенность состоит в том, что оно оказывает силовое воздействие только на движущиеся в этом поле электрические заряды. Из опытов известно, что характер воздействия магнитного поля на ток меняется в зависимости от формы проводника, по которому течёт ток, от расположения проводника относительно магнитного поля и от направления тока. Значит, чтобы охарактеризовать магнитное поле, необходимо исследовать его воздействие на определенный ток. При изучении характеристик электростатического поля использовались точечные заряды, аналогично, при изучении характеристик магнитного поля используется замкнутый плоский контур с током (рамка с током), у которого линейные размеры малы по сравнению с расстоянием до токов, образующих данное магнитное поле. Ориентация контура в пространстве задается направлением нормали к контуру. Направление нормали задается правилом правого винта: за положительное направление нормали берётся направление поступательного движения винта, у которого головка вращается в направлении текущего в рамке тока (рис. 1). Рис.1 Опыты демонстрируют, что магнитное поле воздействует на рамку с током, поворачивая ее определенным образом, тем самым определяется направление внешнего магнитного поля. Этот результат применяется для выбора направления магнитного поля. За направление магнитного поля в данной точке пространства принимается направление, вдоль которого располагается положительная нормаль к рамке (рис. 2). За направление магнитного поля может быть также принято направление, совпадающее с направлением силы, воздействующую на северный полюс магнитной стрелки, которая помещена в данную точку. Так как оба полюса магнитной стрелки лежат в близких точках поля, то силы, которые действуют на оба полюса, равны друг другу. Значит, на магнитную стрелку действует пара сил, которая поворачивает ее так, чтобы ось стрелки, которая соединяет южный полюс с северным, совпадала с направлением поля. Рис.2 Рамку с током можно также использовать и для количественного описания магнитного поля. Поскольку на рамку с током воздействует магнитное поле и оказывает на рамку ориентирующее действие, то на нее в магнитном поле действует пара сил. Вращающий момент этих сил зависит как от свойств поля в данной точке, так и от свойств самой рамки и задается формулой (1) где pm — вектор магнитного момента рамки с током (В — вектор магнитной индукции, количественная характеристика магнитного поля). Для плоского контура с током I (2) где n — единичный вектор нормали к поверхности рамки, S — площадь поверхности контура (рамки). Таким образом, направление pm совпадает с направлением положительной нормали. Если в точку магнитного поля помещать рамки с различными магнитными моментами, то на них оказывают действие различные вращающие моменты, но при этом отношение Мmax/рm (Мmax — максимальный вращающий момент) для всех контуров одинаково и поэтому может служить характеристикой магнитного поля, которая называется магнитной индукцией: ^ в данной точке однородного магнитного поля задается максимальным вращающим моментом, который действует на рамку с магнитным моментом, равным единице, когда нормаль к рамке перпендикулярна направлению поля. Отметим, что вектор В может быть также определен из закона Ампера и из выражения для силы Лоренца. ^ — закон взаимодействия постоянных токов. Установлен Андре Мари Ампером в 1820. Из закона Ампера следует, что параллельные проводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила , с которой магнитное поле действует на элемент объёма dV проводника с током плотности , находящегося в магнитном поле с индукцией : . Если ток течёт по тонкому проводнику, то , где — «элемент длины» проводника — вектор, по модулю равный dl и совпадающий по направлению с током. Тогда предыдущее равенство можно переписать следующим образом: Направление силы определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила левой руки. Модуль силы Ампера можно найти по формуле: , где α — угол между векторами магнитной индукции и тока. Сила dF максимальна когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции (): . ^ — сила, с которой, в рамках классической физики, электромагнитное поле действует на точечную заряженную частицу. Иногда, силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще,[1] иначе говоря, со стороны электрического и магнитного полей в СИ: Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено Хевисайдом[2]. (О́ливер Хе́висайд (англ. Oliver Heaviside, 18 мая, 1850 — 3 февраля, 1925) — английский учёный-самоучка, инженер, математик и физик. Впервые применил комплексные числа для изучения электрических цепей, разработал технику применения преобразования Лапласа для решения дифференциальных уравнений, переформулировал уравнения Максвелла в терминах трехмерных векторов, напряженностей электрического и магнитного полей и электрической и магнитной индукций, и, независимо от других математиков, создал векторный анализ. Несмотря на то, что Хевисайд большую часть жизни был не в ладах с научным сообществом, его работы изменили облик математики и физики.) Частным случаем силы Лоренца является сила Ампера. Поскольку магнитное поле есть силовое поле, то его, по аналогии с электрическим, графически изображают с помощью линий магнитной индукции — линий, касательные к которым в каждой точке совпадают с направлением вектора В. Их направление задается правилом правого винта: головка винта, который ввинчивают по направлению тока, вращается в направлении линий магнитной индукции. Линии магнитной индукции можно обнаружить с помощью железных опилок, которые намагничиваются в исследуемом поле и ведут себя подобно небольшим магнитным стрелкам. На рис. 3а даны линии магнитной индукции магнитного поля кругового тока, на рис. 3б — линии магнитной индукции поля соленоида (соленоид – равномерно намотанная на цилиндрическую поверхность проволочная спираль, по которой идет электрический ток). Линии магнитной индукции всегда замкнуты и охватывают проводники с током. В этом их различии от линий напряженности электростатического поля, являющихся разомкнутыми (они, как ранее рассматривалось, начинаются на положительных зарядах и кончаются на отрицательных). На ряс. 4 даны линии магнитной индукции полосового магнита; они выходят из северного полюса и входят в южный. Вначале думалось, что здесь видна полная аналогия с линиями напряженности электростатического поля и полюсы магнитов играют роль так называемых «магнитных зарядов» (магнитных монополей). Однако, опыты показали, что, разрезая магнит на части, его полюсы разделять нельзя, т. е. в отличие от электрических зарядов свободные «магнитные заряды» не существуют, поэтому линии магнитной индукции не могут обрываться на полюсах. В дальнейшем было показано, что внутри полюсовых магнитов существует магнитное поле, по свойствам аналогичное полю внутри соленоида, и линии магнитной индукции данного магнитного поля являются продолжением линий магнитной индукции вне магнита. Значит, для постоянных магнитов линии магнитной индукции их магнитного поля также являются замкнутыми. До сих пор мы рассматривали макроскопические токи, которые текут в проводниках. Но по предположению французского физика А. Ампера, в любом теле существуют микротоки, обусловленные движением электронов в атомах и молекулах. Эти микротоки создают своё магнитное поле и могут, к примеру, поворачиваться в магнитных полях макротоков. Например, если рядом с каким-либо телом поместить проводник с током (макро ток), то под действием магнитного поля данного макротока микротоки во всех атомах определенным образом изменят свое направление, при этом создавая в теле дополнительное магнитное поле. Вектор магнитной индукции В характеризует результирующее магнитное поле, которое создается всеми макро- и микротоками, т. е. при одном и том же токе и прочих равных условиях вектор В в различных средах будет иметь разные значения. Магнитное поле макротоков описывается вектором напряженности Н. Для однородной изотропной среды вектор магнитной индукции связан с вектором напряженности следующим выражением: где μ0 — магнитная постоянная, μ — безразмерная величина — магнитная проницаемость среды, которая показывает, во сколько раз магнитное поле макротоков Н увеличивается за счет поля микротоков среды. При сопоставлении векторных характеристик электростатического (Е и D) и магнитного (В и Н) полей, отметим, что аналогом вектора напряженности электростатического поля Е является вектор магнитной индукции В, поскольку векторы Е и В задают силовые действия этих полей и зависят от свойств среды. При этом, аналогом вектора электрического смещения D является вектор напряженности Н магнитного поля. ^ ^ для проводника с током I, элемент dl которого создает в некоторой точке А (рис. 1) индукцию поля dB, справедливо равенство: (1) где dl – вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, r – радиус-вектор, который проведен из элемента dl проводника в точку А поля, r – модуль радиуса-вектора r. Направление dB перпендикулярно dl и r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с направлением касательной к линии магнитной индукции. Это направление может быть найдено по правилу правого винта: направление вращения головки винта дает направление dB, если поступательное движение винта совпадает с направлением тока в элементе. Модуль вектора dB задается выражением (2) где α — угол между векторами dl и r. Аналогично электрическому, для магнитного поля выполняется принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности: (3) Расчёт характеристик магнитного поля (В и Н) в общем случае достаточно сложен. Однако если распределение тока имеет какую-либо симметрию, то применение закона Био — Савара — Лапласа совместно с принципом суперпозиции дает возможность просто рассчитать некоторые поля. Рассмотрим два примера. 1. ^ — тока, текущего по тонкому прямому бесконечному проводу (рис. 2). В произвольной точке А, удаленной на расстояние R от оси проводника, векторы d^ от всех элементов тока имеют одинаковое направление, которое перпендикулярно плоскости чертежа («к вам»). Значит, сложение всех векторов dB можно заменить сложением их модулей. За постоянную интегрирования возьмем угол α (угол между векторами dl и r) и выразим через него все остальные величины. Из рис. 2 следует, что (радиус дуги CD вследствие малости dl равен r, и угол FDC по этой же причине можно считать прямым). Подставив эти формулы в (2), получим, что магнитная индукция, которая создаётся одним элементом проводника, равна (4) Поскольку угол α для всех элементов прямого тока изменяется в пределах от 0 до π, то, согласно (3) и (4), Значит, магнитная индукция поля прямого тока (5) 2. ^ (рис. 3). Как видно из рисунка, каждый элемент кругового проводника с током создает в центре магнитное поле одинакового направления – вдоль нормали от витка. Значит, сложение векторов dB также можно заменить сложением их модулей. Поскольку расстояние всех элементов проводника до центра кругового тока одинаково и равно R и все элементы проводника перпендикулярны радиусу-вектору (sinα=1), то, используя (2), Тогда Следовательно, магнитная индукция поля в центре кругового проводника с током Рис.3 |
zavantag.com