Матрица число – Матрица (математика) — Википедия

Содержание

Основные сведения о матрицах

В этом разделе мы даем основные сведения о матрицах, необходимые для понимания статистики и анализа данных.

Матрицей размера m x n (читается m на n) называется прямоугольная таблица чисел, содержащая m строк и n столбцов.

Числа, составляющие матрицу, называются элементами матрицы.

Матрицы обозначаются прописными (заглавными) буквами латинского алфавита, например, A, B, C,….

Для обозначения элементов матрицы используются строчные буквы с двойным индексом, например: aij, где i – номер строки, j – номер столбца.

Например, матрица:

В сокращенной записи обозначаем A=(aij); i=1,2,…m; j=1,2,…,n

Приведем пример матрицы 2 на 2: 

Вы видите, что a11 = 1, a12 = 0, a21 = 2, a22=5

Наряду с круглыми скобками используются и другие обозначения матрицы: 

Две матрицы A и B одного размера называются равными, если они совпадают поэлементно, aij = bij для любых i=1,2,…m; j=1,2,…n

Виды матриц

Матрица, состоящая из одной строки, называется матрицей (вектором) – строкой, а из одного столбца – матрицей (вектором)- столбцом:

A=(a11,a12,…,a1n) – матрица – строка

B=

Матрица называется квадратной n-го порядка, если число ее строк равно числу столбцов и равно n.

Например, 

Элементы матрицы aij, у которых номер столбца равен номеру строки образуют

главную диагональ матрицы. Для квадратной матрицы главную диагональ образуют элементы a11, a22,…,ann.

Если все недиагональные элементы квадратной матрицы равны нулю, то матрица называется диагональной.

Операции над матрицами

Над матрицами, как и над числами, можно производить ряд операций, причем некоторые из них аналогичны операциями над числами, а некоторые – специфические.

1. Умножение матрицы на число. Произведение матрицы А на число  называется матрица B=A, элементы которой bij=aij для i=1,2,…m; j=1,2,…n

Следствие: Общий множитель всех элементов матрицы можно выносить за знак матрицы.

В частности, произведение матрицы А на число 0 есть нулевая матрица.

2. Сложение матриц. Суммой двух матриц А и В одинакового размера m называется матрица С=А+В, элементы которой cij=aij+bijдля i=1,2,…m; j=1,2,…n (т.е. матрицы складываются поэлементно).

3. Вычитание матриц. Разность двух матриц одинакового размера определяется через предыдущие операции: A-B=A+(-1)∙B.

4. Умножение матриц. Умножение матрицы А на матрицу В определено, когда число столбцов первой матрицы равно числу строк второй. Тогда произведением матриц Am

∙B kназывается такая матрица Cm, каждый элемент которой cij равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-го столбца матрицы В:


i=1,2,…,m; j=1,2,…,n

Многие свойства, присущие операциям над числами, справедливы и для операций над матрицами (что следует из этих операций):

A+B=B+A

(A+B)+C=A+(B+C)

λ (A+B)= λA+ λB

A(B+C)=AB+AC

(A+B)C=AC+BC

λ (AB)=( λA)B=A(λB)

A(BC)=(AB)C

Однако имеются и специфические свойства матриц. Так, операция умножения матриц имеет некоторые отличия от умножения чисел:

a)      Если АВ существует, то после перестановки сомножителей местами произведение матриц ВА может и не существовать.

b)      Если АВ и ВА существуют, то они могут быть матрицами разных размеров.

5. Транспонирование матрицы – переход от матрицы А к матрице А’, в которой строки и столбцы поменялись местами с сохранением порядка. Матрица А’ называется транспонированной относительно матрицы А:

Из определения следует, что если матрица А имеет размер m, то транспонированная матрица А’ имеет размер n

В литературе встречаются и другие обозначения транспонированной матрицы, например, АТ

Связанные определения:
Вырожденная матрица
Обобщенная обратная матрица
Обратная матрица

Плохо обусловленная матрица
Псевдообратная матрица
Эрмитова матрица
Эрмитово-сопряженная матрица

В начало

Содержание портала

statistica.ru

Собственные числа и собственные векторы матрицы — Мегаобучалка

Число называется собственным числом матрицы ,

если существует ненулевой вектор такой, что

.

При этом вектор называется собственным вектором матрицы , соответствующим собственному числу .

Характеристическим уравнением матрицы называется уравнение

. (10)

Корни этого уравнения являются собственными числами матрицы

А.

Рассмотрим систему уравнений

,

в которой принимает одно из значений . Определитель этой системы в силу (10) равен нулю. Следовательно, система определяет с точностью до постоянного множителя собственный вектор , соответствующий данному собственному числу.

Задание 5. Найти собственные числа и собственные векторы матрицы

.

Решение. Составим характеристическое уравнение матрицы А.

,

или . Корни этого уравнения являются собственными числами матрицы А.

Для отыскания собственных векторов матрицы А используем систему уравнений

(11)

полагая в ней поочередно .

1. Пусть . Тогда система (11) примет вид:

или

. (12)

Полученную систему решим методом Гаусса. Расширенная матрица системы (12) имеет вид:

.

Приведем матрицу к трапециевидному виду с помощью элементарных преобразований. Для этого умножим элементы первой строки матрицы на (-3) и сложим с соответствующими элементами второй строки. Получим матрицу

,

которая является расширенной матрицей системы

.

Следовательно, , то есть система имеет бесчисленное множество решений, определяемых равенством .

Таким образом, собственным вектором матрицы А, соответствующим собственному числу , является ненулевой вектор, определяемый совокупностью чисел , где

t – любое число, отличное от нуля.

2. Пусть . Тогда система (11) примет вид:

. (13)

Решим систему (13) методом Гаусса.

Расширенная матрица системы (13) имеет вид:

.

Приведем матрицу к трапециевидному виду с помощью элементарных преобразований. Для этого, сначала переставим первую строку матрицы со второй строкой. Получим:

.

Теперь умножим элементы первой строки матрицы на 2 и сложим с соответствующими элементами второй строки. Затем умножим элементы первой строки матрицы на (-3) и сложим с соответствующими элементами третьей строки. В результате получим:



.

Далее, сложим элементы второй строки матрицы с соответствующими элементами третьей строки. Получим матрицу:

,

которая является расширенной матрицей системы

.

Следовательно, , то есть система имеет бесконечное множество решений, определяемых равенством .

Таким образом, собственным вектором матрицы А, соответствующим собственному числу , является ненулевой вектор, определяемый совокупностью чисел , где t – любое число, отличное от нуля.

3) Пусть . Тогда система (11) примет вид:

(14)

Решим систему (14) методом Гаусса. Расширенная матрица системы (14) имеет вид:

.

Приведем матрицу к трапециевидному виду с помощью элементарных преобразований. Сначала поменяем первую строку матрицы со второй строкой. Получим:

.

Умножим теперь элементы первой строки матрицы на 5 и сложим с соответствующими элементами второй строки. Затем умножим элементы первой строки матрицы на (-3) и сложим с соответствующими элементами третьей строки. В результате получим:

.

Далее, сложим элементы второй строки матрицы соответственно с элементами третьей строки. Тогда получим матрицу:

,

которая является расширенной матрицей системы

.

Следовательно, , то есть система имеет бесчисленное множество решений, определяемых равенством .

Таким образом, собственным вектором матрицы А

, соответствующим собственному числу , является ненулевой вектор, определяемый совокупностью чисел , где t – любое число, отличное от нуля.

megaobuchalka.ru

Произведение матрицы на число – это… Что такое Произведение матрицы на число?

Ма́трица — математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами.

Правила выполнения операций над матрицами сделаны такими, чтобы было удобно записывать системы линейных уравнений.

Обычно матрицу обозначают заглавной буквой латинского алфавита и выделяют круглыми скобками «(…)» (встречается также выделение квадратными скобками «[…]», двойными прямыми линиями «||…||»).

Числа, составляющие матрицу (элементы матрицы), часто обозначают той же буквой, что и саму матрицу, но строчной.

У каждого элемента матрицы есть 2 нижних индекса (aij) — первый «i» обозначает номер строки, в которой находится элемент, а второй «j» — номер столбца. Говорят «матрица размерности », подразумевая, что в матрице m строк и n столбцов.

История

Понятие матрицы впервые появилось в середине XIX века в работах Уильяма Гамильтона и Артура Кэли. Фундаментальные результаты в теории матриц принадлежат Вейерштрассу, Жордану, Фробениусу.

Матрица как запись коэффициентов системы линейных уравнений

Систему из m уравнений с n неизвестными

можно представить в матричном виде

и тогда всю систему можно записать так:

AX = B,

где A имеет смысл таблицы коэффициентов aij системы уравнений.

Если m = n и матрица A невырожденная, то решение этого уравнения состоит в нахождении обратной матрицы A – 1, поскольку умножив обе части уравнения на эту матрицу слева

A – 1AX = A – 1B

A − 1A — превращается в E (единичную матрицу). И это даёт возможность получить столбец корней уравнений

X = A – 1B.

Все правила, по которым проводятся операции над матрицами выводятся из операций над системами уравнений.

Операции над матрицами

Пусть aij — элементы матрицы A, а bij — элементы матрицы B.

Линейные операции:

Умножение матрицы A на число λ (обозначение: λA) заключается в построении матрицы B, элементы которой получены путём умножения каждого элемента матрицы A на это число, то есть каждый элемент матрицы B равен

bij = λaij

Сложение матриц A + B есть операция нахождения матрицы C, все элементы которой равны попарной сумме всех соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен

cij = aij + bij

Вычитание матриц AB определяется аналогично сложению, это операция нахождения матрицы C, элементы которой

cij = aijbij

Сложение и вычитание допускается только для матриц одинакового размера.

Существует нулевая матрица Θ такая, что её прибавление к другой матрице A не изменяет A, то есть

A + Θ = A

Все элементы нулевой матрицы равны нулю.

Нелинейные операции:

Умножение матриц (обозначение: AB, реже со знаком умножения ) — есть операция вычисления матрицы C, элементы которой равны сумме произведений элементов в соответствующей строке первого множителя и столбце второго.

В первом множителе должно быть столько же столбцов, сколько строк во втором. Если матрица A имеет размерность , B — , то размерность их произведения AB = C есть . Умножение матриц не коммутативно.

Умножение матриц ассоциативно. Возводить в степень можно только квадратные матрицы.

Транспонирование матрицы (обозначение: AT) — операция, при которой матрица отражается относительно главной диагонали, то есть

Если A — матрица размера , то AT — матрица размера

Квадратная матрица и смежные определения

Если количество строк матрицы равно количеству столбцов, то такая матрица называется квадратной.

Для квадратных матриц существует единичная матрица E (аналог единицы для операции умножения чисел) такая, что умножение любой матрицы на неё не влияет на результат, а именно

EA = AE = A

У единичной матрицы единицы стоят только по главной диагонали, остальные элементы равны нулю

Для некоторых квадратных матриц можно найти так называемую обратную матрицу. Обратная матрица A – 1 такова, что если умножить матрицу на неё, то получится единичная матрица:

AA − 1 = E

Обратная матрица существует не всегда. Матрицы, для которых обратная существует, называются невырожденными (или регулярными), а для которых нет — вырожденными (или сингулярными). Матрица невырождена, если все ее строки (столбцы) линейно независимы как векторы. Максимальное число линейно независимых строк (столбцов) называется рангом матрицы. Определителем (детерминантом) матрицы называется значение нормированной кососимметрической (антисимметрической) полилинейной формы валентности на столбцах матрицы. Квадратная матрица над числовым полем вырождена тогда и только тогда, когда ее определитель равен нулю.

Свойства матриц

  1. A + (B + C) = (A + B) + C
  2. A + B = B + A
  3. A(BC) = (AB)C
  4. A(B + C) = AB + AC
  5. (B + C)A = BA + CA
  6. (AT)T = A
  7. (A * B)T = BT * AT

Элементарные преобразования матриц

Элементарными преобразованиями строк матрицы называются следующие преобразования:

  1. Умножение строки на число отличное от нуля
  2. Прибавление одной строки к другой строке

Элементарные преобразование столбцов матрицы определяются аналогично.

Типы матриц

Матрица линейного оператора

Матрица линейного оператора — матрица, выражающая линейный оператор в некотором базисе. Для того, чтобы ее получить, необходимо подействовать оператором на векторы базиса и координаты полученных векторов (образов базисных векторов) записать в столбцы матрицы.

Матрица оператора аналогична координатам вектора. При этом действие оператора на вектор равносильно умножению матрицы на столбец координат этого вектора в том же базисе.

Выберем базис . Пусть  — произвольный вектор. Тогда его можно разложить по этому базису:

,

где xk — координаты вектора в выбранном базисе.

Здесь и далее предполагается суммирование по немым индексам.

Пусть  — произвольный линейный оператор. Подействуем им на обе стороны предыдущего равенства, получим

.

Вектора также разложим в выбранном базисе, получим

,

где  — j-я координата k-го вектора из .

Подставим разложение в предыдущую формулу, получим

.

Выражение , заключённое в скобки, есть ни что иное, как формула умножения матрицы на столбец, и, таким образом, матрица при умножении на столбец xk даёт в результате координаты вектора , возникшего от действия оператора на вектор , что и требовалось получить.

См. также

Литература

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Произведение матрицы на число – это… Что такое Произведение матрицы на число?

Ма́трица — математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами.

Правила выполнения операций над матрицами сделаны такими, чтобы было удобно записывать системы линейных уравнений.

Обычно матрицу обозначают заглавной буквой латинского алфавита и выделяют круглыми скобками «(…)» (встречается также выделение квадратными скобками «[…]», двойными прямыми линиями «||…||»).

Числа, составляющие матрицу (элементы матрицы), часто обозначают той же буквой, что и саму матрицу, но строчной.

У каждого элемента матрицы есть 2 нижних индекса (aij) — первый «i» обозначает номер строки, в которой находится элемент, а второй «j» — номер столбца. Говорят «матрица размерности », подразумевая, что в матрице m строк и n столбцов.

История

Понятие матрицы впервые появилось в середине XIX века в работах Уильяма Гамильтона и Артура Кэли. Фундаментальные результаты в теории матриц принадлежат Вейерштрассу, Жордану, Фробениусу.

Матрица как запись коэффициентов системы линейных уравнений

Систему из m уравнений с n неизвестными

можно представить в матричном виде

и тогда всю систему можно записать так:

AX = B,

где A имеет смысл таблицы коэффициентов aij системы уравнений.

Если m = n и матрица A невырожденная, то решение этого уравнения состоит в нахождении обратной матрицы A – 1, поскольку умножив обе части уравнения на эту матрицу слева

A – 1AX = A – 1B

A − 1A — превращается в E (единичную матрицу). И это даёт возможность получить столбец корней уравнений

X = A – 1B.

Все правила, по которым проводятся операции над матрицами выводятся из операций над системами уравнений.

Операции над матрицами

Пусть aij — элементы матрицы A, а bij — элементы матрицы B.

Линейные операции:

Умножение матрицы A на число λ (обозначение: λA) заключается в построении матрицы B, элементы которой получены путём умножения каждого элемента матрицы A на это число, то есть каждый элемент матрицы B равен

bij = λaij

Сложение матриц A + B есть операция нахождения матрицы C, все элементы которой равны попарной сумме всех соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен

cij = aij + bij

Вычитание матриц AB определяется аналогично сложению, это операция нахождения матрицы C, элементы которой

cij = aijbij

Сложение и вычитание допускается только для матриц одинакового размера.

Существует нулевая матрица Θ такая, что её прибавление к другой матрице A не изменяет A, то есть

A + Θ = A

Все элементы нулевой матрицы равны нулю.

Нелинейные операции:

Умножение матриц (обозначение: AB, реже со знаком умножения ) — есть операция вычисления матрицы C, элементы которой равны сумме произведений элементов в соответствующей строке первого множителя и столбце второго.

В первом множителе должно быть столько же столбцов, сколько строк во втором. Если матрица A имеет размерность , B — , то размерность их произведения AB = C есть . Умножение матриц не коммутативно.

Умножение матриц ассоциативно. Возводить в степень можно только квадратные матрицы.

Транспонирование матрицы (обозначение: AT) — операция, при которой матрица отражается относительно главной диагонали, то есть

Если A — матрица размера , то AT — матрица размера

Квадратная матрица и смежные определения

Если количество строк матрицы равно количеству столбцов, то такая матрица называется квадратной.

Для квадратных матриц существует единичная матрица E (аналог единицы для операции умножения чисел) такая, что умножение любой матрицы на неё не влияет на результат, а именно

EA = AE = A

У единичной матрицы единицы стоят только по главной диагонали, остальные элементы равны нулю

Для некоторых квадратных матриц можно найти так называемую обратную матрицу. Обратная матрица A – 1 такова, что если умножить матрицу на неё, то получится единичная матрица:

AA − 1 = E

Обратная матрица существует не всегда. Матрицы, для которых обратная существует, называются невырожденными (или регулярными), а для которых нет — вырожденными (или сингулярными). Матрица невырождена, если все ее строки (столбцы) линейно независимы как векторы. Максимальное число линейно независимых строк (столбцов) называется рангом матрицы. Определителем (детерминантом) матрицы называется значение нормированной кососимметрической (антисимметрической) полилинейной формы валентности на столбцах матрицы. Квадратная матрица над числовым полем вырождена тогда и только тогда, когда ее определитель равен нулю.

Свойства матриц

  1. A + (B + C) = (A + B) + C
  2. A + B = B + A
  3. A(BC) = (AB)C
  4. A(B + C) = AB + AC
  5. (B + C)A = BA + CA
  6. (AT)T = A
  7. (A * B)T = BT * AT

Элементарные преобразования матриц

Элементарными преобразованиями строк матрицы называются следующие преобразования:

  1. Умножение строки на число отличное от нуля
  2. Прибавление одной строки к другой строке

Элементарные преобразование столбцов матрицы определяются аналогично.

Типы матриц

Матрица линейного оператора

Матрица линейного оператора — матрица, выражающая линейный оператор в некотором базисе. Для того, чтобы ее получить, необходимо подействовать оператором на векторы базиса и координаты полученных векторов (образов базисных векторов) записать в столбцы матрицы.

Матрица оператора аналогична координатам вектора. При этом действие оператора на вектор равносильно умножению матрицы на столбец координат этого вектора в том же базисе.

Выберем базис . Пусть  — произвольный вектор. Тогда его можно разложить по этому базису:

,

где xk — координаты вектора в выбранном базисе.

Здесь и далее предполагается суммирование по немым индексам.

Пусть  — произвольный линейный оператор. Подействуем им на обе стороны предыдущего равенства, получим

.

Вектора также разложим в выбранном базисе, получим

,

где  — j-я координата k-го вектора из .

Подставим разложение в предыдущую формулу, получим

.

Выражение , заключённое в скобки, есть ни что иное, как формула умножения матрицы на столбец, и, таким образом, матрица при умножении на столбец xk даёт в результате координаты вектора , возникшего от действия оператора на вектор , что и требовалось получить.

См. также

Литература

Ссылки

Wikimedia Foundation. 2010.

biograf.academic.ru

Произведение матрицы на число – это… Что такое Произведение матрицы на число?

Ма́трица — математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами.

Правила выполнения операций над матрицами сделаны такими, чтобы было удобно записывать системы линейных уравнений.

Обычно матрицу обозначают заглавной буквой латинского алфавита и выделяют круглыми скобками «(…)» (встречается также выделение квадратными скобками «[…]», двойными прямыми линиями «||…||»).

Числа, составляющие матрицу (элементы матрицы), часто обозначают той же буквой, что и саму матрицу, но строчной.

У каждого элемента матрицы есть 2 нижних индекса (aij) — первый «i» обозначает номер строки, в которой находится элемент, а второй «j» — номер столбца. Говорят «матрица размерности », подразумевая, что в матрице m строк и n столбцов.

История

Понятие матрицы впервые появилось в середине XIX века в работах Уильяма Гамильтона и Артура Кэли. Фундаментальные результаты в теории матриц принадлежат Вейерштрассу, Жордану, Фробениусу.

Матрица как запись коэффициентов системы линейных уравнений

Систему из m уравнений с n неизвестными

можно представить в матричном виде

и тогда всю систему можно записать так:

AX = B,

где A имеет смысл таблицы коэффициентов aij системы уравнений.

Если m = n и матрица A невырожденная, то решение этого уравнения состоит в нахождении обратной матрицы A – 1, поскольку умножив обе части уравнения на эту матрицу слева

A – 1AX = A – 1B

A − 1A — превращается в E (единичную матрицу). И это даёт возможность получить столбец корней уравнений

X = A – 1B.

Все правила, по которым проводятся операции над матрицами выводятся из операций над системами уравнений.

Операции над матрицами

Пусть aij — элементы матрицы A, а bij — элементы матрицы B.

Линейные операции:

Умножение матрицы A на число λ (обозначение: λA) заключается в построении матрицы B, элементы которой получены путём умножения каждого элемента матрицы A на это число, то есть каждый элемент матрицы B равен

bij = λaij

Сложение матриц A + B есть операция нахождения матрицы C, все элементы которой равны попарной сумме всех соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен

cij = aij + bij

Вычитание матриц AB определяется аналогично сложению, это операция нахождения матрицы C, элементы которой

cij = aijbij

Сложение и вычитание допускается только для матриц одинакового размера.

Существует нулевая матрица Θ такая, что её прибавление к другой матрице A не изменяет A, то есть

A + Θ = A

Все элементы нулевой матрицы равны нулю.

Нелинейные операции:

Умножение матриц (обозначение: AB, реже со знаком умножения ) — есть операция вычисления матрицы C, элементы которой равны сумме произведений элементов в соответствующей строке первого множителя и столбце второго.

В первом множителе должно быть столько же столбцов, сколько строк во втором. Если матрица A имеет размерность , B — , то размерность их произведения AB = C есть . Умножение матриц не коммутативно.

Умножение матриц ассоциативно. Возводить в степень можно только квадратные матрицы.

Транспонирование матрицы (обозначение: AT) — операция, при которой матрица отражается относительно главной диагонали, то есть

Если A — матрица размера , то AT — матрица размера

Квадратная матрица и смежные определения

Если количество строк матрицы равно количеству столбцов, то такая матрица называется квадратной.

Для квадратных матриц существует единичная матрица E (аналог единицы для операции умножения чисел) такая, что умножение любой матрицы на неё не влияет на результат, а именно

EA = AE = A

У единичной матрицы единицы стоят только по главной диагонали, остальные элементы равны нулю

Для некоторых квадратных матриц можно найти так называемую обратную матрицу. Обратная матрица A – 1 такова, что если умножить матрицу на неё, то получится единичная матрица:

AA − 1 = E

Обратная матрица существует не всегда. Матрицы, для которых обратная существует, называются невырожденными (или регулярными), а для которых нет — вырожденными (или сингулярными). Матрица невырождена, если все ее строки (столбцы) линейно независимы как векторы. Максимальное число линейно независимых строк (столбцов) называется рангом матрицы. Определителем (детерминантом) матрицы называется значение нормированной кососимметрической (антисимметрической) полилинейной формы валентности на столбцах матрицы. Квадратная матрица над числовым полем вырождена тогда и только тогда, когда ее определитель равен нулю.

Свойства матриц

  1. A + (B + C) = (A + B) + C
  2. A + B = B + A
  3. A(BC) = (AB)C
  4. A(B + C) = AB + AC
  5. (B + C)A = BA + CA
  6. (AT)T = A
  7. (A * B)T = BT * AT

Элементарные преобразования матриц

Элементарными преобразованиями строк матрицы называются следующие преобразования:

  1. Умножение строки на число отличное от нуля
  2. Прибавление одной строки к другой строке

Элементарные преобразование столбцов матрицы определяются аналогично.

Типы матриц

Матрица линейного оператора

Матрица линейного оператора — матрица, выражающая линейный оператор в некотором базисе. Для того, чтобы ее получить, необходимо подействовать оператором на векторы базиса и координаты полученных векторов (образов базисных векторов) записать в столбцы матрицы.

Матрица оператора аналогична координатам вектора. При этом действие оператора на вектор равносильно умножению матрицы на столбец координат этого вектора в том же базисе.

Выберем базис . Пусть  — произвольный вектор. Тогда его можно разложить по этому базису:

,

где xk — координаты вектора в выбранном базисе.

Здесь и далее предполагается суммирование по немым индексам.

Пусть  — произвольный линейный оператор. Подействуем им на обе стороны предыдущего равенства, получим

.

Вектора также разложим в выбранном базисе, получим

,

где  — j-я координата k-го вектора из .

Подставим разложение в предыдущую формулу, получим

.

Выражение , заключённое в скобки, есть ни что иное, как формула умножения матрицы на столбец, и, таким образом, матрица при умножении на столбец xk даёт в результате координаты вектора , возникшего от действия оператора на вектор , что и требовалось получить.

См. также

Литература

Ссылки

Wikimedia Foundation. 2010.

dal.academic.ru

Оставить комментарий