Молния это какое явление – Презентация по физике “Физические явления. Гроза, гром и молния”

Молния (явление) — Мегаэнциклопедия Кирилла и Мефодия — статья

Мо́лния, гигантский электрический искровой разряд в атмосфере, сопровождающийся обычно яркой вспышкой света и громом. Чаще всего наблюдаются линейные молнии — разряды между грозовыми облаками (внутриоблачные) или между облаками и земной поверхностью (наземные). Процесс развития наземной молнии состоит из несколько стадий. На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с атомами воздуха, ионизуют их. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью — ступенчатому лидеру молнии. Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью около 5·107 м/с, после чего его движение приостанавливается на несколько десятков мкс, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 2·10
5
м/с. По мере продвижения лидера к земле напряженность поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молний используется для создания молниеотвода. В заключительной стадии по ионизованному лидером каналу следует обратный, или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч А, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до 108 м/с, а в конце уменьшающейся до 107
м/с. Температура канала при главном разряде может превышать 25 000 °С. Длина канала наземной молнии 1—10 км, диаметр — несколько см. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунд, достигая сотен и тысяч А. Такие молнии называют затяжными, они наиболее часто вызывают пожары.

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со средней скоростью 106 м/с. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 секунду. Смещение канала многократной молнии ветром создает «ленточную» молнию — светящуюся полосу.

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 50% в умеренных широтах до 90% в экваториальной полосе. Прохождение молний сопровождается изменениями электрических и магнитных полей и радиоизлучением — атмосфериками. Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие молниеотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолет — особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.Особый вид молний — шаровая молния, светящийся сфероид, обладающий большой удельной энергией, образующийся нередко вслед за ударом линейной молнии.
  • Френкель Я. И. Собрание избранных трудов. Т. 2. М.; Л., 1958.
  • Имянитов И. М., Чубарина Е. В., Шварц Я. М. Электричество облаков. Л., 1971.
  • Юман М. А. Молния. М., 1972.

megabook.ru

Электрические явления в природе: молния

Муниципальное общеобразовательное учреждение

Гимназия «Лаборатория Салахова»

Творческая работа по физике

на тему: Электрические явления в природе: молния


История

Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли.

Физические свойства молнии

Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.

Формирование молнии

Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и кончаются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько км³. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках — внутриоблачные молнии, а могут ударять в землю — наземные молнии. Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую и световую.

Наземные молнии

Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их. По более современным представлениям, разряд инициируют высокоэнергетические космические лучи, которые запускают процесс, получивший название пробоя на убегающих электронах. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью — ступенчатому лидеру молнии.

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр — несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары.

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию — светящуюся полосу.

Внутриоблачные молнии

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками. Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт — особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.

«В каждую секунду около 50 молний ударяются в поверхность земли, и в среднем каждый ее квадратный километр молния поражает шесть раз за год»[2].

Самые мощные молнии вызывают рождение фульгуритов.[2]

Люди и молния

Молнии — серьезная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах т.к. электрический ток идет по кратчайшему пути “грозовое облако-земля”. Часто молния попадает в деревья и трансформаторные установки на железной дороге ,вызывая их возгорание. Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн расположенных на крышах высотных зданий, а также для сетевого оборудования.

В организме пострадавших отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание, падает, могут отмечаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока», места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения, от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1 — 2 суток после смерти). Они — результат расширения капилляров в зоне контакта молнии с телом.

При поражении молнией первая медицинская помощь должна быть неотложной. В тяжелых случаях (остановка дыхания и сердцебиения) необходима реанимация, её должен оказать, не ожидая медицинских работников, любой свидетель несчастья. Реанимация эффективна только в первые минуты после поражения молнией, начатая через 10 — 15 минут она, как правило, уже не эффективна. Экстренная госпитализация необходима во всех случаях.

Жертвы молний

1. В мифологии и литературе:

1. Асклепий, Эскулап — сын Аполлона — бог врачей и врачебного искусства, не только исцелял, но и оживлял мёртвых. Чтобы восстановить нарушенный мировой порядок Зевс поразил его своей молнией[3].

2. Фаэтон — сын бога Солнца Гелиоса — однажды взялся управлять солнечной колесницей своего отца, но не сдержал огнедышащих коней и едва не погубил в страшном пламени Землю. Разгневанный Зевс пронзил Фаэтона молниями.

2. Исторические личности:

1. Российский академик Г. В. Рихман — в 1753 году погиб от удара молнии.

2. Народный депутат Украины, экс-губернатор Ровенской области В. Червоний 4 Июля 2009 года погиб от удара молнии.

Интересные факты

· Рой Салливан остался живым после семи ударов молнией.

· Американский майор Саммерфорд умер после продолжительной болезни (результат удара третьей молнией). Четвертая молния полностью разрушила его памятник на кладбище.

· У индейцев Анд удар молнией считается необходимым для достижения высших уровней шаманской инициации[4].

Деревья и молния

Ствол пораженного молнией тополя

Высокие деревья — частая мишень для молний. На реликтовых деревьях-долгожителях легко можно найти множественные шрамы от молний. Считается, что одиночно стоящее дерево чаще поражается молнией, хотя в некоторых лесных районах шрамы от молний можно увидеть почти на каждом дереве. Сухие деревья от удара молнии загораются. Чаще удары молнии бывают направлены в дуб, реже всего — в бук, что, по-видимому, зависит от различного количества жирных масел в них, представляющих большое сопротивление электричеству.[5]

mirznanii.com

Электрические явления. Молния | Русская Физика

Электрические явления. Молния.

   Каждый из нас и чаще всего с восторгом (или, напротив, с испугом) наблюдал молнии  —  явление удивительное и производящее сильное впечатление. Образованный человек знает, что проявляется проскакивание электронов между облаками или между облаком и землей. Уточним наше понимание молнии в свете эфирной теории.

   Электроны на Земле гибнут в больших количествах: часть из них «сгорает» в пламени химических реакций, в том числе и при обычном горении, но большая часть проникает в недра Земли и там исчезает, пополняя тепло планеты. Поэтому на поверхности Земли электронов не так уж и много. Значительно больше их в высоких слоях над атмосферой Земли, где они накапливаются как результат солнечного ветра и образуют электронную оболочку (радиационный пояс). Воздух атмосферы почти не проводит электроны: его пушистые атомы и молекулы образуют своего рода перину, которой окутана планета. Радиационный пояс из пушистых электронов можно по аналогии сравнить с пушистымпокрывалом на перине атмосферы. Плотность электронов в этом покрывале очень высока; она —  максимальная, какая только  может быть; и давление электронов в нем очень высокое: в масштабе электрических величин оно равно 10 в девятой степени вольт.

   По своей удельной эфирной плотности электроны могут быть отнесены к самым атомарно тяжелым газам, то есть они стремятся опуститься вниз на землю, оттесняя вверх все другие газы воздуха; но сделать это им не просто, так как они пушисты и пушисты все атомы и молекулы воздуха. Одного медленного просачивания электронов сквозь всю толщу атмосферы недостаточно для того, чтобы рассосать электронную оболочку; остается только надеяться на молнии: они решают задачу переноса электронов на землю очень просто и эффективно — пробоем; и помогают им в этом грозовые облака.

   Когда в жаркий летний день нагретый воздух устремляется вверх, он может достигать высоты, где начинается граница радиационного пояса. Там пары воды конденсируются и переходят из состояния газа в жидкость и даже в лед, то есть молекулы воды теряют свою пушистость. Пользуясь благоприятным моментом, электроны радиационного пояса облепливают молекулы воды как только могут  —  сотнями и тысячами на каждую молекулу. Подъем облака в силу его инерции рано или поздно прекращается, и оно устремляется вниз, увлекая вместе с собой неисчислимое количество прилипших электронов. На низкой  высоте происходит пробой воздуха, и электроны лавиной уходят в землю.

   Что такое  —  пробой? Обратимся к аналогии  —  к пневматике. Допустим, у нас имеется ресивер с высоким давлением воздуха; трубка, соединенная с ресивером, уперта своим открытым концом в толстый слой пористого поролона. При этом воздух, скорее всего, будет потихоньку просачиваться сквозь поролон, но давление в трубке будет сохраняться высоким; это  —  исходное состояние. Теперь начнем постепенно внедрять трубку в поролон все глубже и глубже. В какой-то момент, естественно, произойдет прорыв воздуха сквозь оставшуюся толщу поролона  —  это и есть пробой: воздух под давлением разорвет поролон, раздвинет его и устремится по возникшему каналу.

   Точно также возникает пробой воздуха атмосферы скопищем электронов грозового облака; нет ни какой разницы, если не считать яркой световой вспышки молнии, которой у пневматики, разумеется, нет. Свет порождает гибнущие в шнуре пробоя электроны. Гром, который мы слышим при грозе, представляет собой волну давления, возникшую в  результате резкого раздвигания стенок канала, по которому устремляется поток электронов. Известно, что диаметр этого канала достигает двадцати сантиметров и более, а ток в нем может превышать 200 000 ампер. При подходе к земле молния расщепляется на искры,  то есть общий канал распадается на рукава. Средняя скорость молнии равна 10000 километров в секунду, а длина молнии иногда превышает 10 километров.

   Как только давление электронов в канале упадет, атмосферное давление его захлопнет, и молния прекратится;  произойдет еще один хлопок — кавитационный.

   Пережим канала молнии атмосферным воздухом происходит самым неожиданным образом, и может случиться так, что не все электроны смогут выскочить из него и уйти в землю, и часть из них окажется з-пертой как бы в ловушке  —  в мешке; так рождается шаровая молния. Съежившись в клубочек, она будет шипеть и искриться, как шипят и искрятся провода высокого напряжения. Коснувшись токопроводящего предмета, шаровая молния уйдет в него; и лучше, если этим предметом будет не человек.

russkaja-fizika.ru

молния – это… Что такое молния?

природный разряд больших скоплений электрического заряда в нижних слоях атмосферы. Одним из первых это установил американский государственный деятель и ученый Б.Франклин. В 1752 он провел опыт с бумажным змеем, к шнуру которого был прикреплен металлический ключ, и получил от ключа искры во время грозы. С тех пор молния интенсивно изучалась как интересное явление природы, а также из-за серьезных повреждений линий электропередачи, домов и других строений, вызываемых прямым ударом молнии или наведенным ею напряжением. Результаты таких исследований кратко излагаются ниже.
Теория. Разряды молний могут происходить между соседними наэлектризованными облаками или между наэлектризованным облаком и землей. Разряду предшествует возникновение значительной разности электрических потенциалов между соседними облаками или между облаком и землей вследствие разделения и накопления атмосферного электричества в результате таких природных процессов, как дождь, снегопад и т.д. Возникшая таким образом разность потенциалов может достигать миллиарда вольт, а последующий разряд накопленной электрической энергии через атмосферу может создавать кратковременные токи от 3 до 200 кА. Для объяснения электризации грозовых облаков был разработан ряд теорий. В 1929 Дж.Симпсон предложил теорию, которая объясняет электризацию дроблением дождевых капель потоками воздуха. В результате дробления падающие более крупные капли заряжаются положительно, а остающиеся в верхней части облака более мелкие – отрицательно. В основе индукционной теории, предложенной в 1885, лежит предположение о том, что электрические заряды разделяются электрическим полем Земли, имеющей отрицательный заряд. В теории свободной ионизации Ч.Вильсона предполагается, что электризация возникает как результат избирательного накопления ионов находящимися в атмосфере капельками разных размеров. Возможно, что электризация грозовых облаков осуществляется совместным действием всех этих механизмов, а основным из них является падение достаточно крупных частиц, электризуемых трением об атмосферный воздух.
Разряд. На открытой местности разряды положительной и отрицательной полярности наблюдаются одинаково часто, но около 95% ударов в линии электропередачи и антенны исходят из отрицательно заряженных облаков. Разряд молнии характеризуется чрезвычайно быстрым нарастанием тока до пикового значения, как правило, достигаемого за время от 1 до 80 мкс (миллионных долей секунды), и последующим падением тока обычно за 3–200 мкс после пикового значения.
Многократные молнии. Многократные молнии – обычное явление, они могут насчитывать до 40 разрядов с интервалами от 500 мкс до 0,5 с, а полная продолжительность многократного разряда может достигать 1 с. С помощью фоторегистратора с временной разверткой было детально изучено развитие разряда молнии от облака до земли. Разряд развивается лавинообразно, сначала в виде ионизованного канала, получившего название лидера молнии, который ступенчато продвигается от облака к земле. Скорость ступенчатого движения лидера к земле равна приблизительно 45·106 м/с, причем интервал между ступенями составляет около 100 мкс. Длина каждой ступени лидера – около 45 м, так что полное время движения до земли может достигать 0,02 с. Затем по этому ионизованному каналу от земли к облаку движется основной разряд со скоростью от 2·107 м/с до 15·107 м/с. Он обычно глубоко проникает внутрь облака, образуя множество разветвленных каналов. Свечение этого яркого разряда, обусловленное рекомбинацией ионизованных атомов, может продолжаться более секунды.
Канал. Канал молнии определяется электрическим полем на конце движущегося лидера и локальной ионизацией. Вблизи земли его движение определяется земными стримерами или коронным разрядом, возникающим над заостренными проводящими предметами, выступающими над поверхностью земли. Молния с большой вероятностью повторно ударяет в ту же самую точку, если только объект не разрушен предыдущим ударом. Диаметр ядра светящегося разряда – от 1 до 2 см, а наэлектризованная зона вокруг ядра составляет, по-видимому, несколько метров в диаметре. Разветвленность разряда молнии между облаками обусловлена ступенчатым характером движения лидера, направление каждого шага которого определяется локальными условиями ионизации и потому носит в значительной мере случайный характер.
ЛИТЕРАТУРА
Френкель Я.И. Собрание избранных трудов, т. 2. М. – Л., 1958
Имянитов И.М., Чубарина Е.В., Шварц Я.М. Электричество облаков. Л., 1971
Юман М.А. Молния. М., 1972

dic.academic.ru

МОЛНИЯ – это… Что такое МОЛНИЯ?

  • Молния-1+ — (11Ф67, 11Ф658) …   Википедия

  • Молния-1Т — (11Ф658Т) …   Википедия

  • Молния-2 — (Молния 1М, 11Ф628) …   Википедия

  • Молния-3 — (11Ф637) Молния 1, на платформе которого был разработан Молния 3 …   Википедия

  • Молния-3К — Общие данные Производитель НПО ПМ …   Википедия

  • Молния —     Молния снится к счастью и процветанию – правда, недолговременному.     Если вы увидели молнию над своей головой – впереди радость и прочные доходы.     Если молния осветила какой то объект рядом с вами – удача поджидает вашего друга.     А… …   Большой универсальный сонник

  • МОЛНИЯ — МОЛНИЯ, молнии, жен. Разряд атмосферного электричества в воздухе, обычно в виде огненного зигзага. Сверкнула молния. Молния ударила в дерево. Молнией убило. С быстротой молнии. Шаровая молния (в виде огненного шара). « Каков дождик? Каковы… …   Толковый словарь Ушакова

  • молния — природный разряд больших скоплений электрического заряда в нижних слоях атмосферы. Одним из первых это установил американский государственный деятель и ученый Б.Франклин. В 1752 он провел опыт с бумажным змеем, к шнуру которого был прикреплен… …   Географическая энциклопедия

  • молния — громы и молнии метать, с быстротою молнии.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. молния перуны, гостья из поднебесья, гостья из поднебес, разряд, электрометеор, небесная… …   Словарь синонимов

  • Молния —     Молния в Ваших снах предвещает счастье и процветание на короткий период времени.     Если молния освещает какой то объект рядом с Вами и Вы почувствовали шок, то Вы будете взволнованы удачной судьбой друга или, напротив, мучимы сплетнями и… …   Сонник Миллера

  • МОЛНИЯ — гигантский электрический искровой разряд между облаками или между облаками и земной поверхностью длиной несколько километров, диаметром десятки сантиметров и длительностью десятые доли секунды. Молния сопровождается громом. Кроме такой (линейной) …   Большой Энциклопедический словарь

  • dic.academic.ru

    Электрическое явление в природе: молния

    Каждый школьник знает, что электричество окружает нас повсюду, как в быту, так и в природе. Пожалуй, самым красивым и опасным проявлением электричества в окружающей среде по праву считается молния. Этот феномен достаточно хорошо изучен, однако до сих пор отдельные аспекты остаются загадкой для ученых. Природа и возникновение, а так же основные вариации этого атмосферного явления будут рассмотрены далее.

    Молния представляет собой мощные электрические разряды, вследствие скопления электронов в нижних слоях атмосферы. Впервые пришел к разгадке природы молнии в ходе эксперимента с воздушным змеем известный американский ученый и политик Б. Франклин. На сегодняшний день ученым известно, каким образом происходит образование молнии во время грозы.

    В результате движения внутри тучи наэлектризованных капель воды, между частями самого облака или между землей и грозовой тучей образуется значительная разность потенциалов. Под воздействием этого электрического поля свободные электроны в виде потока устремляются к земле, при этом ионизируя молекулы воздуха. Как следствие этого, возникает своеобразный силовой кабель, по которому проходит электрический заряд. Сила тока в таком случае иногда достигает сотни тысяч ампер, а яркие вспышки света сопровождаются звуковой ударной волной — громом. Температура внутри молнии составляет около 25-27 тысяч градусов, поэтому молния несет в себе значительную опасность для человека.

    Несмотря на значительную изученность данного природного явления, молнии продолжают удивлять ученых обнаруживая все новые и новые свои особенности. Так, ученые установили существование нескольких видов молний:
    — эльфы — молнии, возникающие в верхних слоях атмосферы. Это огромных размеров (диаметром около 400 км и высотой — до 100 км) конусообразные вспышки, возникающие на верхней части грозовой тучи;
    — джеты — это также конусообразные молнии, достигающие нижних границ ионосферы. Отличаются голубоватым свечением и значительной продолжительностью;
    — спрайты — это также молнии, образующиеся на верхней части облака на высоте от 50 до 130 км и бьющие вверх. Они образуются почти в любую грозу, но афиксировать их крайне сложно.

    Помимо того, всем известно о существовании так называемой “шаровой” молнии. Это достаточно редкое явление и смоделировать ее в лабораторных условиях ученым пока не удалось. Свидетельства очевидцев по этому поводу сильно расходятся. Некоторые утверждают, что такая молния существует и ведет себя, не подчиняясь никаким законам физики.

    В любом случае, молния часто несет значительную опасность для человека, поэтому любоваться этим завораживающим зрелищем лучше всего на безопасном расстоянии и из окна дома. Оказавшись во время грозы на улице, следует принять все необходимые меры предосторожности, чтобы избежать поражения электрическим разрядом, ведь шансы выжить после такого весьма малы.

    damacon.com.ua

    Атмосферные явления. Молния. Радуга.

    Гроза. Молния.

    Прилагательное “грозный” образовано от существительного “гроза”. После такого тонкого лингвистического наблюдения и глубокомысленного вывода сразу вспоминаются прекрасные стихи Ф.И. Тютчева: “Люблю грозу в начале мая …” Конечно, гроза бывает в любое время года, даже зимой, но весной, когда природа цветёт, гроза особенно красива, что и подметил поет.

    Что же представляет собой красивое, величественное и одновременно опасное явление природы, называемое грозой? Об этом учёные и простые люди задумывались давно. Не понимая причин сущности грозы, люди в давние времена постоянно испытывали священный ужас перед этим явлением природы. И было от чего приходить в ужас: последствиями сильных гроз нередко бывали разрушения жилищ и хозяйственных построек, пожары, гибель людей и домашних животных.

    Только в XVIII веке учёные установили, что молния — это искровой разряд атмосферного электричества. Изучением атмосферного электричества занимались многие учёные, в том числе М.В. Ломоносов, который высказал правильную догадку о вертикальных течениях в атмосфере и появлении электрических зарядов на облаках. На опытах, проведённых в 1752-1753 годах, М.В. Ломоносов и американский исследователь и государственный деятель Вениамин Франклин (1706-1790) одновременно и независимо друг от друга доказали, что грозовая молния – это гигантская электрическая искра, которая ничем кроме размеров и, соответственно, энергии не отличается от искры, проскакивающей между шарами лабораторной электрической машины.

    Ломоносов построил “громовую машину”, представлявшую собой конденсатор, который заряжался атмосферным электричеством через провод, конец которого был поднят над землёй на высоком шесте. Конденсатор находился в кабинете Ломоносова. Во время грозы можно было извлекать искры из конденсатора, когда к нему приближались руками. Во время таких опытов в 1753 году на глазах у Ломоносова погиб работавший вместе с ним его друг, немецкий ученый Георг Рихман.

    Не менее опасный опыт проводил в Америке примерно в то же время Франклин. Он запустил во время грозы на бечёвке бумажного змея, который был снабжён железным остриём. К нижнему концу бечёвки был привязан металлический предмет (дверной ключ). Когда бечёвка намокла и превратилась в проводник электрического тока, Франклин смог извлечь из ключа электрические искры и зарядить лейденские банки для дальнейших опытов с электрической машиной. Ясно, что Франклин сильно рисковал, т.к. молния могла ударить в змей, и тогда электрический ток большой величины прошёл бы в землю через тело экспериментатора.

    Опыты Ломоносова и Франклина показали, что грозовые облака сильно заряжены электричеством.

    В дальнейшем было установлено, что разные части грозового облака несут заряды различных знаков. Чаще всего нижняя часть облака (обращённая к земле) бывает заряжена отрицательно, а верхняя положительно. Напомним, что Земля в целом обладает отрицательным зарядом. Если два облака сближаются разноимённо заряженными частями, то между ними проскакивает молния. Но грозовой разряд может произойти и иначе. Проходя над землёй, грозовое облако создаёт на её поверхности большие индукционные заряды. Облако и поверхность земли образуют как бы две обкладки большого конденсатора. Разность потенциалов между облаком и землёй достигает огромных значений, достигающих сотен миллионов вольт, и в воздухе возникает сильное электрическое поле. Если напряжённость этого поля достигает определенного предела, то происходит пробой, т.е. молния ударяет в землю. О возможных последствиях такого удара для людей и окружающих предметов мы уже упоминали.

    • Многочисленные и многолетние исследования показывают, что искровой разряд в молнии имеет следующие средние параметры:

    Напряжение между облаком и землёй: 100 000 000 (сто миллионов) вольт;
    Сила тока в молнии: 100 000 (сто тысяч) ампер;
    Продолжительность электрического разряда: 10-6 (одна миллионная) секунды;
    Диаметр светящегося канала: 10—20 см.

    Гром, возникающий после молнии, объясняется тем, что воздух внутри и вокруг канала молнии сильно нагревается и быстро расширяется, создавая звуковые волны. Когда эти волны отражаются от облаков или объектов на поверхности земли, то возникает эхо, воспринимаемое нашим слухом как громовые раскаты. Сокрушительный грохот этих раскатов косвенно говорит о том, насколько чудовищны значения электрических величин, породивших молнию.

    Электрическое поле Земли.

    Исследователями установлено, что между различными точками земной атмосферы, находящимися на разной высоте, имеется разность потенциалов, т.е. около земной поверхности существует электрическое поле. Величина изменения потенциала с высотой различна в разное время года и для разных местностей и имеет вблизи земной поверхности среднее значение 130 вольт на каждый метр. Другими словами, напряженность поля вблизи Земли равна 1,3 в/см. По мере подъема над Землёй поле это быстро ослабевает, и уже на высоте 1 км напряжённость его равна только 0,4 в/см, а на высоте 10 км оно становится ничтожно слабым. Знак этого изменения соответствует отрицательному заряду Земли. Таким образом, мы постоянно живём и работаем в электрическом поле довольно значительной напряженности.

    Поскольку поле вблизи Земли имеет напряженность около 130 в/м, то между точками, в которых находятся голова и ноги каждого из нас, должно было бы быть напряжение свыше 200 вольт. Почему же мы не ощущаем этого поля, в то время как прикосновение к проводнику, включенному в сеть с напряжением 100-120 вольт может оказаться не просто болезненным, но и смертельно опасным? Оказывается, дело в том, что тело человека является проводником и поэтому поверхность его в поле при равновесии зарядов должна быть эквипотенциальной поверхностью, т.е. такой, для любой пары точек которой разность потенциалов равна нулю. Поэтому между отдельными точками поверхности тела (головой и ногами) не может быть разности потенциалов. Земной шар в целом является проводником, поэтому поверхность Земли есть также эквипотенциальная поверхность.

    Опытное исследование электрического поля Земли и соответствующие расчеты показывают, что Земля в целом обладает отрицательным зарядом, средняя величина которого оценивается в полмиллиона кулонов (около 4,5×105). Этот заряд поддерживается приблизительно неизменным благодаря ряду процессов в атмосфере Земли и вне её (в мировом пространстве), которые ещё далеко не полностью выяснены.

    Где же расположены соответствующие положительные заряды? Эти заряды находятся в так называемой ионосфере, т.е. в слое ионизированных (положительно заряженных) молекул, находящемся в нескольких десятках километров над Землёй. Объёмный положительный заряд этого слоя атмосферы и компенсирует отрицательный заряд Земли. Линии земного электрического поля идут от этого слоя к поверхности Земли (от положительного заряда к отрицательному).

    Радуга.

    Обычно после дождя на небе появляется радуга, эта красочная арка из воды и света. С незапамятных времён радуга волновала умы исследователей и мифотворцев. Аристотель, например, считал радугу отражением солнечного света облаками. Это, конечно, слишком большое упрощение действительного явления. По современным представлениям белый свет является смесью различных излучений со своими длинами волн. Попадая во взвешенную в воздухе водяную капельку, луч белого света преломляется как в призме. Попадая на внутреннюю стенку капли, он отражается и распадается на одноцветные излучения, которые под разными углами направляются к противоположной стенке. Эти излучения при выходе наружу обладают цветом, соответствующим их собственной длине волны. Они и образуют разноцветную палитру радуги. С помощью точных приборов исследователи определили, что угол отражения красного луча равен 137°58′, фиолетового — 139°43′. Так возникает хрупкая, неизменно повторяющаяся строгая последовательность цветов: по внутреннему краю радуги — фиолетовый, постепенно переходящий в синий, зелёный, желтый, оранжевый, и по наружному краю — красный.

    Точно так же синий ореол над далёкими вершинами или над морским горизонтом возникает при столкновении лучей определённой длины волны с частицами, образованными молекулами воздуха. Если бы свет не отражался от капель и частиц, то небо казалось бы нам таким же чёрным, как и межпланетное пространство, которое наблюдают космонавты за пределами земной атмосферы.

    Научное объяснение радуги дал ещё в 1635 году Рене Декарт в своём труде «Метеоры» в главе «О радуге», представленной на нашем сайте.

    Световые волны — это электромагнитные колебания. Воспринятые глазом и обработанные мозгом, они создают воспринимаемую нами трёхмерную красочную картину мира. Радуга — это упорядоченная серия электромагнитных колебаний с длинами волн от 8×10-5 см для красного цвета до 4×10-5 см для фиолетового. Длины волн для других цветов находятся в промежутке между указанными величинами. Человеческий глаз — это немыслимо сложный физический прибор, способный обнаруживать различие в цвете, даже в оттенках цвета, которым соответствует совершенно незначительная разница в длине световых волн: около 10-6 (около одной миллионной!) сантиметра. Вообще говоря, в природе никаких красок не существует, есть только волны разной длины. Видимые нами цвета — это измеренная глазом и истолкованная мозгом энергия световой волны. Удивительная игра красок реализуется нашим глазом лишь в узкой полосе частот световых колебаний. А как мог выглядеть окружающий мир, если бы человеческому глазу был доступен более широкий спектр частот для перевода их в цветовую гамму? Такую ситуацию мы вообразить не в состоянии.

    А теперь несколько слов о других явлениях природы, связанных с функционированием биосферы. В продолжение темы атмосферных осадков необходимо сказать о снегопадах и выпадениях града. Физически оба этих вида осадков едины, т.к. представляют собой выпадение из облаков той же воды, превращенной низкими температурами воздуха в другое агрегатное состояние. При повышении температуры примерно до 0°-1° Цельсия снег и град снова превращается в воду, т.е. в жидкую фазу.

    Для земледельцев обильные снегопады в начале зимы — признак хорошего будущего урожая: ведь семена озимых теперь хорошо укрыты от морозов. “Снег глубок — и хлеб хорош” — так исстари говорили в русских деревнях. А покрытые снегом деревья напоминают очаровательную зимнюю сказку. Сколько радости у детей, когда они имеют возможность слепить снежную бабу, или поиграть в снежки!

    Но не только радость приносят снегопады. Если они слишком обильны, продолжительны и вьюжны — чего уж тут хорошего. Метровые сугробы и заносы на дорогах, перерывы в работе наземного и воздушного транспорта, обрывы электропроводов, сходы снежных лавин в горах, нередко приводящие к пленению, а иногда и гибели людей в снежной массе. Для диких животных и птиц затрудняется поиск корма. Всё это мы наблюдаем и переживаем почти ежегодно в самых разнообразных районах земного шара.

    Крупный град, особенно если он выпадает весной, способен нанести большой вред урожаю садов и полей, а то и вызвать повреждения построек, автомобилей, стоящих под открытым небом и т.д.

    © Владимир Каланов,
    “Знания-сила”

     

    znaniya-sila.narod.ru

    Оставить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *