Петля электрическая – Токовая петля — Википедия

Токовая петля: назначение, применение, особенности

Токовая петля – это двухпроводной интерфейс передачи информации, где данные закладываются в значение тока.

Благодарности

Большое спасибо Михаилу Гуку за интересные книги. Некогда авторы начинали изучение современной электроники с энциклопедией и изданий этого замечательного человека. Без интернета учебники приходилось терпеливо перелистывать руками, а мышки бегали преимущественно в подполе.

Компания muRata постоянно снабжает читателей свежей информацией, значит, теперь в курсе новостей окажутся и читатели. Рассматриваемая продукция уже упоминается в разделе про герконовые датчики. Речь о новейшей разработке – RedRock.

Необходимость токовой петли

Токовая петля 4-20 мА считается распространённым протоколом передачи информации датчиков. В индустрии часто возникает необходимость измерения физических параметров, к примеру:

  • Давление;
  • Температура;
  • Поток жидкости.

Потребность возникает постоянно, когда информацию нужно передать на расстояния в сотни метров и более. Токовая петля считается медленным цифровым интерфейсом, и обусловлено это зарядом ёмкости кабеля от источника (что проявляется с ростом частоты), для аналоговых или дискретных устройств возможностей вполне хватает. Передатчики снабжаются аккумуляторами на 12 (реже) либо 24 В (чаще). Последние позволяют дальше передать информацию, значащим параметром становится ток, а не напряжение. Чем длиннее линия, тем ощутимее падение потенциала.

У приведённого технического решения есть пара недостатков. Во-первых, приходится использовать экранированные провода, во-вторых, увеличение дальности приводит к резкому снижению КПД. Типичная токовая петля состоит из четырёх компонентов:

  1. Источник питания. Месторасположение произвольное.
  2. Приёмник или монитор.
  3. Передатчик (сенсор).
  4. Преобразователь напряжения в ток.

Сенсоры выдают информацию, пропорциональную измеряемому параметру, представленному напряжением. Следовательно, нужно заняться преобразованием в ток. Потом информация кодируется либо по уровню тока, либо в двоичный вид: 4 мА – нуль, 20 мА – единичка. На стороне приёмника информация расшифровывается.

Поклонники цифровых технологий заявляют о низком быстродействии токовой петли. Действительно, при погонной ёмкости в 75 пФ/м километровый отрез провода образует конденсатор с номиналом 75 нФ. С ростом частоты сопротивление падает, эффект сглаживания и фильтрации не даёт правильно работать с информацией. За 19 мкс конденсатор наполняется полностью от напряжения 5 В, обусловливая замеченное ограничение в 9,6 кбит/сек.

Собственно токовая петля считается отжившим протоколом, на её место готовы прийти прочие, массово используемые, к примеру, MIDI и малоизвестный средь широкой публики промышленный интерфейс HART.

Общая информация

Первым сюрпризом становится отсутствие единых стандартов. Доминирующими стали протоколы 4-20 мА, 0-20 мА и 0-60 мА, жёстких правил нет. В токовой петле может передаваться любая информация. Если это двоичный код, единице соответствует наличие тока в размере 20 мА в зависимости от настроек системы, а нулю – отсутствие сигнала либо наличие 4 мА. Если при передаче пакета происходит разрыв линии, это непременно опознаётся через стоп-байт.

Интерфейс применялся с 50-х годов, первоначально единица кодировалась как 60 мА постоянного тока. Следовательно, КПД системы оказывался намного ниже. Петля на 20 мА появилась в 1962 году как сигнал для телетайпов — для дистанционной печати сообщений (соединяла две электрические печатные машинки). С началом 80-х ток попытались уменьшить, не всегда успешно. Решили сделать компромисс:

  1. 4 мА означает «живой» нуль. Чтобы система точно знала, не произошёл ли в сети обрыв.
  2. Единицей остаётся 20 мА.

Основным ограничением служит расстояние передачи информации. На параметр влияет битрейт: на километровых дистанциях допустимая скорость передачи информации составляет 9600 бит/сек. Выше 19,2 кбит/сек линию не используют. В итоге на дальность влияют электрические параметры линии и уровень помех. Токовую петлю предполагалось заменить по задумкам Fieldbus, в действительности в обиход вошёл стандартный сегодня RS-485 (1983 год) – вариант COM-порта. И поныне терминалы по протоколу RS-232 присоединяются при помощи токовой петли, а на приёмной стороне производится нужное преобразование. Иногда по протоколу работают избранные принтеры. Пусть теоретический предел здесь составляет 115 кбис/с, на практике применяется 9600.

Особенность токовой петли — в передатчике не обращают внимание на напряжение. Мощность бывает разной. Главное – выдержать значение тока, 20 мА. Следовательно, чем линия длиннее, тем меньше КПД. Это неукоснительно исполняемое правило. Периодически встречается токовая петля с гальванической развязкой. Для этого используются оптопары и подобные полупроводниковые конструкции.

Как правило, кабель используется экранированный, чтобы избежать параллельных ёмкостных помех, которые не удаётся компенсировать или отследить. Для создания сети неплохо подходит экранированная витая пара. Благодаря тесному переплетению проводов, она избавляет от внешних наводок в виде индуктивных и синфазных помех. Для создания дуплексного канала используют две витые пары, программно интерфейс управляется через методы XON/XOFF. Достойные специализированные приложения обходят затруднение созданием предварительных запросов на передачу и ответов.

На приёмнике ток преобразуют в напряжение при помощи резистивного делителя. В зависимости от вольтажа применяются сопротивления 125 — 500 Ом. Иногда на стороне передатчика или приёмника ставится адаптер (преобразователь сигнала) к последовательному интерфейсу COM-порта. Падение напряжения на резисторе высчитывается по закону Ома, к примеру, для номинала 250 Ом это составит 250 х 0,02 = 5 В. Соответственно, приёмник возможно откалибровать при необходимости на нужный уровень.

Где применяется токовая петля

  1. Контроль технологических процессов. На производстве токовая петля 4-20 мА считается главным аналоговым интерфейсом. Используется «живой» нуль, когда полное отсутствие сигнала означает обрыв линии. Ток в 4 мА иногда используется как питание для передатчика либо входящий сигнал модулируется датчиком и возвращается в виде информации. Встречаются цепи, где батарея стоит отдельно, тогда модулируется её сигнал. Ни приёмник, ни передатчик не тратят собственную энергию.
  2. Во времена аналоговой телефонии токовая петля оставалась излюбленным интерфейсом для подключения. И сегодня ещё находятся бьющиеся током провода в квартирах. Здесь телефон питается от станции и модулирует сигнал для вызова абонента. Как в случае с датчиком, описанным выше. Эти линии остались в качестве наследия былых времён. К примеру, компания Система Белла применяет питание постоянным током до 125 В.
  3. Токовая петля иногда используется для передачи информации уровнем сигнала. К примеру, 15 мА означает «горим!», 6 мА – «все в порядке», 0 мА — обрыв линии. Любой местечковый производитель устанавливает собственные правила и пользуется протоколом.
  4. В телефонии через токовую петлю может контролироваться базовая станция. Это называется «дистанционный контроль постоянным током». К примеру, Motorola MSF-5000 использует постоянные токи для 4 мА для передачи сервисных сигналов. Пример подобного протокола:
  • Нет тока – вести приём на 1 канале.
  • +6 мА – передавать на 1 канале.
  • -6 мА – принять информацию на 2 канале.
  • -12 мА – передать на 2 канале.

Интерфейс MIDI

MIDI формат популярен среди музыкантов, это специализированный протокол цифровой звукозаписи. На физическом уровне он организован по схеме токовой петли 5 мА. Разумеется, из-за разницы уровней единиц напрямую два стандарта передачи не совместимы. Согласно Михаилу Гуку, MIDI разработан в 1983 году и стал правилом де-факто подключения синтезаторов.

Википедия сообщает, что в июне 1981 года корпорация Роланд подала крупному производителю синтезаторов – Обергейм Электроникс – идею стандартного интерфейса. Уже в октябре Смит, Обергейм и Какихаши обсудили это с правлением Ямаха, Корг и Каваи, а в ноябре на выставке общества AES продемонстрировали первый работоспособный вариант.

Два года интерфейс находился на доработке, и в январе 1983-го Смит объединил через MIDI два аналоговых синтезатора. Это позволило напрямую перекачивать аранжировки и создавать новые музыкальные композиции. Позднее файлы MIDI введены в поддержку операционной системы Windows, позволяя авторам напрямую заниматься обработкой мелодий, насыщая их новыми спецэффектами, отсутствующими в оригинальных синтезаторах. Внедрение сэмплов различных инструментов позволяло исполнителю воспроизводить музыкальное сопровождение любой сложности.

Применение MIDI

В MIDI используются физические линии на 5 мА. Редко встречается 10. Гальваническая развязка осуществляется через оптрон. Характерной чертой признано инвертирование сигнала:

  1. Есть ток.
  2. Нет тока.

Поэтому MIDI напрямую не совместим с обычной токовой петлёй. Физический интерфейс видели многие, но не знали название. Визуально розетка представляет собой диск диэлектрика с боковым вырезом, по периметру расположены 5 отверстий (DIN). Конструкция охвачена по кругу экраном. Музыканты насчитывают три вида интерфейса:

  1. MIDI-In.
  2. MIDI-Out.
  3. MIDI-Thru.

Порт MIDI иногда стоит на материнской плате персонального компьютера. Физически задействуются в нормальном режиме не используемые контакты 12 и 15 порта игрового адаптера DB-15S. Используемая здесь логика ТТЛ требует наличия адаптера для стыковки со стандартными синтезаторами по протоколу токовой петли. Микросхема преобразователя не слишком сложная, включает оптрон, диод, ряд логических элементов.

Порт MIDI программируется через UART как последовательный COM-порт. В продаже есть звуковые карты с MIDI либо отдельные платы расширения на свободные слоты.

Протокол HART

Это развитие протокола Fieldbus, массово применяемое в промышленности. Подосновой становится токовая петля 4-20 мА, а значит, может использовать витые пары, оставшиеся от морально устаревших протоколов. Поначалу стандарт считался укзоспециализированным связным интерфейсом, но в 1986 году вышел на всеобщее обозрение. Передача по HART идёт полными пакетами, имеющими состав:

  1. Преамбула – 5-20 байт. Служит для синхронизации и определения несущей.
  2. Старт-байт – 1 байт. Указывает номер хозяина шины.
  3. Адрес – от 1 до 5 байт. Присваивается хозяину, слуге и служит специальным признаком пакетного режима.
  4. Расширение – от 0 до 3 байт. Его длина указывается в старт-байте.
  5. Команда – 1 байт. То, что слуга должен исполнить.
  6. Число байтов данных – 1 байт. Размер поля данных в байтах.
  7. Данные – от 0 до 255 байтов. Данные, помогающие расшифровать порядок действий.
  8. Проверочная сумма – 1 байт. Содержит результат логической операции XOR для всех байтов, кроме стартового и заключительного в блоке данных.

Разумеется, пакетная структура характерна для цифровых устройств, нуждается в расшифровке для правильного исполнения команды.

vashtehnik.ru

Токовая петля – это… Что такое Токовая петля?

То́ковая петля́ — способ передачи информации с помощью измеряемых значений силы электрического тока. В настоящее время такой способ более распространён в инженерной практике, чем использование для этой цели напряжения. Для задания измеряемых значений тока используется, как правило, управляемый источник тока. По виду передаваемой информации различаются аналоговая токовая петля и цифровая токовая петля.

Цифровая токовая петля

Преобразователь RS-232 / Токовая петля

Применяется в телекоммуникационном оборудовании и компьютерах для последовательной передачи данных.

История

Токовая петля использовалась задолго до появления стандартов RS-232 и V.24. Еще в 60-е годы телетайпы начали использовать стандарт токовой петли 60 миллиампер. Последующие модели (одна из первых — Teletype Model ASR-33) использовали стандарт 20 мА. Этот стандарт нашел широкое применение в миникомпьютерах, которые первоначально использовали телетайпы для диалога с оператором (консоль). Постепенно телетайпы уступили место текстовым видеотерминалам (подобно VT52), сохраняя интерфейс токовой петли. В 1980-х стандарт RS-232 окончательно заменил токовую петлю.

Принципы работы

Стандарт цифровой токовой петли использует отсутствие тока как значение SPACE (низкий уровень, логический ноль) и наличие сигнала — как значение MARK (высокий уровень, логическая единица). Отсутствие сигнала в течение длительного времени интерпретируется как состояние BREAK (обрыв линии). Данные передаются старт-стопным методом, формат посылки совпадает c RS-232, например 8-N-1: 8 бит, без паритета, 1 стоп-бит.

Токовая петля может использоваться на значительных расстояниях (до нескольких километров). Для защиты оборудования применяется гальваническая развязка на оптоэлектронных приборах, например оптронах.

Из-за неидеальности источника тока, максимально допустимая длина линии (и максимальное сопротивление линии) зависит от напряжения, от которого питается источник тока. Например при типичном напряжении питания 12 вольт сопротивление не должно превышать 600 Ом.

Источник тока может располагаться в приемном или передающем конце токовой петли. Узел с источником тока называют активным. В зависимости от конструкции может быть активный передатчик (и соответственно — пассивный приемник) или наоборот.

Стандартизация

Стандарт ИРПС (ОСТ 11 305.916-84) использует токовую петлю 20 мА для передачи данных. Этот стандарт широко применялся в компьютерах, выпущенных в СССР и странах СЭВ до 1990-х годов. Например ДВК, Электроника-60, Электроника Д3-28, СМ ЭВМ и т. д. Физическое исполнение разъемов ИРПС в стандарте не закреплено, что породило массу вариантов. Часто употребляется разъём СНО53-8-2.

За рубежом токовая петля (Current Loop) специфицирована в стандартах IEC 62056-21 / DIN 66258.

MIDI (Musical Instrument Digital Interface) использует стандарт токовой петли на 5-ти штырьковом разъеме DIN 41524 со скоростью 31.25 kbit/s.

Для компьютеров IBM PC и IBM PC XT имелась плата IBM Asynchronous Communications Adapter, поддерживающая последовательную передачу по RS-232 или токовой петле. Для передачи сигналов токовой петли используются незадействованные контакты на разъеме DB25. В более поздних разработках остался только RS-232.

Аналоговая токовая петля

Аналоговая токовая петля используется для передачи аналогового сигнала по паре проводов в лабораторном оборудовании, системах управления производством и т. д.

Применяется смещенный диапазон 4-20 мА то есть наименьшее значение сигнала (например 0) соответствует току 4 мА, а наибольшее — 20 мА. Таким образом весь диапазон допустимых значений занимает 16 мА. Нулевое значение тока в цепи означает обрыв линии и позволяет легко диагностировать такую ситуацию.

Интерфейс аналоговой токовой петли позволяет использовать разнообразные датчики (давления, потока, кислотности и т. д.) с единым электрическим интерфейсом. Также данный интерфейс может использоваться для управления регистрирующими и исполнительными устройствами: самописцами, заслонками и т. д.

Основное преимущество токовой петли — то, что точность не зависит от длины и сопротивления линии передачи, поскольку управляемый источник тока будет автоматически поддерживать требуемый ток в линии. Вдобавок, такая схема позволяет запитывать датчик непосредственно от линии передачи. Несколько приемников можно соединять последовательно, источник тока будет поддерживать требуемый ток во всех одновременно (согласно закону Кирхгофа).

Поверх аналоговой токовой петли можно передавать цифровую информацию. Такой способ передачи данных описан в HART-протоколе. Конкурирующими протоколами, способными в будущем вытеснить HART, являются различные цифровые полевые шины, такие как Fieldbus Foundation или PROFIBUS.

dic.academic.ru

Петля фаза-ноль | Заметки электрика

Уважаемые, читатели!!!

Приветствую Вас на своем ресурсе «Заметки электрика».

На повестке сегодняшнего дня у нас статья на тему петля фаза-ноль.

Что же такое петля фаза-ноль?

Все об этом Вы узнаете, прочитав материал ниже.

Мы с Вами знаем, что все электрооборудование, будь то в квартире или на производстве, должно работать исправно и долговечно.

Во время повреждений (короткое замыкание, перегруз и др.) электрооборудования или же самой электропроводки, должны мгновенно срабатывать аппараты защиты, отключая поврежденный участок цепи.

Но мы забываем о том, что в процессе эксплуатации электрооборудования и электрических сетей необходимо заранее и заблаговременно обследовать и выявлять неисправности (отказы).

Чаще всего никто этого правила не придерживается, а обращаются к специалистам-электрикам уже при возникновении самой неисправности. А иногда бывает так, что обращаться уже поздно.

Нет, уважаемые, я Вас не пугаю. Так оно и есть.

Просто примите себе за правило, что для выявления, предупреждения и устранения всех неисправностей Ваших электрических сетей и электрооборудования необходимо с определенной периодичностью производить комплекс следующих электрических измерений:

Кто имеет право проведения вышеперечисленных измерений? Об этом читайте в статье про электролабораторию.

 

Что это такое «петля фаза-ноль»?

Мы уже с Вами знакомы с системами заземления электроустановок до 1000 (В)  TN-C, TN-C-S, TN-S. Все они являются глухозаземленными.

Если соединить фазный проводник L на нулевой рабочий проводник N или защитный проводник PE, то образуется контур, называемый петля фаза-ноль.

Т.е. эта петля состоит из электрической цепи фазного проводника L и нулевого рабочего проводника N, либо из электрической цепи фазного проводника L и защитного проводника PE, которая обладает своим сопротивлением.

Можно, конечно, и самостоятельно рассчитать сопротивление петли фаза-ноль, но это достаточно сложно и проблематично из-за ряда следующих факторов:

  • переходные сопротивления всех коммутационных аппаратов (автоматических выключателей, предохранителей, рубильников, разъединителей, контакторов и др.)

  • точный путь тока в аварийном режиме (металлические конструкции, водопроводы, трубопроводы, контур заземления, повторное заземление)

При измерении сопротивления петли фаза-ноль специальным прибором, все вышеперечисленные факторы учитываются автоматически.

 

Причины и цель измерения

Причины проведения измерения петли Ф-О:

  • приемосдаточные испытания, т.е. вновь вводимая электроустановка (после монтажа или реконструкции)

  • по требованию службы Ростехнадзора или других контролирующих организаций

  • собственное желание

Целью проведения измерений заключаются в определении следующих параметров:

1. Величина сопротивления петли фаза-ноль

В это значение входит сопротивление обмоток питающего трансформатора, фазного проводника L и нулевого (защитного) проводника N (PE), переходных сопротивлений силовых контактов автоматических выключателей, рубильников, контакторов и др.

2. Величина тока короткого замыкания

Величина тока однофазного короткого замыкания может быть получена косвенным путем по нижеприведенной формуле, или же расчитана прибором автоматически.

Iк.з = Uном / Zп

  • Uном – номинальное напряжение питающей сети
  • Zп – полное сопротивление петли фаза-ноль

Расчитанный или измеренный ток короткого замыкания сравнивают с уставкой автоматического выключателя (либо тепловой, либо электромагнитной).

Заключение об измерении петли фазы-ноль делаем согласно нормативно-технических документов ПТЭЭП и ПУЭ.

Как проводить измерение петли фаза-ноль Вы можете узнать в моей следующей статье — измерение петли фаза-ноль.

В той же статье я наглядно покажу на примере, как сделать правильное заключение по полученным параметрам.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Токовая петля Википедия

То́ковая петля́  (current loop) — способ передачи информации с помощью измеряемых значений силы электрического тока. В настоящее время такой способ более распространён в инженерной практике, чем использование для этой цели напряжения. Для задания измеряемых значений тока используется, как правило, управляемый источник тока. По виду передаваемой информации различаются аналоговая токовая петля и цифровая токовая петля.

Цифровая токовая петля

Преобразователь RS-232 / токовая петля

Применяется в телекоммуникационном оборудовании и компьютерах для последовательной передачи данных.

История

Токовая петля использовалась задолго до появления стандартов RS-232 и V.24. В 1960-е годы телетайпы начали использовать стандарт токовой петли 60 миллиампер. Последующие модели (одна из первых — Teletype Model ASR-33) использовали стандарт 20 мА. Этот стандарт нашел широкое применение в мини-компьютерах, которые первоначально использовали телетайпы для диалога с оператором. Постепенно телетайпы уступили место текстовым видеотерминалам, сохраняя интерфейс токовой петли. В 1980-х стандарт RS-232 окончательно заменил токовую петлю.

Принципы работы

Стандарт цифровой токовой петли использует отсутствие тока как значение SPACE (низкий уровень, логический ноль) и наличие сигнала — как значение MARK (высокий уровень, логическая единица). Отсутствие сигнала в течение длительного времени интерпретируется как состояние BREAK (обрыв линии). Данные передаются старт-стопным методом, формат посылки совпадает c RS-232, например 8-N-1: 8 бит, без паритета, 1 стоп-бит.

Токовая петля может использоваться на значительных расстояниях (до нескольких километров). Для защиты оборудования применяется гальваническая развязка на оптоэлектронных приборах, например оптронах.

Из-за неидеальности источника тока, максимально допустимая длина линии (и максимальное сопротивление линии) зависит от напряжения, от которого питается источник тока. Например при типичном напряжении питания 12 вольт сопротивление не должно превышать 600 Ом.

Источник тока может располагаться в приёмном или передающем конце токовой петли. Узел с источником тока называют активным. В зависимости от конструкции как передатчик, так и приёмник, могут быть либо активными (питать токовую петлю), так и пассивными (питаться от токовой петли).

Для компьютеров семейства ДВК по умолчанию принимается, что передатчик — активный, приёмник — пассивный.

Стандартизация

Стандарт ИРПС/IFSS (ОСТ 11 305.916-84) использует токовую петлю 20 мА для передачи данных. Этот стандарт широко применялся в компьютерах, выпущенных в СССР и странах СЭВ до 1990-х годов. Например ДВК, Электроника-60, Электроника Д3-28, СМ ЭВМ и т. д. Физическое исполнение разъемов ИРПС в стандарте не закреплено, что породило массу вариантов. Часто употребляется разъём СНО53-8-2.

За рубежом токовая петля (Current Loop) специфицирована в стандартах IEC 62056-21 / DIN 66258.

MIDI (Musical Instrument Digital Interface) использует стандарт токовой петли на 5-штырьковом разъеме DIN 41524 со скоростью 31,25 кбит/с.

Для компьютеров IBM PC и IBM PC XT имелась плата IBM Asynchronous Communications Adapter, поддерживающая последовательную передачу по RS-232 или токовой петле. Для передачи сигналов токовой петли используются незадействованные контакты на разъеме DB25. В более поздних разработках остался только RS-232.

Аналоговая токовая петля

Аналоговая токовая петля используется для передачи аналогового сигнала по паре проводов в лабораторном оборудовании, системах управления производством и т. д.

Применяется смещенный диапазон 4—20 мА, то есть наименьшее значение сигнала (например, 0) соответствует току 4 мА, а наибольшее — 20 мА. Таким образом весь диапазон допустимых значений занимает 16 мА. Нулевое значение тока в цепи означает обрыв линии и позволяет легко диагностировать такую ситуацию.

Интерфейс аналоговой токовой петли позволяет использовать разнообразные датчики (давления, потока, кислотности и т. д.) с единым электрическим интерфейсом. Также данный интерфейс может использоваться для управления регистрирующими и исполнительными устройствами: самописцами, заслонками и т. д.

Диапазоны токов и напряжений описаны в ГОСТ 26.011-80 “Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные”.

Основное преимущество токовой петли (по сравнению с более дешёвой параметрической передачей напряжением) — то, что точность не зависит от длины и сопротивления линии передачи, поскольку управляемый источник тока будет автоматически поддерживать требуемый ток в линии. Такая схема позволяет запитывать датчик непосредственно от линии передачи. Несколько приёмников можно соединять последовательно, источник тока будет поддерживать требуемый ток во всех одновременно (согласно закону Кирхгофа). Но если в цепи появятся утечки, работа токовой петли нарушится, и средствами реализации самой токовой петли это не обнаруживается, что необходимо учитывать при проектировании ответственных производственных участков.

Поверх аналоговой токовой петли можно передавать цифровую информацию. Такой способ передачи данных описан в HART-протоколе. Конкурирующими протоколами, способными в будущем вытеснить HART, являются различные цифровые полевые шины, такие как Foundation fieldbus или PROFIBUS.

Ссылки

wikiredia.ru

Интерфейс токовая петля

Интерфейс токовая петля (current loop), в отличии от RS-232, RS-422 и RS-485 использует для передачи сигнал не по напряжению, а по току.

Устройства с интерфейсом токовая петля соединяются по двухпроводной линии.

Одним из распространенных вариантов является, так называемая токовая петля 4 20ма. Сигнал 20 мА соответствует логической «1». Сигнал 0(4) мА соответствует логическому «0».

Существует две разновидности интерфейса:

  • Цифровая токовая петля
  • Аналоговая токовая петля

Для цифрового интерфейса различают 3 вида сигнала:

  • MARK – логическая «1»
  • SPACE – логический «0»
  • BREAK – разрыв из-за отсутствия соединения по таймауту

Так как формат кадра RS-232 и токовой петли фактически одинаковые, то их можно совместить, применив следующую электрическую схему:

Токовая петля схема подключения.

Для защиты приборов соответственно применяется гальваническая развязка на оптронах, как показано на рисунке.

Источник питания может располагаться как в передатчике, так и в приемнике. Так как он неидеален, то присутствует ограничение на максимальную длину передачи:  при 12 В это не больше 600 Ом.

А вот аналоговая токовая петля – это хорошо всем известный сигнал 4-20 мА.

Он имеет ряд преимуществ:

  • Возможность диагностирования обрыва линии (0 мА — обрыв)
  • В отличие от сигналов по напряжению менее чувствителен к наводкам
  • Точность показаний приборов не зависит от длинны и сопротивления линии передачи
  • Возможность запитать датчик непосредственно от линии передачи
  • Устройства можно подключать последовательно – источник все равно будет поддерживать необходимый ток во всех приборах (согласно закону Кирхгофа)

Кроме того, на аналоговый сигнал 4-20 мА можно наложить цифровой высокочастотный сигнал HART-протокола.

Tags RS-232 RS-422 RS-485 общие сведения

 

autoworks.com.ua

петля тока – это… Что такое петля тока?

  • Токовая петля — Токовая петля  способ передачи информации с помощью измеряемых значений силы электрического тока. В настоящее время такой способ более распространён в инженерной практике, чем использование для этой цели напряжения. Для задания измеряемых… …   Википедия

  • токовая петля — Метод передачи данных. Единицы в этом случае представляются импульсом тока в петле, 0 отсутствием тока. [http://www.morepc.ru/dict/] Тематики информационные технологии в целом EN Current Loop …   Справочник технического переводчика

  • путь тока через тело человека — rus путь (м) тока через тело человека, петля (ж) тока eng current path(way) fra trajet (m) du courant deu Stromweg (m), Strombahn (f) spa trayectoria (f) de la corriente eléctrica …   Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

  • Электрошоковое оружие — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей …   Википедия

  • Электрошокер — Тэйзер М26 один из видов дистанционного электрошокового оружия Электрошоковое оружие оружие, принцип действия которого основан на непосредственном действии электрического разряда на живую цель. Относится к классу оружия нелетального действия… …   Википедия

  • ПОРАЖЕНИЕ ЭЛЕКТРИЧЕСКИМ ТОКОМ — мед. Поражение электрическим током вызывает как общие функциональные нарушения в деятельности организма (электротравма), так и местные (электроожоги). Общие сведения: • Лёгкие поражения электрическим током часто наблюдают в быту. Тяжёлые… …   Справочник по болезням

  • Клапан — Клапан  устройство, предназначенное для открытия, закрытия или регулирования потока при наступлении определённых условий (повышении давления в сосуде, изменении направления тока среды в трубопроводе). Поток (ток) может быть потоком жидкости… …   Википедия

  • Вентиль (трубопроводный) — Клапан  устройство, устанавливаемое на трубопроводе или сосуде и предназначенное для открытия или закрытия при наступлении определённых условий (повышении давления в сосуде, изменении направления тока среды в трубопроводе). Клапаны имеют большое… …   Википедия

  • Водопроводный вентиль — Клапан  устройство, устанавливаемое на трубопроводе или сосуде и предназначенное для открытия или закрытия при наступлении определённых условий (повышении давления в сосуде, изменении направления тока среды в трубопроводе). Клапаны имеют большое… …   Википедия

  • Двухполюсное прикосновение — одновременное прикосновение к 2 полюсам электроустановки, находящейся под напряжением. Различают однополюсные и двухполюсные прикосновения. При однополюсном прикосновении человек, стоящий на земле, одной рукой касается неизолированной токоведущей …   Российская энциклопедия по охране труда

  • occupational_safety_ru.academic.ru

    Петля гистерезиса

    Гистерезис происходит от греческого слова, означающего запаздывание или отставание. С данным понятием связана такая физическая величина, как петля гистерезиса, определяющая одну из характеристик тела. Она определенным образом связана также и с физическими величинами, характеризующими внешние условия, такие как магнитное поле.

    Общие понятия гистерезиса

    Гистерезис можно наблюдать в те моменты, когда какое-либо тело в конкретный период времени будет находиться в зависимости от внешних условий. Данное состояние тела рассматривается и в предыдущее время, после чего производится сравнение и выводится определенная зависимость.

    Подобная зависимость хорошо просматривается на примере человеческого тела. Чтобы изменить его состояние потребуется какой-то отрезок времени на релаксацию. Поэтому реакция тела будет всегда отставать от причин, вызвавших измененное состояние. Данное отставание значительно уменьшается, если изменение внешних условий также будет замедляться. Тем не менее, в некоторых случаях может не произойти уменьшения отставаний. В результате, возникает неоднозначная зависимость величин, известная как гистерезисная, а само явление называется гистерезисом.

    Эта физическая величина может встречаться в самых разных веществах и процессах, однако чаще всего рассматриваются понятия диэлектрического, магнитного и упругого гистерезиса. Магнитный гистерезис как правило появляется в магнитных веществах, например, таких как ферромагнетики. Характерной особенностью этих материалов является самопроизвольная или спонтанная неоднородная намагниченность, наглядно демонстрирующая это физическое явление.

    Механизм возникновения петли гистерезиса

    Сам по себе гистерезис представляет собой кривую, отображающую измененный магнитный момент вещества, на которое воздействует периодически изменяющаяся напряженность поля. Когда магнитное поле воздействует на ферромагнетики, то изменение их магнитного момента наступает не сразу, а с определенной задержкой.

    В каждом ферромагнетике изначально присутствует самопроизвольная намагниченность. Сам материал включает в свой состав отдельные фрагменты, каждый из которых обладает собственным магнитным моментом. При направленности этих моментов в разные стороны, значение суммарного момента оказывается равным нулю в результате взаимной компенсации.

    Если на ферромагнетик оказать воздействие магнитным полем, то все моменты, присутствующие в отдельных фрагментах (доменах) будут развернуты вдоль внешнего поля. В итоге, в материале образуется некоторый общий момент, направленный в одну сторону. Если внешнее действие поля прекращается, то домены не все окажутся в изначальном положении. Для этого потребуется воздействие достаточно сильного магнитного поля, предназначенного для разворота доменов. Такому развороту создают препятствия наличие примесей и неоднородность материала. Поэтому материал имеет некоторую остаточную намагниченность, даже при отключенном внешнем поле.

    Для снятия остаточного магнитного момента, необходимо приложение действия поля в противоположном направлении. Напряженность поля должна иметь величину, достаточную, чтобы выполнить полное размагничивание материала. Такая величина известна как коэрцитивная сила. Дальнейшее увеличение магнитного поля приведет к перемагничиванию ферромагнетика в противоположную сторону.

    Когда напряженность поля достигает определенного значения, материал становится насыщенным, то есть магнитный момент больше не увеличивается. При снятии поля вновь наблюдается наличие остаточного момента, который снова можно убрать. Дальнейшее увеличение поля приводит к попаданию в точку насыщения с противоположным значением.

    Таким образом, на графике появляется петля гистерезиса, начало которой приходится на нулевые значение поля и момента. В дальнейшем, первое же намагничивание выводит начало петли гистерезиса из нуля и весь процесс начинает происходить по графику замкнутой петли.

    electric-220.ru

    Оставить комментарий