Решить определенный интеграл – Решение определенных интегралов онлайн. Калькулятор для вычисления определенного интеграла

Онлайн калькулятор. Решение определенных интегралов онлайн

Оператор

Описание

Простейшие математические операции

+ – * / ()

Сложение, вычитание, умножение, деление и группирующие символы: + – * / () .
Знак умножения * – необязателен: выражение 2sin(3x) эквивалентно 2*sin(3*x).
Cкобки используются для группирования выражений.

0.5

Десятичные дроби записываются через точку:
  • 0.5 – правильная запись;
  • 0,5 – неправильная запись.

Элементарные функции

xn

Возведение в степень: x^n,
например, для ввода x2 используется x^2

√x

Квадратный корень: \sqrt(x) или x^(1/2)

3√x

Кубический корень: x^(1/3)

n√x

Корень n-той степени из x: x^(1/n)

ln(x)

Натуральный логарифм (логарифм c основанием e): log(x)

logax

Логарифм от x по основанию a: log(x)/log(a)

lg(x)

Десятичный логарифм (логарифм по основанию 10): log(x)/log(10)

ex

Экспоненциальная функция: e^x

Тригонометрические функции

sin(x)

Синус от x: sin(x)

cos(x)

Косинус от x: cos(x)

tg(x)

Тангенс от x: tan(x)

ctg(x)

Котангенс от x: 1/tan(x)

arcsin(x)

Арксинус от x: arcsin(x)

arccos(x)

Арккосинус от x: arccos(x)

arctan(x)

Арктангенс от x: arctan(x)

arcctg(x)

Арккотангенс от x: \pi/2 – arctan(x)

Некоторые константы

e

Число Эйлера e: \e

π

Число π: \pi

ru.onlinemschool.com

Решение определенных интегралов | Онлайн калькулятор

Данный калькулятор позволит найти определенный интеграл онлайн.
Определенный интеграл – это разность значений первообразной для подынтегральной функции. Проще говоря, определенный интеграл численно равен площади части графика функции в определенных пределах, то есть площади криволинейной трапеции. Определенный интеграл можно вычислить по формуле Ньютона-Лейбница.

Для того чтобы найти определенный интеграл, нужно ввести верхнюю и нижнюю границы и подынтегральную функцию.

Калькулятор поможет найти решение определенных интегралов онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.

Основные функции

  • : x^a

модуль x: abs(x)

Интегралы

Для того, чтобы найти неопределенный интеграл от функции нужно написать в строке: f[x], x. Найти определенный интеграл так же просто: f[x], {x, a, b} либо e f(x), x=a..b.

Важно подчеркнуть, что калькулятор выдает пошаговое нахождение интеграла при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Примеры
  • Sin[x]/x², x;
  • x^10*ArcSin[x], x;
  • (x+Sin[x])/x, {x,1,100};
  • Log[x^3+1]/x^5, {x,1,Infinity}.
Вам помог этот калькулятор?
Предложения и пожелания пишите на [email protected]

Поделитесь этим калькулятором на форуме или в сети!

Это помогает делать новые калькуляторы.

НЕТ

Смотрите также

allcalc.ru

Определенный интеграл онлайн

Определенный интеграл онлайн для решения математики. Быстро решить задачу по нахождению определенного интеграла в режиме онлайн. Сайт www.matcabi.net позволяет найти определенный интеграл почти от любой математической функции онлайн. Правильно решить определенный интеграл функции, по заданному интервалу вычислить определенный интеграл от сложной функции – это быстро и легко с нашим сайтом, позволяющим находить определенный интеграл онлайн от математических функций. Найти определенный интеграл онлайн, при этом получить точный ответ. На сайте www.matcabi.net решение определенного интеграла онлайн осуществляется мгновенно. Достаточно ввести заданную функцию, указать пределы интегрирования, и ответ получите сразу в режиме онлайн. Ввести функцию, определить пределы интегрирования у определенного интеграла, получить мгновенный ответ и найти определенный интеграл онлайн от заданной функции. В математике понятие определенного интеграла широко применимо, поэтому задачи нахождения определенного интеграла онлайн встречаются часто. Не все математические сайты способны находить определенные интегралы функций в режиме онлайн быстро и качественно, особенно если требуется найти определенный интеграл от сложной функции или таких функций, которые не включены в общий курс высшей математики. Сайт www.matcabi.net поможет найти определенный интеграл онлайн и решить поставленную задачу. Используя онлайн решение определенного интеграла на сайте www.matcabi.net, вы получите точный ответ. Вы можете находить определенные интегралы от сложных математических функций в режиме онлайн, при этом пределы интегрирования могут варьироваться от минус бесконечности до плюс бесконечности. Для практических задач по нахождению определенного интеграла функции онлайн этого достаточно. Решая задачи по нахождению определенного интеграла онлайн, полезно проверить полученный ответ, используя онлайн решение определенных интегралов на сайте www.matcabi.net. Необходимо ввести заданную функцию, указать или выбрать пределы интегрирования, получить онлайн решение определенного интеграла и сравнить ответ с вашим решением. Проверка ответа займет не более минуты, достаточно решить определенный интеграл онлайн и сравнить ответы. Это поможет Вам избежать ошибки в решении и вовремя скорректировать ответ при взятии определенного интеграла онлайн от функции.

www.matcabi.net

Определенный интеграл онлайн. Несобственный интеграл онлайн.

Определенные интегралы онлайн на math34.su для закрепления студентами и школьниками пройденного материала.                                                     И тренировки своих практических навыков. Полноценное решение определенных интегралов онлайн для вас в считанные мгновения поможет определить все этапы процесса. Пошаговое вычисление определенных интегралов онлайн на сайте math34.su. Интегралы онлайн – определенный интеграл онлайн. Определенные интегралы онлайн на math34.su для полноценного закрепления студентами и школьниками пройденного материала и тренировки своих практических навыков. Полноценное решение определенных интегралов онлайн для вас в считанные мгновения поможет определить все этапы процесса. Пошаговое вычисление определенных интегралов онлайн на сайте math34.su. Интегралы онлайн – определенный интеграл онлайн. Для нас определенный интеграл онлайн взять не представляется чем-то сверх естественным, изучив данную тему по книге выдающихся авторов. Огромное им спасибо и выражаем респект этим личностям. Поможет определить определенный интеграл онлайн сервис по вычислению таких задач в два счета. Только укажите правильные данные и все будет Good! Всякий определенный интеграл как решение задачи повысит грамотность студентов. Об этом мечтает каждый ленивец, и мы не исключение, признаем это честно. Если все-таки получится вычислить определенный интеграл онлайн с решением бесплатно, то, пожалуйста, напишите адрес math34.su всем желающим им воспользоваться. Как говорится, поделишься полезной ссылкой – и тебя отблагодарят добрые люди за даром. Очень интересным будет вопрос разбора задачки, в которой определенный интеграл будет калькулятор решать самостоятельно, а не за счет траты вашего драгоценного времени. На то они и машины, чтобы пахать на людей. Однако решение определенных интегралов онлайн не всякому сайту по зубам, и это легко проверить, а именно, достаточно взять сложный пример и попытаться решить его с помощью каждого такого сервиса. Вы почувствуете разницу на собственной шкуре. Зачастую найти определенный интеграл онлайн без прилагаемых усилий станет достаточно сложно и нелепо будет выглядеть ваш ответ на фоне общей картины представления результата. Лучше бы сначала пройти курс молодого бойца. Всякое решение несобственных интегралов онлайн сводится сначала к вычислению неопределенного, а затем через теорию пределов вычислить как правило односторонние пределы от полученных выражений с подставленными границами A и B. Рассмотрев указанный вами определенный интеграл онлайн с подробным решением, мы сделали заключение, что вы ошиблись на пятом шаге, а именно при использовании формулы замены переменной Чебышева. Будьте очень внимательны в дальнейшем решении. Если ваш определенный интеграл онлайн калькулятор не смог взять с первого раза, то в первую очередь стоит перепроверить написанные данные в соответствующие формы на сайте. Убедитесь, что все в порядке и вперёд, Go-Go! Для каждого студента препятствием является вычисление несобственных интегралов онлайн при самом преподе, так как это либо экзамен, либо коллоквиум, или просто контрольная работа на паре. Непросто будет списать ответ вживую, но вы не унывайте, ведь с вами мы – math34.su. Как только заданный несобственный интеграл онлайн калькулятор будет в вашем распоряжении, то сразу вбивайте заданную функцию, подставляйте заданные пределы интегрирования и нажимайте на кнопку Решение, после этого вам будет доступен полноценный развернутый ответ. И все-таки хорошо, когда есть такой замечательный сайт как math34.su, потому что он и бесплатный, и простой в пользовании, также содержит очень много разделов. которыми студенты пользуются повседневно, один из них как раз есть определенный интеграл онлайн с решением в полном виде. В этом же разделе можно вычислить несобственный интеграл онлайн с подробным решением для дальнейших применений ответа как в институте, так и в инженерных работах. Казалось бы, всем определить определенный интеграл онлайн дело нехитрое, если заранее решить такой пример без верхней и нижней границы, то есть не интеграл Лейбница, а неопределенный интеграл. Но тут мы с вами не согласны категорически, так как на первый взгляд это может показаться именно так, однако есть существенная разница, давайте разберем все по полочкам. Такой определенный интеграл решение дает не в явном виде, а в следствие преобразования выражения в предельное значение. Другими словами, нужно сначала решить интеграл с подстановкой символьных значений границ, а затем вычислить предел либо на бесконечности, либо в определенной точке. Отсюда вычислить определенный интеграл онлайн с решением бесплатно означает ни что иное как представление точного решения по формуле Ньютона-Лейбница. Если же рассматривать наш определенный интеграл калькулятор поможет его подсчитать за несколько секунд прямо на ваших глазах. Такая спешка нужна всем желающим как можно быстрее справиться с заданием и освободиться для личных дел. Не стоит искать в интернете сайты, на которых попросят вас регистрироваться, затем пополнить деньги на баланс и все ради того, чтобы какой-нибудь умник подготавливал решение определенных интегралов якобы онлайн. Запомните адрес math34 – это бесплатный сервис для решения множества математических задач, в том же числе мы поможем найти определенный интеграл онлайн, и чтобы в этом убедиться, просим проверить наше утверждение на конкретных примерах. Введите подынтегральную функцию в соответствующее поле, затем укажите либо бесконечные предельные значения (в это случае будет вычислен и получено решение несобственных интегралов онлайн), либо задайте свои числовые или символьные границы и определенный интеграл онлайн с подробным решением выведется на странице после нажатия на кнопку “Решение”. Неправда ли — это очень просто, не требует от вас лишних действий, бесплатно, что самое главное, и в то же время результативно. Вы можете самостоятельно воспользоваться сервисом, чтобы определенный интеграл онлайн калькулятор принес вам максимум пользы, и вы бы получили комфортное состояние, не напрягаясь на сложность всех вычислительных процессов, позвольте нам сделать все за вас и продемонстрировать всю мощь компьютерных технологий современного мира. Если погружаться в дебри сложнейших формул и вычисление несобственных интегралов онлайн изучить самостоятельно, то это похвально, и вы можете претендовать на возможность написания кандидатской работы, однако вернемся к реалиям студенческой жизни. А кто такой студент? В первую очередь – это молодой человек, энергичный и жизнерадостный, желающий успеть отдохнуть и сделать домашку! Поэтому мы позаботились об учениках, которые стараются отыскать на просторах глобальной сети несобственный интеграл онлайн калькулятор, и вот он к вашему вниманию – math34.su – самая полезная для молодежи решалка в режиме онлайн. Кстати наш сервис хоть и преподносится как помощник студентам и школьникам, но он в полной мере подойдет любому инженеру, потому что нам под силу любые типы задач и их решение представляется в профессиональном формате. Например, определенный интеграл онлайн с решением в полном виде мы предлагаем по этапам, то есть каждому логическому блоку (подзадачи) отводится отдельная запись со всеми выкладками по ходу процесса общего решения. Это конечно же упрощает восприятие многоэтапных последовательных раскладок, и тем самым является преимуществом проекта math34.su перед аналогичными сервисами по нахождению несобственный интеграл онлайн с подробным решением.

math24.su

Вычисление определенных интегралов.

Страница 1 из 2

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Формула Ньютона-Лейбница.

Если $F(x) -$ одна из первообразных непрерывной на $[a, b]$ функции $f(x),$ то справедлива следующая формула Ньютона-Лейбница: $$\int\limits_a^b f(x)\,dx=F(x)|_a^b=F(b)-F(a).$$

Примеры:

Используя формулу Ньютона-Лейбница, вычислить интегралы:

6.324. $\int\limits_{-1}^2x^3\,dx.$

Решение.

 $$\int\limits_{-1}^2x^3\,dx=\left.\frac{x^4}{4}\right|_{-1}^2=\frac{(-1)^4}{4}-\frac{2^4}{4}=\frac{1}{4}-\frac{16}{4}=-\frac{15}{4}=-3,75.$$

Ответ: $-3,75.$

6.331. $\int\limits_{-\pi/4}^0\frac{dx}{\cos^2 x}.$

Решение.

$$\int\limits_{-\pi/4}^0\frac{dx}{\cos^2 x}=\left.tg x\right|_{-\pi/4}^0=tg 0-tg(-\pi/4)=0-(-1)=1.$$

Ответ: $1.$

 

6.335. $\int\limits_{1}^2\frac{dx}{2x-1}.$

Решение.

$$\int\limits_{1}^2\frac{dx}{2x-1}=\int\limits_1^2\frac{1}{2}d(\ln(2x-1))=\frac{1}{2}\left.\left(\ln(2x-1)\right)\right|_{1}^2=\ln3-\ln1=\ln 3.$$

Ответ: $\ln 3.$

 

6.347.  $\int\limits_0^{\pi/2}\cos^3\alpha\,d\alpha.$

Решение.

$$\int\limits_{0}^{\pi/2}\cos^3\alpha\,d\alpha=\int\limits_0^{\pi/2}\cos^2xd\sin x=\int\limits_0^{\pi/2}(1-\sin^2 x)d\sin x=\left.\left(\sin x-\frac{\sin^3 x}{3}\right)\right|_{0}^{\pi/2}=$$ $$=\sin\frac{\pi}{2}-\frac{\sin^3{\pi/2}}{3}-\left(\sin 0-\frac{\sin^30}{3}\right)=1-\frac{1}{3}=\frac{2}{3}.$$

Ответ: $\frac{2}{3}.$

 

 Свойства определенного интеграла:

1) Если $f(x)\geq 0$ на отрезке $[a, b],$ то $\int\limits_a^bf(x)dx\geq 0.$

2) Если $f(x)\leq g(x)$ на $[a, b]$ то $\int\limits_a^bf(x)\,dx\leq\int\limits_a^b g(x)\,dx.$

3) $|\int\limits_a^bf(x)\,dx|\leq\int\limits_a^b |f(x)|\,dx.$

4) Если $f(x)$ непрерывна на $[a, b], \,\, m -$ наименьшее, $M -$ наибольшее значения $f(x)$ на $[a, b],$ то $$m(b-a)\leq\int\limits_a^bf(x)\,dx\leq M(b-a)$$ (теорема об оценке определенного интеграла).

5) Если $f(x)$ непрерывна, а $g(x)$ интегрируема на $[a, b],\,\, g(x)\geq 0.$ $m$ и $M -$ наименьшее и наибольшее значения $f(x)$ на $[a, b],$ то $$m\int\limits_a^b g(x)\,dx\leq\int\limits_a^bf(x)g(x)dx\leq M\int\limits_a^bg(x)\,dx.$$ (обобщенная теорема об оценке определенного интеграла)

6) Если $f(x)$ непрерывна на $[a, b],$ то существует такая точка $c\in(a, b),$ что справедливо равенство $$\int\limits_a^bf(x)dx=f(c)(b-a).$$ (теорема о среднем значении) 

Число $f(c)=\frac{1}{b-a}\int\limits_a^bf(x)\,dx$ называется средним значением функции $f(x)$ на отрезке $[a, b].$

7) Если $f(x)$ непрерывна а интегрируема на $[a, b]$ и $g(x)\geq 0,$ то существует такая точка $c\in(a, b),$ что справедливо равенство $$\int\limits_a^bf(x)g(x)dx=f(c)\int\limits_a^bg(x)dx$$  (обобщенная теорема о среднем).

8) Если $f^2(x)$ и $g^2(x)$ интегрируемы на $[a, b],$ то  $$|\int\limits_a^bf(x)g(x)dx|=\sqrt{\int\limits_a^bf^2(x)dx\int\limits_a^bg^2(x)dx}$$ (неравенство Коши-Буняковского).

9) Интегрирование четных и нечетных функций в симметричных пределах. Если функция $f(x)$ четная, то $\int\limits_{-a}^af(x)dx=2\int\limits_0^af(x)dx.$ Если функция $f(x)$ нечетная, то $\int\limits_{-a}^af(x)dx=0.$ 

10) Если функция $f(x)$ непрерывна на отрезке $[a, b],$ то интеграл с переменным верхним пределом $$\Phi(x)=\int\limits_a^x f(t)dt$$ является первообразной для функции $f(x),$ т.е.  $$\Phi'(x)=(\int\limits_a^x f(t)dt)’=f(x),\quad x\in[a, b].$$

11) Если функции $\phi(x)$ и $\psi(x)$ дифференцируемы в точке $x\in(a, b)$ и $f(t)$ непрерывна при $\phi(a)\leq t\leq \psi(b),$ то $$\left(\int\limits_{\phi(x)}^{\psi(x)} f(t)dt\right)_x’=f(\psi(x))\psi'(x)-f(\phi(x))\phi'(x).$$

 

Примеры.

6.364. а) Определить знак интеграла, не вычисляя его: $\int\limits_{-2}^1\sqrt[3]{x}\,dx.$

Решение.

Поскольку функция $\sqrt[3]x$ нечетная $(\sqrt[3]{-x}=-\sqrt[3]x),$ то, пользуясь 9-м свойством получаем   $\int\limits_{-2}^2\sqrt[3]{x}\,dx=0.$ Далее воспользуемся равенством $$\int\limits_{-2}^1\sqrt[3]{x}\,dx=\int\limits_{-2}^2\sqrt[3]{x}\,dx-\int\limits_{1}^2\sqrt[3]{x}\,dx=-\int\limits_{1}^2\sqrt[3]{x}\,dx.$$

Ясно, что $\sqrt[3]x>0$ при $x\in[1, 2].$ Поэтому из первого свойства определенных интегралов следует, что $\int\limits_{1}^2\sqrt[3]{x}\,dx>0.$ Следовательно,  $$\int\limits_{-2}^1\sqrt[3]{x}\,dx=-\int\limits_{1}^2\sqrt[3]{x}\,dx<0.$$

Ответ: $\int\limits_{-2}^1\sqrt[3]{x}\,dx<0.$

 {jumi[*4]} 

6.365. б) Не вычисляя интегралов, выяснить какой из интегралов больше $\int\limits_1^2\frac{dx}{x^2}$ или $\int\limits_1^2\frac{dx}{x^3}.$

Решение.

Воспользуемся вторым свойством определенных интегралов. На отрезке $[1, 2]$ выполняется неравенство $\frac{1}{x^2}\geq\frac{1}{x^3}.$ Проверим это: $$\frac{1}{x^2}\geq\frac{1}{x^3}\Rightarrow x^3\geq x^2\Rightarrow x\geq1.$$ Следовательно, $$\int\limits_1^2\frac{dx}{x^2}\geq\int\limits_1^2\frac{dx}{x^3}.$$ Строгое  неравенство легко получить, представив заданные интегралы как сумму $$\int\limits_1^2\frac{dx}{x^2}=\int\limits_1^{3/2}\frac{dx}{x^2}+\int\limits_{3/2}^2\frac{dx}{x^2};$$ $$\int\limits_1^2\frac{dx}{x^3}=\int\limits_1^{3/2}\frac{dx}{x^3}+\int\limits_{3/2}^2\frac{dx}{x^3}.$$ На отрезке $[1, 3/2]$ выполняется неравенство $$\frac{1}{x^2}\geq\frac{1}{x^3}\Rightarrow\int\limits_1^{3/2}\frac{dx}{x^2}\geq\int\limits_{3/2}^2\frac{dx}{x^3};$$ На отрезке $[3/2, 2]$ выполняется неравенство $$\frac{1}{x^2}>\frac{1}{x^3}\Rightarrow\int\limits_1^{3/2}\frac{dx}{x^2}>\int\limits_{3/2}^2\frac{dx}{x^3}.$$ Таким образом, $$\int\limits_1^2\frac{dx}{x^2}=\int\limits_1^{3/2}\frac{dx}{x^2}+\int\limits_{3/2}^2\frac{dx}{x^2}>\int\limits_1^{3/2}\frac{dx}{x^3}+\int\limits_{3/2}^2\frac{dx}{x^3}=\int\limits_1^2\frac{dx}{x^3}.$$ Ответ: $\int\limits_1^2\frac{dx}{x^2}>\int\limits_1^2\frac{dx}{x^3}.$

 

6.366. в) Найти среднее значение функции на данном отрезке: $\cos x,\quad 0\leq x\leq\pi/2.$

Решение.

Воспользуемся 6-м свойством определенных интегралов. Средним значением функции $f(x)$ на отрезке $[a, b]$ называется число $f(c)=\frac{1}{b-a}\int\limits_a^bf(x)\,dx.$ 

Отсюда находим $$\cos c=\frac{1}{\pi/2-0}\int\limits_0^{\pi/2}\cos x\,dx=\frac{2}{\pi}\left.\sin x\right|_0^{\pi/2}=\frac{2}{\pi}(1-0)=\frac{2}{\pi}.$$

Ответ: $\frac{2}{\pi}.$

 

6.369. Оценить интеграл $\int\limits_0^{2\pi}\frac{dx}{\sqrt{5+2\sin x}}.$

Решение. 

Оценим подынтегральную функцию:

$$-1\leq\sin x\leq 1\Rightarrow$$ $$3\leq 5+2\sin x\leq 7\Rightarrow$$ $$\sqrt 3\leq\sqrt{5+2\sin x}\leq 7\Rightarrow$$ $$\frac{1}{\sqrt 7}\leq\frac{1}{\sqrt{5+2\sin x}}\leq\frac{1}{\sqrt 3}.$$

Отсюда и из второго свойства определенных интегралов следует, что

$$\int\limits_0^{2\pi}\frac{1}{\sqrt 7}dx\leq\int\limits_0^{2\pi}\frac{1}{\sqrt{5+2\sin x}}dx\leq\int\limits_0^{2\pi}\frac{1}{\sqrt 3}dx.$$

Находим предельные интегралы: $$\int\limits_0^{2\pi}\frac{1}{\sqrt 7}dx=\frac{1}{\sqrt 7}(2\pi-0)=\frac{2\pi}{\sqrt 7};$$ $$\int\limits_0^{2\pi}\frac{1}{\sqrt 3}dx=\frac{1}{\sqrt 3}(2\pi-0)=\frac{2\pi}{\sqrt 3}.$$

Таким образом, $$\frac{2\pi}{\sqrt 7}\leq\int\limits_0^{2\pi}\frac{1}{\sqrt{5+2\sin x}}dx\leq\frac{2\pi}{\sqrt 3}.$$

Ответ: $\frac{2\pi}{\sqrt 7}\leq\int\limits_0^{2\pi}\frac{1}{\sqrt{5+2\sin x}}dx\leq\frac{2\pi}{\sqrt 3}.$

 

6.370. б) Оценить интеграл $\int\limits_0^1\sqrt{(1+x)(1+x^3)}\,dx,$ пользуясь неравенством Коши-Буняковского.

Решение.

Неравенство Коши-Буняковского дает  $$|\int\limits_0^1\sqrt{(1+x)(1+x^3)}dx|\leq\sqrt{\int\limits_0^1(1+x)dx\int\limits_0^1(1+x^3)dx}.$$ 

Вычислим каждый интеграл, стоящей под корнем в правой части равенства:

$$\int\limits_0^1(1+x)dx=\left.\left(x+\frac{x^2}{2}\right)\right|_0^1=1+\frac{1}{2}-0=\frac{3}{2};$$ $$\int\limits_0^1(1+x^3)dx=\left.\left(x+\frac{x^4}{4}\right)\right|_0^1=1+\frac{1}{4}-0=\frac{5}{4};$$ Отсюда $$|\int\limits_0^1\sqrt{(1+x)(1+x^3)}dx|\leq\sqrt{\frac{3}{2}\cdot\frac{5}{4}}=\frac{\sqrt{30}}{4}.$$ 

Ответ: $|I|\leq\frac{\sqrt{30}}{4}.$

 

6.374. Найти производную следующей функции: $\Phi(x)=\int\limits_0^x\frac{\sin t}{t}\,dt.$

Решение.

Пользуемся свойством 10: 

$$\Phi'(x)=f(x)=\frac{\sin x}{x}.$$

Ответ: $\frac{\sin x}{x}.$

 

6.376. Найти производную следующей функции: $\Phi(x)=\int\limits_x^0\frac{dt}{\sqrt{1+t^3}}.$ 

Решение.

$\Phi(x)=\int\limits_x^0\frac{dt}{\sqrt{1+t^3}}=-\int\limits_0^x\frac{dt}{\sqrt{1+t^3}}.$ 

Пользуемся свойством 10: 

$$\Phi'(x)=f(x)=-\frac{1}{\sqrt{1+x^3}}.$$ 

Ответ: $-\frac{1}{\sqrt{1+x^3}}.$

 

mathportal.net

Определенный интеграл. Примеры решений


Определенный интеграл. Примеры решений

И снова здравствуйте. На данном уроке мы подробно разберем такую замечательную вещь, как определенный интеграл. На этот раз вступление будет кратким. Всё. Потому что снежная метель за окном.

 Для того чтобы научиться решать определенные интегралы необходимо:

1) Уметь находить неопределенные интегралы.

2) Уметь вычислить определенный интеграл.

Как видите, для того чтобы освоить определенный интеграл, нужно достаточно хорошо ориентироваться в «обыкновенных» неопределенных интегралах. Поэтому если вы только-только начинаете погружаться в интегральное исчисление, и чайник еще совсем не закипел, то лучше начать с урока Неопределенный интеграл. Примеры решений.

В общем виде определенный интеграл записывается так:

Что прибавилось по сравнению с неопределенным интегралом? Прибавились пределы интегрирования.

Нижний предел интегрирования стандартно обозначается буквой .
Верхний предел интегрирования стандартно обозначается буквой .
Отрезок  называется отрезком интегрирования.

Прежде чем мы перейдем к практическим примерам, небольшое «факью» по определенному интегралу.

^  Я бы мог вам рассказать про диаметр разбиения отрезка, предел интегральных сумм и т.д., но урок носит практический характер. Поэтому я скажу, что определенный интеграл – это ЧИСЛО. Да-да, самое что ни на есть обычное число.

^  Есть. И очень хороший. Самая популярная задача – вычисление площади с помощью определенного интеграла.

Что значит решить определенный интеграл? Решить определенный интеграл – это значит, найти число.

^ С помощью знакомой со школы формулы Ньютона-Лейбница:

Формулу лучше переписать на отдельный листочек, она должна быть перед глазами на протяжении всего урока.

Этапы решения определенного интеграла следующие:

1) Сначала находим первообразную функцию  (неопределенный интеграл). Обратите внимание, что константа  в определенном интеграле никогда не добавляется. Обозначение   является чисто техническим, и вертикальная палочка не несет никакого математического смысла, по сути – это просто отчёркивание. Зачем нужна сама запись ?  Подготовка для применения формулы Ньютона-Лейбница.

2) Подставляем значение верхнего предела в первообразную функцию: .

3) Подставляем значение нижнего предела в первообразную функцию: .

4) Рассчитываем (без ошибок!) разность , то есть, находим число.

Готово.

Всегда ли существует определенный интеграл? Нет, не всегда.

Например, интеграла  не существует, поскольку отрезок интегрирования  не входит в область определения подынтегральной функции (значения под квадратным корнем не могут быть отрицательными). А вот менее очевидный пример: . Такого интеграла тоже не существует, так как в точках ,  отрезка  не существует тангенса. Кстати, кто еще не прочитал методический материал Графики и основные свойства элементарных функций – самое время сделать это сейчас. Будет здорово помогать на протяжении всего курса высшей математики.  

Для того чтобы определенный интеграл вообще существовал, необходимо чтобы подынтегральная функция была непрерывной на отрезке интегрирования.

Из вышесказанного следует первая важная рекомендация: перед тем, как приступить к решению ЛЮБОГО определенного интеграла, нужно убедиться в том, что подынтегральная функция непрерывна на отрезке интегрирования. По студенческой молодости у меня неоднократно бывал казус, когда я подолгу мучался с нахождением трудной первообразной, а когда наконец-то ее находил, то ломал голову еще над одним вопросом: «что за ерунда получилась?». В упрощенном варианте ситуация выглядит примерно так:

???! Нельзя подставлять отрицательные числа под корень! Что за фигня?! Изначальная невнимательность.

Если для решения (в контрольной работе, на зачете, экзамене) Вам предложен  несуществующий интеграл вроде , то нужно дать ответ, что интеграла не существует и обосновать – почему.

^  Может. И отрицательному числу. И нулю. Может даже получиться бесконечность, но это уже будетнесобственный интеграл, коим отведена отдельная лекция.

^ Может, и такая ситуация реально встречается на практике.

 –  интеграл преспокойно вычисляется по формуле Ньютона-Лейбница.

Без чего не обходится высшая математика? Конечно же, без всевозможных свойств. Поэтому рассмотрим некоторые свойства определенного интеграла.

^

Например, в определенном интеграле перед интегрированием  целесообразно поменять пределы интегрирования на «привычный» порядок:

 – в таком виде интегрировать  значительно удобнее.

Как и для неопределенного интеграла, для определенного интеграла справедливы свойства линейности:

 – это справедливо не только для двух, но и для любого количества функций.

В определенном интеграле можно проводить замену переменной интегрирования, правда, по сравнению с неопределенным интегралом тут есть своя специфика, о которой мы еще поговорим.

Для определенного интеграла справедлива формула интегрирования по частям:

Пример 1

Вычислить определенный интеграл

Решение:

(1) Выносим константу за знак интеграла.

(2) Интегрируем по таблице с помощью самой популярной формулы . Появившуюся константу  целесообразно отделить от  и вынести за скобку. Делать это не обязательно, но желательно – зачем лишние вычисления?

(3) Используем формулу Ньютона-Лейбница . Сначала подставляем в  верхний предел, затем – нижний предел. Проводим дальнейшие вычисления и получаем окончательный ответ.

Пример 2

Вычислить определенный интеграл

Это пример для самостоятельно решения, решение и ответ в конце урока.

Немного усложняем задачу:

Пример 3

Вычислить определенный интеграл

Решение:

(1) Используем свойства линейности определенного интеграла.

(2) Интегрируем по таблице, при этом все константы выносим – они не будут участвовать в подстановке верхнего и нижнего предела.

(3) Для каждого из трёх слагаемых применяем формулу Ньютона-Лейбница:

СЛАБОЕ ЗВЕНО в определенном интеграле – это ошибки вычислений и часто встречающаяся ПУТАНИЦА В ЗНАКАХ. Будьте внимательны! Особое внимание заостряю на третьем слагаемом:  – первое место в хит-параде ошибок по невнимательности, очень часто машинально пишут  (особенно, когда подстановка верхнего и нижнего предела проводится устно и не расписывается так подробно). Еще раз внимательно изучите вышерассмотренный пример.

Следует заметить, что рассмотренный способ решения определенного интеграла – не единственный. При определенном опыте, решение можно значительно сократить. Например, я сам привык решать подобные интегралы так:

Здесь я устно использовал правила линейности, устно проинтегрировал по таблице. У меня получилась всего одна скобка с отчёркиванием пределов:  (в отличие от трёх скобок в первом способе). И в «целиковую» первообразную функцию, я сначала подставил сначала 4, затем –2, опять же выполнив все действия в уме.

Какие недостатки у короткого способа решения? Здесь всё не очень хорошо с точки зрения рациональности вычислений, но лично мне всё равно – обыкновенные дроби я считаю на калькуляторе.
Кроме того, существует повышенный риск допустить ошибку в вычислениях, таким образом,  студенту-чайнику лучше использовать первый способ, при «моём» способе решения точно где-нибудь потеряется знак.

Несомненными преимуществами второго способа является быстрота решения, компактность записи и тот факт, что первообразная  находится в одной скобке.

^

Так, применительно к рассматриваемому примеру: перед тем, как в первообразную функцию   подставлять верхний и нижний пределы, желательно на черновике проверить, а правильно ли вообще найден неопределенный интеграл? Дифференцируем:

Получена исходная подынтегральная функция, значит, неопределенный интеграл найден верно. Теперь можно и формулу Ньютона-Лейбница применить.

^

Пример 4

Вычислить определенный интеграл

Это пример для самостоятельно решения. Попробуйте решить его коротким и подробным способом.

^

Для определенного интеграла справедливы все типы замен, что и для неопределенного интеграла. Таким образом, если с заменами у Вас не очень, следует внимательно ознакомиться с уроком Метод замены в неопределенном интеграле.

В этом параграфе нет ничего страшного или сложного. Единственная новизна состоит в вопросе, как поменять пределы интегрирования при замене.

В примерах я постараюсь привести такие типы замен, которые еще нигде не встречались на сайте.

Пример 5

Вычислить определенный интеграл

Главный вопрос здесь вовсе не в определенном интеграле, а в том, как правильно провести замену. Смотрим в таблицу интегралов и прикидываем, на что у нас больше всего похожа подынтегральная функция? Очевидно, что на длинный логарифм:  . Но есть одна неувязочка, в табличном интеграле под корнем , а в нашем – «икс» в четвёртой степени. Из рассуждений следует и идея замены – неплохо бы нашу четвертую степень как-нибудь превратить в квадрат. Это реально.

Сначала готовим наш интеграл к замене:

Из вышеуказанных соображений совершенно естественно напрашивается замена: 
Таким образом, в знаменателе будет всё хорошо: .
Выясняем, во что превратится оставшаяся часть  подынтегрального выражения, для этого находим дифференциал :

 

По сравнению с заменой в неопределенном интеграле у нас добавляется дополнительный этап.

Находим новые переделы интегрирования.

Это достаточно просто. Смотрим на нашу замену  и старые пределы интегрирования , .

Сначала подставляем в выражение замены  нижний предел интегрирования, то есть, ноль:

Потом подставляем в выражение замены  верхний предел интегрирования, то есть, корень из трёх:

Готово. И всего-то лишь…

Продолжаем решение.

(1) В соответствии с заменой записываем новый интеграл с новыми пределами интегрирования.

(2) Это простейший табличный интеграл, интегрируем по таблице. Константу  лучше оставить за скобками (можно этого и не делать), чтобы она не мешалась в дальнейших вычислениях. Справа отчеркиваем линию с указанием новых пределов интегрирования  – это подготовка для применения формулы Ньютона-Лейбница.

(3) Используем формулу Ньютона-Лейбница .

Ответ стремимся записать в максимально компактном виде, здесь я использовал свойства логарифмов.

Ещё одно отличие от неопределенного интеграла состоит в том, что, после того, как мы провели замену, никаких обратных замен проводить не надо.

А сейчас пара примеров для самостоятельного решения. Какие замены проводить – постарайтесь догадаться самостоятельно.

Пример 6

Вычислить определенный интеграл

Пример 7

Вычислить определенный интеграл

Это примеры для самостоятельного решения. Решения и ответы в конце урока.

^

Здесь новизны еще меньше. Все выкладки статьи Интегрирование по частям в неопределенном интеграле в полной мере справедливы и для определенного интеграла.
Плюсом идёт только одна деталь, в формуле интегрирования по частям добавляются пределы интегрирования:

Формулу Ньютона-Лейбница здесь необходимо применить дважды: для произведения   и, после того, как мы возьмем интеграл .

Тип интеграла для примера я опять подобрал такой, который еще нигде не встречался на сайте. Пример не самый простой, но очень и очень познавательный.

Пример 8

Вычислить определенный интеграл

Решаем.

Интегрируем по частям:

У кого возникли трудности с интегралом , загляните на урок Интегралы от тригонометрических функций, там он подробно разобран.

(1) Записываем решение в соответствии с формулой интегрирования по частям.

(2) Для произведения применяем формулу Ньютона-Лейбница. Для оставшегося интеграла используем свойства линейности, разделяя его на два интеграла. Не путаемся в знаках!

(3) Берем два оставшихся интеграла. Интеграл  также разобран на уроке Интегралы от тригонометрических функций

(4) Применяем формулу Ньютона-Лейбница для двух найденных первообразных.

Далее ответ доводится «до ума». Повторюсь, будьте ПРЕДЕЛЬНО ВНИМАТЕЛЬНЫ при подстановках и заключительных вычислениях. Здесь допускают ошибки чаще всего.

Если честно, я недолюбливаю формулу  и, по возможности, … обхожусь вообще без нее! Рассмотрим второй способ решения, с моей точки зрения он более рационален.

Вычислить определенный интеграл

На первом этапе я нахожу неопределенный интеграл:

Интегрируем по частям:


Первообразная функция найдена. Константу  в данном случае добавлять не имеет смысла.

В чём преимущество такого похода? Не нужно «таскать за собой» пределы интегрирования, действительно, замучаться можно десяток раз записывать мелкие значки пределов интегрирования

^  (обычно на черновике).

Тоже логично. Если я неправильно нашел первообразную функцию, то неправильно решу и определенный интеграл. Это лучше выяснить немедленно, дифференцируем ответ:

Получена исходная подынтегральная функция, значит, первообразная функция найдена верна.

Третий этап – применение формулы Ньютона-Лейбница.

И здесь есть существенная выгода! В «моём» способе решения гораздо меньший риск запутаться в подстановках и вычислениях – формула Ньютона-Лейбница применяется всего лишь один раз. Если чайник решит подобный интеграл по формуле  (первым способом), то стопудово где-нибудь допустит ошибку.

^ .

Уважаемый студент, распечатай и сохрани:

Что делать, если дан определенный интеграл, который кажется сложным или не сразу понятно, как его решать?

1) Сначала находим неопределенный интеграл (первообразную функцию). Если на первом же этапе случился облом, дальше рыпаться с Ньютоном и Лейбницем бессмысленно. Путь только один – повышать свой уровень знаний и навыков в решении неопределенных интегралов.

2) Проверяем найденную первообразную функцию дифференцированием. Если она найдена неверно, третий шаг будет напрасной тратой времени.

3) Используем формулу Ньютона-Лейбница. Все вычисления проводим ПРЕДЕЛЬНО ВНИМАТЕЛЬНО  –  тут самое слабое звено задания.

И, на закуску, интеграл для самостоятельного решения.

Пример 9

Вычислить определенный интеграл

Решение и ответ где-то рядом.

Следующий рекомендуемый урок по теме – Как вычислить площадь фигуры с помощью определенного интеграла? Там речь пойдет о геометрическом смысле определенного интеграла. Дополнительные материалы по определенному интегралу также можно найти в статье Эффективные методы вычисления определенных интегралов. Данный урок содержит ряд очень важных технических приёмов и позволит существенно повысить навыки вычисления определенного интеграла.

Желаю успехов!

Решения и ответы:

Пример 2: Решение:

Пример 4: Решение:

Пример 6: Решение:


Проведем замену переменной: ,
Новые переделы интегрирования:

Примечания: В рассмотренном интеграле – как раз тот случай, когда уместно применить свойство определенного интеграла 
^ Графики и свойства элементарных функций.

Пример 7: Решение:

Замена: 
Новые пределы интегрирования:

Пример 9: Решение:

Интегрируем по частям:
 

Вы точно их прорешали и получили такие ответы? 😉 И на старуху бывает порнуха.

Автор: Емелин Александр

izlov.ru

Оставить комментарий