Сила архимеда физика формула – Равновесие, закон Паскаля, сила Архимеда, математический и пружинный маятники, механические волны, звук | ЕГЭ по физике

Закон Архимеда | Все формулы

Закон (Сила) Архимеда — На тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу вытесненной этим телом жидкости или газа.

В интегральной форме


Архимедова сила направлена всегда противоположно силе тяжести, поэтому вес тела в жидкости или газе всегда меньше веса этого тела в вакууме.

Если тело плавает на поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

Что касается тел, которые находятся в газе, например в воздухе, то для нахождения подъёмной силы (Силы Архимеда) нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

В отсутствие гравитационного поля (Сила тяготения), то есть в состоянии невесомости,

закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление конвекции (естественное перемещение воздуха в пространстве), поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами

В формуле мы использовали :

— Сила Архимеда

— Плотность жидкости

— Объем погруженного тела

— Ускорение свободного падения

— Давление в произвольной точке

xn--b1agsdjmeuf9e.xn--p1ai

Закон Архимеда, формула и примеры решений

Закон Архимеда, формула и определение

Рис.1. Возникновение выталкивающей силы

На рис.1 изображен брусок, погруженный в жидкость. Силы давления со стороны жидкости, действующие на боковые стенки бруска, уравновешивают друг друга. Силы, действующие на нижнее и верхнее основания бруска, определяются глубиной, на которой находятся соответствующие основания. Очевидно, что силы, действующие на нижнее основание бруска, больше. Таким образом, возникновение выталкивающей силы (силы Архимеда) обусловлено различием гидростатических давлений на нижнее и верхнее основания бруска.

Если в состоянии покоя вес тела , то при погружении в жидкость, его вес изменится и станет равным:

   

Приведенная формулировка закона Архимеда справедлива, если вся поверхность тела соприкасается с жидкостью или если тело плавает в жидкости, или если тело частично погружено в жидкость через свободную (не соприкасающуюся со стенками) поверхность жидкости. Если же часть поверхности тела плотно прилегает к стенке или дну сосуда так, что между ними нет прослойки жидкости, то закон Архимеда неприменим.

Закон Архимеда несправедлив в состоянии невесомости, так как в этом состоянии исчезает различие гидростатических давлений на разных глубинах и, следовательно, выталкивающая сила становится равной нулю.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Архимедова сила, формулы

Несмотря на явные различия свойств жидкостей и газов, во многих случаях их поведение определяется одними и теми же параметрами и уравнениями, что позволяет использовать единый подход к изучению свойств этих веществ.

В механике газы и жидкости рассматривают как сплошные среды. Предполагается, что молекулы вещества распределены непрерывно в занимаемой ими части пространства. При этом плотность газа значительно зависит от давления, в то время как для жидкости ситуация иная. Обычно при решении задач этим фактом пренебрегают, используя обобщенное понятие несжимаемой жидкости, плотность которой равномерна и постоянна.

Далее дадим понятие физической величине – давлению.

Определение 1

Давление определяется как нормальная сила $F$, действующая со стороны жидкости на единицу площади $S$.

$ρ = \frac{\Delta P}{\Delta S}$.

Замечание 1

Давление измеряется в паскалях. Один Па равен силе в 1 Н, действующей на единицу площади 1 кв. м.

В состояние равновесия давление жидкости или газа описывается законом Паскаля, согласно которому давление на поверхность жидкости, производимое внешними силами, передается жидкостью одинаково во всех направлениях.

При механическом равновесии, давление жидкости по горизонтали всегда одинаково; следовательно, свободная поверхность статичной жидкости всегда горизонтальна (кроме случаев соприкосновения со стенками сосуда). Если принять во внимание условие несжимаемости жидкости, то плотность рассматриваемой среды не зависит от давления.

Представим некоторый объем жидкости, ограниченный вертикальным цилиндром. Поперечное сечение столба жидкости обозначим $S$, его высоту $h$, плотность жидкости $ρ$, вес $P=ρgSh$. Тогда справедливо следующее:

$p = \frac{P}{S} = \frac{ρgSh}{S} = ρgh$,

где $p$ – давление на дно сосуда.

Отсюда следует, что давление меняется линейно, в зависимости от высоты. При этом $ρgh$ – гидростатическое давление, изменением которого и объясняется возникновение силы Архимеда.

Формулировка закона Архимеда

Закон Архимеда, один из основных законов гидростатики и аэростатики, гласит: на тело, погруженное в жидкость или газ, действует выталкивающая или подъемная сила, равная весу объема жидкости или газа, вытесненного частью тела, погруженной в жидкость или газ.

Замечание 2

Возникновение Архимедовой силы связано с тем, что среда – жидкость или газ – стремится занять пространство, отнятое погруженным в нее телом; при этом тело выталкивается из среды.

Отсюда и второе название для этого явление – выталкивающая или гидростатическая подъемная сила.

Выталкивающая сила не зависит от формы тела, также как и от состава тела и прочих его характеристик.

Возникновение Архимедовой силы обусловлено разностью давления среды на разных глубинах. Например, давление на нижние слои воды всегда больше, чем на верхние слои.

Проявление силы Архимеда возможно лишь при наличии тяжести. Так, например, на Луне выталкивающая сила будет в шесть раз меньше, чем на Земле для тел равных объемов.

Возникновение Силы Архимеда

Представим себе любую жидкую среду, например, обычную воду. Мысленно выделим произвольный объем воды замкнутой поверхностью $S$. Поскольку вся жидкость по условию находится в механическом равновесии, выделенный нами объем также статичен. Это означает, что равнодействующая и момент внешних сил, воздействующих на этот ограниченный объем, принимают нулевые значения. Внешние силы в данном случае – вес ограниченного объема воды и давление окружающей жидкости на внешнюю поверхность $S$. При этом получается, что равнодействующая $F$ сил гидростатического давления, испытываемого поверхностью $S$, равна весу того объема жидкости, который был ограничен поверхностью $S$. Для того чтобы полный момент внешних сил обратился в нуль, равнодействующая $F$ должна быть направлена вверх и проходить через центр масс выделенного объема жидкости.

Теперь обозначим, что вместо этой условного ограниченной жидкости в среду было помещено любое твердое тело соответствующего объема. Если соблюдается условие механического равновесия, то со стороны окружающей среды никаких изменений не произойдет, в том числе останется прежним давление, действующее на поверхность $S$. Таким образом мы можем дать более точную формулировку закона Архимеда:

Замечание 3

Если тело, погруженное в жидкость, находится в механическом равновесии, то со стороны окружающей его среды на него действует выталкивающая сила гидростатического давления, численно равная весу среды в объеме, вытесненным телом.

Выталкивающая сила направлена вверх и проходит через центр масс тела. Итак, согласно закону Архимеда для выталкивающей силы выполняется:

$F_A = ρgV$, где:

  • $V_A$ – выталкивающая сила, H;
  • $ρ$ – плотность жидкости или газа, $кг/м^3$;
  • $V$ – объем тела, погруженного в среду, $м^3$;
  • $g$ – ускорение свободного падения, $м/с^2$.

Выталкивающая сила, действующая на тело, противоположна по направлению силе тяжести, поэтому поведение погруженного тела в среде зависит от соотношения модулей силы тяжести $F_T$ и Архимедовой силы $F_A$. Здесь возможны три случая:

  1. $F_T$ > $F_A$. Сила тяжести превышает выталкивающую силу, следовательно, тело тонет/падает;
  2. $F_T$ = $F_A$. Сила тяжести уравнивается с выталкивающей силой, поэтому тело «зависает» в жидкости;
  3. $F_T$

spravochnick.ru

Закон Архимеда | Все формулы

Закон (Сила) Архимеда — На тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу вытесненной этим телом жидкости или газа.

В интегральной форме


Архимедова сила направлена всегда противоположно силе тяжести, поэтому вес тела в жидкости или газе всегда меньше веса этого тела в вакууме.

Если тело плавает на поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

Что касается тел, которые находятся в газе, например в воздухе, то для нахождения подъёмной силы (Силы Архимеда) нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

В отсутствие гравитационного поля (Сила тяготения), то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление конвекции (естественное перемещение воздуха в пространстве), поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами

В формуле мы использовали :

— Сила Архимеда

— Плотность жидкости

— Объем погруженного тела

— Ускорение свободного падения

— Давление в произвольной точке

xn--b1agsdjmeuf9e.xn--p1ai

определение и формула :: SYL.ru

Часто научные открытия становятся следствием простой случайности. Но только люди с подготовленным умом могут оценить важность простого совпадения и сделать из него далеко идущие выводы. Именно благодаря цепи случайных событий в физике появился закон Архимеда, объясняющий поведение тел в воде.

Предание

В Сиракузах об Архимеде слагали легенды. Однажды правитель этого славного города усомнился в честности своего ювелира. В короне, изготовленной для правителя, должно было содержаться определенное количество золота. Проверить этот факт поручили Архимеду.

Архимед установил, что в воздухе и в воде тела имеют разный вес, причем разность прямо пропорциональна плотности измеряемого тела. Измерив вес короны в воздухе и в воде, и проведя аналогичный опыт с целым куском золота, Архимед доказал, что в изготовленной короне существовала примесь более легкого металла. По преданию, Архимед сделал это открытие в ванне, наблюдая за выплеснувшейся водой. Что стало дальше с нечестным ювелиром, история умалчивает, но умозаключение сиракузского ученого легло в основу одного из важнейших законов физики, который известен нам, как закон Архимеда.

Формулировка

Результаты своих опытов Архимед изложил в труде «О плавающих телах», который, к сожалению, дошел до наших дней лишь в виде отрывков. Современная физика закон Архимеда описывает, как совокупную силу, действующую на тело, погруженное в жидкость. Выталкивающая сила тела в жидкости направлена вверх; ее абсолютная величина равна весу вытесненной жидкости.

Действие жидкостей и газов на погруженное тело

Любой предмет, погруженный в жидкость, испытывает на себе силы давления. В каждой точке поверхности тела данные силы направлены перпендикулярно поверхности тела. Если бы эти они были одинаковы, тело испытывало бы только сжатие. Но силы давления увеличиваются пропорционально глубине, поэтому нижняя поверхность тела испытывает больше сжатие, чем верхняя. Можно рассмотреть и сложить все силы, действующие на тело в воде. Итоговый вектор их направления будет устремлен вверх, происходит выталкивание тела из жидкости. Величину этих сил определяет закон Архимеда. Плавание тел всецело основывается на этом законе и на различных следствиях из него. Архимедовы силы действуют и в газах. Именно благодаря этим силам выталкивания в небе летают дирижабли и воздушные шары: благодаря воздухоизмещению они становятся легче воздуха.

Физическая формула

Наглядно силу Архимеда можно продемонстрировать простым взвешиванием. Взвешивая учебную гирю в вакууме, в воздухе и в воде можно видеть, что вес ее существенно меняется. В вакууме вес гири один, в воздухе – чуть ниже, а в воде – еще ниже.

Если принять вес тела в вакууме за Ро, то его вес в воздушной среде может быть описан такой формулой: Рво – Fа;

здесь Ро – вес в вакууме;

Fа – сила Архимеда.

Как видно из рисунка, любые действия со взвешиванием в воде значительно облегчают тело, поэтому в таких случаях сила Архимеда обязательно должна учитываться.

Для воздуха эта разность ничтожна, поэтому обычно вес тела, погруженного в воздушную среду, описывается стандартной формулой.

Плотность среды и сила Архимеда

Анализируя простейшие опыты с весом тела в различных средах, можно прийти к выводу, что вес тела в различных средах зависит от массы объекта и плотности среды погружения. Причем чем плотнее среда, тем больше сила Архимеда. Закон Архимеда увязал эту зависимость и плотность жидкости или газа отражается в его итоговой формуле. Что же еще влияет на данную силу? Другими словами, от каких характеристик зависит закон Архимеда?

Формула

Архимедову силу и силы, которые на нее влияют, можно определить при помощи простых логических умозаключений. Предположим, что тело определенного объема, погруженное в жидкость, состоит из тоже же самой жидкости, в которую оно погружено. Это предположение не противоречит никаким другим предпосылкам. Ведь силы, действующие на тело, никоим образом не зависят от плотности этого тела. В этом случае тело, скорее всего, будет находиться в равновесии, а сила выталкивания будет компенсироваться силой тяжести.

Таким образом, равновесие тела в воде будет описываться так.

Но сила тяжести, из условия, равна весу жидкости, которую она вытесняет: масса жидкости равна произведению плотности на объём. Подставляя известные величины, можно узнать вес тела в жидкости. Этот параметр описывается в виде ρV * g.

Подставляя известные значения, получаем:

F = ρV * g.

Это и есть закон Архимеда.

Формула, выведенная нами, описывает плотность, как плотность исследуемого тела. Но в начальных условиях было указано, что плотность тела идентична плотности окружающей его жидкости. Таким образом, в данную формулу можно смело подставлять значение плотности жидкости. Визуальное наблюдение, согласно которому в более плотной среде сила выталкивания больше, получило теоретическое обоснование.

Применение закона Архимеда

Первые опыты, демонстрирующие закон Архимеда, известны еще со школьной скамьи. Металлическая пластинка тонет в воде, но, сложенная в виде коробочки, может не только удерживаться на плаву, но и нести на себе определенный груз. Это правило – важнейший вывод из правила Архимеда, оно определяет возможность построения речных и морских судов с учетом их максимальной вместимости (водоизмещения). Ведь плотность морской и пресной воды различна и суда, и подводные лодки должны учитывать перепады этого параметра при вхождении в устья рек. Неправильный расчет может привести к катастрофе – судно сядет на мель, и для его подъема потребуются значительные усилия.

Закон Архимеда необходим и подводникам. Дело в том, что плотность морской воды меняет свое значение в зависимости от глубины погружения. Правильный расчет плотности позволит подводникам правильно рассчитать давление воздуха внутри скафандра, что повлияет на маневренность водолаза и обеспечит его безопасное погружение и всплытие. Закон Архимеда должен учитываться также и при глубоководном бурении, огромные буровые вышки теряют до 50% своего веса, что делает их транспортировку и эксплуатацию менее затратным мероприятием.

www.syl.ru

Закон Архимеда | Физика

Проделаем опыт (рис. 133). Подвесим к пружине 1 небольшое ведерко 2 и тело цилиндрической формы 3. Отметив положение стрелки-указателя на штативе (рис. 133, а), поместим тело в сосуд, наполненный жидкостью до уровня отливной трубки. При этом часть жидкости, объем которой равен объему тела, выльется из сосуда в находящийся рядом стакан (рис. 133, б). Одновременно с этим вес тела в жидкости уменьшится и указатель пружины переместится вверх.Из предыдущего параграфа мы знаем, что вес тела в жидкости уменьшается на величину, равную архимедовой (выталкивающей) силе. Связана ли эта величина с количеством вытесненной телом жидкости? Чтобы выяснить это, перельем эту жидкость из стакана в ведерко 2. Мы увидим, как стрелка-указатель снова возвратится к своему прежнему положению (рис. 133, в). Это означает, что вытесненная телом жидкость весит столько же, сколько теряет в своем весе погруженное в жидкость тело. Но вес тела в жидкости меньше веса того же тела в воздухе на величину, равную выталкивающей силе. Поэтому окончательный вывод, к которому мы приходим, можно сформулировать следующим образом:

Выталкивающая сила, действующая на погруженное в жидкость тело, равна весу жидкости, вытесненной этим телом.

Этот закон был открыт Архимедом и потому носит его имя — закон Архимеда.

Мы установили этот закон опытным путем. Теперь докажем его теоретически. Для этого заметим, что выталкивающая сила (как равнодействующая всех сил давления, действующих со всех сторон на погруженное в жидкость тело) не зависит от того, из какого вещества сделано это тело. Если, например, в воде находится шарик, то давление окружающих слоев воды будет одним и тем же независимо от того, сделан ли этот шарик из пластмассы, стекла или стали. (Точно так же давление столба жидкости на дно сосуда не зависит от того, из какого материала изготовлено дно этого сосуда.) А раз так, то рассмотрим простейший случай, когда погруженное в жидкость тело состоит из той же жидкости, в которую оно погружено. Это (жидкое) тело, как и любая другая часть окружающей жидкости, будет, очевидно, находиться в равновесии. Поэтому приложенная к нему архимедова сила FА будет уравновешена действующей вниз силой тяжести mжg (где mж —масса жидкости в объеме данного тела):

    FA = mжg .     (47.1)

Но сила тяжести mжg равна весу вытесненной жидкости Рж. Таким образом, FA = Рж, что и требовалось доказать.

Формулу (47.1) можно переписать в другом виде. Учитывая, что масса жидкости mж равна произведению ее плотности ρж на объем Vж, получаем

     FA = ρж Vж g .      (47.2)

Через Vж здесь обозначен объем вытесненной жидкости. Этот объем равен объему той части тела, которая погружена в жидкость. Если тело погружено в жидкость целиком, то он совпадает с объемом V всего тела; если же тело погружено в жидкость частично, то он меньше объема V тела (рис. 134).Формула (47.2) остается справедливой и для архимедовой силы, действующей в газе; только в этом случае в нее следует подставлять плотность газа и объем вытесненного газа, а не жидкости.

С учетом вышеизложенного закон Архимеда в настоящее время формулируют следующим образом:

На всякое тело, погруженное в покоящуюся жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная произведению плотности жидкости (или газа), ускорения свободного падения и объема той части тела, которая погружена в жидкость (или газ).

1. Сформулируйте закон Архимеда в старой и современной (более общей) форме. 2. Имеются два шарика одинакового радиуса: деревянный и стальной. Одинаковая ли выталкивающая сила будет действовать на них при их полном погружении в воду? 3. Тело полностью погрузили сначала в чистую воду, а затем — в соленую. В какой воде на тело действовала большая выталкивающая сила? 4. К коромыслу весов подвешены два цилиндра одинаковой массы: свинцовый и алюминиевый. Весы находятся в равновесии. Нарушится ли равновесие весов, если оба цилиндра одновременно погрузить в воду? 5. К коромыслу весов подвешены два одинаковых по объему алюминиевых цилиндра. Нарушится ли равновесие весов, если один цилиндр погрузить в воду, а другой (одновременно с первым) — в спирт?

phscs.ru

Закон Архимеда — урок. Физика, 7 класс.

Силу, выталкивающую тело из жидкости или газа, называют архимедовой силой в честь древнегреческого учёного Архимеда, который впервые рассчитал её значение.

 

Опыт. Подвесим к пружине небольшое ведёрко и тело цилиндрической формы. Растяжение пружины отметим стрелкой на штативе (рис. A), она показывает вес тела в воздухе.

 

Подставим сосуд, наполненный жидкостью, до уровня отливной трубки (рис. B) и поместим в него цилиндр. 

 

После погружения цилиндра в жидкость часть жидкости, объём которой равен объёму тела, выливается из отливного сосуда в стакан. Указатель пружины поднимается вверх, пружина сокращается, показывая уменьшение веса тела в жидкости (рис. C).

 

На цилиндр (одновременно с силой тяжести) действует ещё и сила, выталкивающая его из жидкости. Если в ведёрко вылить жидкость из стакана, т.е. ту, которую вытеснило тело, то указатель пружины возвратится к своему начальному положению (рис. D).

 

Вывод: выталкивающая сила, действующая на погружённое в жидкость тело, равна весу жидкости, вытесненной этим телом. 
FА=Pж=mж⋅g

(Сила, выталкивающая тело из газа, также равна весу газа, взятого в объёме тела).

 

Формулу можно записать в другом виде.

Выразим массу жидкости, вытесняемую телом, через её плотность и объём тела, погружённого в жидкость, тогда получим:

FА=ρж⋅Vт⋅g.

Закон Архимеда. На всякое тело, погружённое в покоящуюся жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная произведению плотности жидкости (или газа), ускорения свободного падения и объёма той части тела, которая погружена в жидкость (или газ).

Обрати внимание!

Архимедова сила зависит от плотности жидкости, в которую погружено тело, и от объёма этого тела.

Закон Архимеда справедлив и для газа, но в формулу следует подставлять плотность газа и объём вытесненного газа, а не жидкости.

Источники:

Громов С.В. Физика: Учеб. для 7 кл. общеобразоват. учреждений/ Громов С.В., Родина Н.А. — 4-е изд.— М.: Просвещение, 2002. — 158 с.: ил.
Пёрышкин А.В. Физика. 7 кл.: учеб. для общеобразоват. учреждений, — 13-е изд., стереотип. — М.: Дрофа, 2009. — 192 с.: ил.

www.yaklass.ru

Оставить комментарий