Сила тяготения определение – Всемирное тяготение. Всемирное тяготение определение. Закон всемирного тяготения. Формула всемирного тяготения. Всемирная гравитационная постоянная

Закон всемирного тяготения и сила тяжести

Описание закона всемирного тяготения

Коэффициент — это гравитационная постоянная. В системе СИ гравитационная постоянная имеет значение:

   

Эта постоянная, как видно, очень мала, поэтому силы тяготения между телами, имеющими небольшие массы, тоже малы и практически не ощущаются. Однако движение космических тел полностью определяется гравитацией. Наличие всемирного тяготения или, другими словами, гравитационного взаимодействия объясняет, на чем «держатся» Земля и планеты, и почему они двигаются вокруг Солнца по определенным траекториям, а не улетают от него прочь. Закон всемирного тяготения позволяет определить многие характеристики небесных тел – массы планет, звезд, галактик и даже черных дыр. Этот закон позволяет с большой точностью рассчитать орбиты планет и создать математическую модель Вселенной.

С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).

Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.

Сила тяжести

Частным случаем проявления гравитационных сил является сила тяжести.

Сила тяжести всегда направлена вертикально вниз (по направлению к центру Земли).

Если на тело действует сила тяжести, то тело совершает свободное падение. Вид траектории движения зависит от направления и модуля начальной скорости.

С действием силы тяжести мы сталкиваемся каждый день. Камень, брошенный в горизонтальном направлении, через некоторое время оказывается на земле. Книга, выпущенная из рук, падает вниз. Подпрыгнув, человек не улетает в открытый космос, а опускается вниз, на землю.

Рассматривая свободное падение тела вблизи поверхности Земли как результат гравитационного взаимодействия этого тела с Землей, можно записать:

   

откуда ускорение свободного падения:

   

Ускорение свободного падения не зависит от массы тела, а зависит от высоты тела над Землей. Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим ускорение свободного падения зависит от широты местности: на полюсе оно немного больше, чем на экваторе и других широтах (на экваторе м/с , на Северном полюсе экваторе м/с .

Эта же формула позволяет найти ускорение свободного падения на поверхности любой планеты массой и радиусом .

Примеры решения задач

ru.solverbook.com

точная формула силы всемирного притяжения, определение гравитации

Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к движению тел.

Вконтакте

Facebook

Twitter

Google+

Мой мир

Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.

Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу, остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.

В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.

Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции.

Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.

Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к Солнцу, но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.

Задача движения

Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.

Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый шарик наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?

Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает потенциальной энергией? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?

Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.

Гравитация Ньютона

В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:

Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.

Важно! В законе притяжения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.

Для закона тяготения формула выглядит следующим образом:

,

где:

  • F – сила притяжения,
  • – массы,
  • r – расстояние,
  • G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).

Что же представляет собой вес, если только что мы рассмотрели силу притяжения?

Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:

.

Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:

.

Закон гравитационного взаимодействия

Вес и гравитация

Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное. Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас. Земля тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.

Насколько нам известно, сила тяжести равна:

P = mg,

где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с2).

Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.

Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:

.

Таким образом, поскольку F = mg:

.

Массы m сокращаются, и остается выражение для ускорения свободного падения:

.

Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса Земли и гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с2.

На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.

Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.

Примем для удобства массу человека: m = 100 кг. Тогда:

  • Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙106 м.
  • Масса Земли равна: M ≈ 6∙1024 кг.
  • Масса Солнца равна: Mc ≈ 2∙1030 кг.
  • Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙1010 м.

Гравитационное притяжение между человеком и Землей:

.

Данный результат довольно очевиден из более простого выражения для веса (P = mg).

Сила гравитационного притяжения между человеком и Солнцем:

.

Как видим, наша планета притягивает нас почти в 2000 раз сильнее.

Как найти силу притяжения между Землей и Солнцем? Следующим образом:

.

Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.

Первая космическая скорость

После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.

Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше.

Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с2, а почти м/с2. Именно по этой причине там настолько разряженный воздух, частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности.

Постараемся узнать, что такое космическая скорость.

Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.

Постараемся узнать численной значение этой величины для нашей планеты.

Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:

,

где h — высота тела над поверхностью, R — радиус Земли.

На орбите на тело действует центробежное ускорение , таким образом:

.

Массы сокращаются, получаем:

,

.

Данная скорость называется первой космической скоростью:

Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.

Первая космическая скорость

Вторая космическая скорость

Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей. Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.

Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва «разъединиться» с гравитационным полем планеты. Это не так: пара «Земля — Луна» находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.

Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету.

Вторая космическая скорость

Запишем закон сохранения энергии:

,

где в правой части равенства стоит работа силы тяжести: A = Fs.

Отсюда получаем, что вторая космическая скорость равна:

Таким образом, вторая космическая скорость в   раз больше первой:

.

Закон всемирного тяготения. Физика 9 класс

 

Закон Всемирного тяготения.

Вывод

Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.

uchim.guru

Сила тяжести и сила всемирного тяготения

Сила тяжести и сила всемирного тяготения

«Физика — 10 класс»

Почему Луна движется вокруг Земли?

Что будет, если Луна остановится?

Почему планеты обращаются вокруг Солнца?

В главе 1 подробно говорилось о том, что земной шар сообщает всем телам у поверхности Земли одно и то же ускорение — ускорение свободного падения. Но если земной шар сообщает телу ускорение, то согласно второму закону Ньютона он действует на тело с некоторой силой. Силу, с которой Земля действует на тело, называют силой тяжести. Сначала найдём эту силу, а затем и рассмотрим силу всемирного тяготения.

Ускорение по модулю определяется из второго закона Ньютона:

В общем случае оно зависит от силы, действующей на тело, и его массы. Так как ускорение свободного падения не зависит от массы, то ясно, что сила тяжести должна быть пропорциональна массе:

= m         (3.1)

Физическая величина — ускорение свободного падения, оно постоянно для всех тел.

На основе формулы F = mg можно указать простой и практически удобный метод измерения масс тел путём сравнения массы данного тела с эталоном единицы массы. Отношение масс двух тел равно отношению сил тяжести, действующих на тела:

Это значит, что массы тел одинаковы, если одинаковы действующие на них силы тяжести.

На этом основано определение масс путём взвешивания на пружинных или рычажных весах. Добиваясь того, чтобы сила давления тела на чашку весов, равная силе тяжести, приложенной к телу, была уравновешена силой давления гирь на другую чашку весов, равной силе тяжести, приложенной к гирям, мы тем самым определяем массу тела.

Сила тяжести, действующая на данное тело вблизи Земли, может считаться постоянной лишь на определенной широте у поверхности Земли. Если тело поднять или перенести в место с другой широтой, то ускорение свободного падения, а следовательно, и сила тяжести изменятся.

Сила всемирного тяготения.

Ньютон был первым, кто строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила всемирного тяготения, действующая между любыми телами Вселенной.

Ньютон пришёл к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы (рис. 3.1) с определённой скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался бы вокруг неё подобно тому, как планеты описывают в небесном пространстве свои орбиты.

Итак, по мнению Ньютона, движение Луны вокруг Земли или движение планет вокруг Солнца — это тоже свободное падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого падения (идёт ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) служит сила тяготения.

Земля сообщает Луне ускорение, которое не зависит от массы Луны и, как показали расчёты, в (60)2 раз меньше ускорения тел на Земле. Расстояние до Луны в 60 раз больше радиуса Земли. Отсюда Ньютон сделал вывод, что ускорение и соответственно сила притяжения тел к Земле обратно пропорциональны квадрату расстояния до центра Земли:

Также Ньютон установил, что Солнце сообщает всем планетам ускорение, обратно пропорциональное квадрату расстояния от планет до Солнца.

Закон всемирного тяготения.

Можно лишь догадываться о волнении, охватившем Ньютона, когда он пришёл к великому результату: одна и та же причина вызывает явления поразительно широкого диапазона — от падения брошенного камня на землю до движения огромных космических тел.

Ньютон нашёл эту причину и смог точно выразить её в виде одной формулы — закона всемирного тяготения.

Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:

«Тяготение существует ко всем телам вообще и пропорционально массе каждого из них… все планеты тяготеют друг к другу…» И. Ньютон

Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причём эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

Закон всемирного тяготения:

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности G называется гравитационной постоянной.

Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при массах m1 = m2 = 1 кг и расстоянии r = 1 м получаем G = F (численно).

Нужно иметь в виду, что закон всемирного тяготения (3.4) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.2, а).

Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками, рис. 3.2, б), также взаимодействуют с силой, определяемой формулой (3.4). В этом случае r — расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. Такие силы называются центральными. Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R ≈ 6400 км).

Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (3.4), имея в виду, что r есть расстояние от данного тела до центра Земли.

Брошенный на Землю камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадёт наконец на Землю. Если его бросить с большей скоростью, то он упадёт дальше». И. Ньютон

Определение гравитационной постоянной.

Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определённое наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения даёт новую связь между известными величинами с определёнными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ: Н • м2/кг2 = м3/(кг • с2).

Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами.

Оцените силу гравитационного взаимодействия между вами и вашим соседом по парте. Считайте, что вы нахояитесь на расстоянии r = 0,5 м.

Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы — самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10-9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 3.3. На тонкой упругой нити подвешено лёгкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжёлых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить до тех пор, пока возникающая сила упругости не станет равна гравитационной силе. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.

Из этих опытов было получено следующее значение для гравитационной постоянной:

G = 6,67 • 10-11 Н • м2/кг2.

Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большого значения. Например, Земля и Луна притягиваются друг к другу с силой F ≈ 2 • 1020 Н.

Зависимость ускорения свободного падения тел от географической широты.

Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до её поверхности у полюсов меньше, чем на экваторе. Другой причиной является вращение Земли.

Равенство инертной и гравитационной масс.

Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие её на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

В теории Ньютона масса является источником поля тяготения. Мы находимся в поле тяготения Земли. В то же время мы также являемся источниками поля тяготения, но в силу того, что наша масса существенно меньше массы Земли, наше поле намного слабее и окружающие предметы на него не реагируют.

Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определённое ускорение под действием данной силы. Это инертная масса mи.

Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Масса, определяющая способность тел притягиваться друг к другу, — гравитационная масса mr.

Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что

mи = mr.         (3.5)

Равенство (3.5) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Динамика — Физика, учебник для 10 класса — Класс!ная физика


Основное утверждение механики —
Сила —
Инертность тела. Масса. Единица массы —
Первый закон Ньютона —
Второй закон Ньютона —
Принцип суперпозиции сил —
Примеры решения задач по теме «Второй закон Ньютона» —
Третий закон Ньютона —
Геоцентрическая система отсчёта —
Принцип относительности Галилея. Инвариантные и относительные величины —
Силы в природе —
Сила тяжести и сила всемирного тяготения —
Сила тяжести на других планетах —
Примеры решения задач по теме «Закон всемирного тяготения» —
Первая космическая скорость —
Примеры решения задач по теме «Первая космическая скорость» —
Вес. Невесомость —
Деформация и силы упругости. Закон Гука —
Примеры решения задач по теме «Силы упругости. Закон Гука» —
Силы трения —
Примеры решения задач по теме «Силы трения» —
Примеры решения задач по теме «Силы трения» (продолжение) —

class-fizika.ru

Сила тяготения

Любые два тела притягиваются друг к другу по той лишь одной причине, что они имеют массу. Эта сила притяжения называется силой тяготения или гравитационной силой.

1.11.1Закон всемирного тяготения

Гравитационное взаимодействие любых двух тел во Вселенной подчиняется достаточно простому закону.

Закон всемирного тяготения. Две материальные точки массами m1 и m2 притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния r между ними:

Коэффициент пропорциональности G называется гравитационной постоянной. Это фундаментальная константа, и её численное значение было определено на основе эксперимента Генри Кавендиша:

G = 6;67 10 11 Н м2 :

кг2 Порядок величины гравитационной постоянной объясняет, почему мы не замечаем взаим-

ного притяжения окружающих нас предметов: гравитационные силы оказываются слишком малыми при небольших массах тел. Мы наблюдаем лишь притяжение предметов к Земле, масса которой грандиозна и равна примерно 6 1024 кг.

Формула (1.58), будучи справедливой для материальных точек, перестаёт быть верной, если размерами тел пренебречь нельзя. Имеются, однако, два важных для практики исключения.

1.Формула (1.58) справедлива, если тела являются однородными шарами. Тогда r расстояние между их центрами. Сила притяжения направлена вдоль прямой, соединяющей центры шаров.

2.Формула (1.58) справедлива, если одно из тел однородный шар, а другое материальная точка, находящаяся вне шара. Тогда r расстояние от точки до центра шара. Сила притяжения направлена вдоль прямой, соединяющей точку с центром шара.

Второй случай особенно важен, так как позволяет применять формулу (1.58) для силы притяжения тела (например, искусственного спутника) к планете.

1.11.2Сила тяжести

Предположим, что тело находится вблизи некоторой планеты. Сила тяжести это сила гравитационного притяжения, действующая на тело со стороны планеты. В подавляющем большинстве случаев сила тяжести это сила притяжения к Земле.

Пусть тело массы m лежит на поверхности Земли. На тело действует сила тяжести mg, где g ускорение свободного падения вблизи поверхности Земли. С другой стороны, считая Землю однородным шаром, можно выразить силу тяжести по закону всемирного тяготения:

mg = G

Mm

;

 

 

R2

где M масса Земли, R 6400 км радиус Земли. Отсюда получаем формулу для ускорения

свободного падения на поверхности Земли:

 

 

 

g = G

M

:

(1.59)

 

 

R2

 

studfiles.net

Сила тяготения

Любые два тела притягиваются друг к другу по той лишь одной причине, что они имеют массу. Эта сила притяжения называется силой тяготения или гравитационной силой.

1.11.1Закон всемирного тяготения

Гравитационное взаимодействие любых двух тел во Вселенной подчиняется достаточно простому закону.

Закон всемирного тяготения. Две материальные точки массами m1 и m2 притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния r между ними:

Коэффициент пропорциональности G называется гравитационной постоянной. Это фундаментальная константа, и её численное значение было определено на основе эксперимента Генри Кавендиша:

G = 6;67 10 11 Н м2 :

кг2 Порядок величины гравитационной постоянной объясняет, почему мы не замечаем взаим-

ного притяжения окружающих нас предметов: гравитационные силы оказываются слишком малыми при небольших массах тел. Мы наблюдаем лишь притяжение предметов к Земле, масса которой грандиозна и равна примерно 6 1024 кг.

Формула (1.58), будучи справедливой для материальных точек, перестаёт быть верной, если размерами тел пренебречь нельзя. Имеются, однако, два важных для практики исключения.

1.Формула (1.58) справедлива, если тела являются однородными шарами. Тогда r расстояние между их центрами. Сила притяжения направлена вдоль прямой, соединяющей центры шаров.

2.Формула (1.58) справедлива, если одно из тел однородный шар, а другое материальная точка, находящаяся вне шара. Тогда r расстояние от точки до центра шара. Сила притяжения направлена вдоль прямой, соединяющей точку с центром шара.

Второй случай особенно важен, так как позволяет применять формулу (1.58) для силы притяжения тела (например, искусственного спутника) к планете.

1.11.2Сила тяжести

Предположим, что тело находится вблизи некоторой планеты. Сила тяжести это сила гравитационного притяжения, действующая на тело со стороны планеты. В подавляющем большинстве случаев сила тяжести это сила притяжения к Земле.

Пусть тело массы m лежит на поверхности Земли. На тело действует сила тяжести mg, где g ускорение свободного падения вблизи поверхности Земли. С другой стороны, считая Землю однородным шаром, можно выразить силу тяжести по закону всемирного тяготения:

mg = G

Mm

;

 

 

R2

где M масса Земли, R 6400 км радиус Земли. Отсюда получаем формулу для ускорения

свободного падения на поверхности Земли:

 

 

 

g = G

M

:

(1.59)

 

 

R2

 

studfiles.net

Гравитационные силы — Великие физики

Гравитационная сила – это  сила, с которой притягиваются друг к другу тела определённой массы, находящиеся на определённом расстоянии друг от друга.



Английский учёный Исаак Ньютон в 1867 г. открыл закон всемирного тяготения. Это один из фундаментальных законов механики. Суть этого закона в следующем: любые две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Сила притяжения – первая сила, которую почувствовал человек. Это сила, с которой Земля воздействует на все тела, находящиеся на её поверхности. И эту силу любой человек ощущает как собственный вес.

Закон всемирного тяготения


Существует легенда, что закон всемирного тяготения Ньютон открыл совершенно случайно, гуляя вечером по саду своих родителей. Творческие люди постоянно находятся в поиске, а научные открытия — это не мгновенное озарение, а плод длительной умственной работы. Сидя под яблоней, Ньютон осмысливал очередную идею, и вдруг на голову ему упало яблоко. Ньютону было понятно, что яблоко упало в результате действия силы притяжения Земли. «Но почему не падает на Землю Луна? — задумался он. — Значит, на неё действует ещё какая-то сила, удерживающая её на орбите». Так был открыт знаменитый закон всемирного тяготения.

Учёные,  изучавшие до этого вращение небесных тел, считали, что небесные тела подчиняются каким-то совершенно другим законам. То есть, предполагалось, что существуют совершенно разные законы притяжения на поверхности Земли и в космосе.

Ньютон объединил эти предполагаемые виды гравитации. Анализируя законы Кеплера, описывающие движение планет, он пришёл к выводу, что сила притяжения возникает между любыми телами. То есть, и на яблоко, упавшее в саду, и на планеты в космосе действуют силы, подчиняющиеся одному закону – закону всемирного тяготения.

Ньютон установил, что законы Кеплера действуют только в том случае, если между планетами  существует сила притяжения. И эта сила прямо пропорциональна массам планет и обратно пропорциональная квадрату расстояния между ними.

Сила притяжения рассчитывается по формуле F=Gm1m2/r2


m1 – масса первого тела;

m2 – масса второго тела;

r – расстояние между телами;

G – коэффициент пропорциональности, который называют гравитационной постоянной или  постоянной всемирного тяготения.

Его значение определили экспериментально. G = 6,67·10-11 Нм2/кг2

Если две материальные точки с массой, равной единице массы, находятся на расстоянии, равном единице расстояния, то они притягиваются с силой, равной G.

Силы притяжения и есть гравитационные силы. Их называют ещё силами тяготения. Они подчинены закону всемирного тяготения и проявляются всюду, так как все тела имеют массу.


Сила тяжести



Гравитационная сила вблизи поверхности Земли – это сила, с которой все тела притягиваются к Земле. Её называют силой тяжести. Она считается постоянной, если расстояние тела от поверхности Земли мало по сравнению с радиусом Земли.

Так как сила тяжести, являющаяся гравитационной силой, зависит от массы и радиуса планеты, то на разных планетах она будет разной. Так как радиус Луны меньше радиуса Земли, то и сила притяжения на Луне меньше, чем на Земле в 6 раз. А на Юпитере, наоборот, сила тяжести в 2,4 раза больше силы тяжести на Земле. Но масса тела остаётся постоянной, независимо от того, где её измеряют.

Многие путают значение веса и силы тяжести, считая, что сила тяжести всегда равна весу. Но это не так.

Сила, с которой тело давит на опору или растягивает подвес, это и есть вес. Если убрать опору или подвес, тело начнёт падать с ускорением свободного падения под действием силы тяжести. Сила тяжести пропорциональна массе тела. Она вычисляется по формуле F = mg, где m – масса тела, g – ускорение свободного падения.

Вес тела может изменяться, а иногда и вообще исчезать. Представим себе, что мы находимся в лифте на верхнем этаже. Лифт стоит. В этот момент наш вес Р и сила тяжести F, с которой Земля притягивает нас, равны. Но как только лифт начал двигаться вниз с ускорением а, вес и сила тяжести уже не равны. Согласно второму закону Ньютона mg + P = ma.  Р=mg-ma.

Из формулы видно, что наш вес при движении вниз уменьшился.

В момент, когда лифт набрал скорость и стал двигаться без ускорения, наш вес снова равен силе тяжести. А когда лифт стал замедлять своё движение, ускорение а стало отрицательным, и вес увеличился. Наступает перегрузка.


А если тело двигается вниз с ускорением свободного падения, то вес и вовсе станет равным нулю.

При a=g Р=mg-ma= mg — mg=0

Это состояние невесомости.


Итак, все без исключения материальные тела во Вселенной подчиняются закону всемирного тяготения. И планеты вокруг Солнца, и все тела, находящиеся у поверхности Земли.

www.phisiki.com

определение, формула, роль в природе и космосе

Абсолютно все тела, которые обладают конечной массой, взаимодействуют друг с другом благодаря так называемой силе притяжения или гравитации. Дадим в статье определение силы тяжести, а также рассмотрим, какую роль она играет в природе и космосе.

Что такое сила тяжести или гравитациия?

В физике определение силы тяжести или гравитации дают следующее: это сила, с которой два тела, имеющие массу, притягиваются друг к другу. Это означает, что каждый человек притягивается к любому предмету, который встречает в своей жизни. Однако эта сила является настолько маленькой, что она не ощущается.

Проявление гравитации заметно, когда среди взаимодействующих тел имеется объект с огромной массой, например, наша планета. Во многих задачах по физике определение силы тяжести сводят до понятия притяжения объектов к Земле. В последнем случае говорят о весе тела, который вычисляют по формуле P = m*g. Здесь m и g — масса тела и ускорение свободного падения, которое приблизительно равно 9,81 м/с2.

Сэр Исаак Ньютон и всемирное тяготение

Впервые исчерпывающее определение силы тяжести дал в конце XVII века великий английский ученый Исаак Ньютон. Он смог объединить существовавшие на то время разрозненные знания и эмпирические наблюдения (понятие Галилея об инерции тел и законы Кеплера) и оформить их в виде стройной теории, получившей название «Небесная механика».

Согласно Ньютону, все тела притягиваются друг к другу с силой, которая записывается следующей формулой

F = G*m1*m2/R2, где

m1 и m2 — массы тел,

R — расстояние между ними,

G=6,67 10-11 Н*м2/кг2 — универсальная гравитационная постоянная.

Сила тяжести (гравитации) F действует на абсолютно любых расстояниях, направлена к центру масс тел и быстро убывает с увеличением дистанции между ними.

Если в отмеченную формулу подставить значение для массы и радиуса Земли, то можно получить названное выше ускорение g.

Эффекты, обусловленные существованием гравитации

Выше было дано определение силы тяжести, но не было сказано, какую роль она играет в нашей жизни. Во-первых, благодаря ее существованию мы не парим в воздухе, а твердо стоим на поверхности, и сам воздух не улетает в космическое пространство. Во-вторых, любое подброшенное тело падает обратно на землю. В-третьих, при расчете траекторий полета свободных тел учет влияния этой силы является принципиальным. Наконец, сила всемирного тяготения является главным фактором, который определяет особенности движения нашей планеты вокруг Солнца, и вообще движение любых космических тел.

В настоящее время ученые всего мира пытаются объединить гравитацию с другими фундаментальными взаимодействиями, чтобы создать единую физическую теорию нашей Вселенной.

autogear.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о