Трансформатор тока принцип действия – Принцип работы трансформаторов тока | Бесплатные дипломные работы на DIPLOMKA.NET

Содержание

Трансформатор тока — устройство, принцип работы и виды

Трансформатор тока представляет собой измерительное устройство, первичная обмотка (высокая сторона) которого подключается к источнику переменного электрического тока, а его вторичная обмотка (низкая сторона) подключается к приборам измерения или к приборам защиты с малым сопротивлением.

Если точнее, то первичная обмотка любого трансформатора тока включается только последовательно в силовую электрическую цепь, по которой протекает электрическая нагрузка. К вторичной обмотке или нескольким вторичным обмоткам подключаются защитные приборы, измерительные приборы и приборы учёта электроэнергии.

Принцип действия трансформатора тока

Работа обычного трансформатора тока базируется на физическом явлении электромагнитной индукции. Это значит, что при подаче напряжения на первичную обмотку, в её витках будет проходить переменный ток, образующий впоследствии появление переменного магнитного потока. Появившийся магнитный поток проходит по сердечнику и пронизывает витки всех обмоток трансформатора, таким образом, индуцируя в них электродвижущие силы (э.д.с.). В случае закорачивания вторичной обмотки или же при включении нагрузки в её цепь, под воздействием э.д.с. в витках обмотки начнёт протекать вторичный ток.

Назначение трансформаторов

Общее назначение трансформаторов тока – преобразование (снижение) большой величины переменного тока до таких значений, которые будут удобны и безопасны для измерения.

Трансформаторы тока позволяют безопасно измерять большие электрические нагрузки в сетях переменного тока. Это становится возможным благодаря изолированию первичной обмотки и вторичной обмотки друг от друга.

При изготовлении к трансформаторам тока предъявляются строгие требования по качеству изоляции и по точности измерений электрических нагрузок.

Конструкция трансформатора тока

Трансформатор тока – это устройство, основой которого является сердечник, шихтованный из особой трансформаторной стали. На сердечник (магнитопровод) наматываются витки одной, двух или даже нескольких вторичных обмоток, электрически изолированных друг от друга, а также и от сердечника.

Что касается первичной обмотки, то она может представлять собой катушку, также намотанную на сердечник измерительного трансформатора. Однако чаще всего первичная обмотка представляет собой алюминиевую или медную шину (пластину). Не менее часто в трансформаторе тока вообще отсутствует первичная обмотка как таковая. В этом случае функцию первичной обмотки выполняет силовой проводник, проходящий через кольцо трансформатора тока. Это может быть отдельная жила электрического кабеля.

Вся конструкция трансформатора тока помещается в корпус для защиты от механических повреждений. 

Коэффициент трансформации

Основной технической характеристикой каждого трансформатора тока является номинальный коэффициент трансформации. Его значение указывается на специальной табличке (шильдике) в виде отношения номинального значения первичного тока к номинальному значению вторичного тока.

Например, указанное значение 400/5 означает, что при первичной нагрузке в 400А, во вторичной цепи должен протекать ток в 5А и, следовательно, коэффициент трансформации будет равен 80. Если на шильдике указано значение 50/1, то коэффициент трансформации будет равен 50.

Практически у каждого трансформатора тока есть определённая погрешность. В зависимости от её величины каждому трансформатору тока присваивается свой класс точности.  

Классификация трансформаторов

Существует несколько признаков, по которым трансформаторы тока делятся.

По своему назначению они бывают измерительными, защитными, а также промежуточными и лабораторными.

  • Измерительные выполняют функцию измерения. К ним подключаются приборы, такие как амперметр или приборы учёта (счётчики электрической энергии).
  • Защитные трансформаторы тока выполняют функцию электрической защиты совместно с устройствами защиты, поэтому к ним подключаются устройства, такие как реле тока или современные цифровые устройства высоковольтной защиты.
  • Промежуточные трансформаторы тока применяют в токовых цепях релейной защиты.
  • Лабораторные устройства обладают очень высокой степенью точности измерений. Также у них может быть несколько разных коэффициентов трансформации.

По виду установки трансформаторы тока бывают наружными и внутренними, а также встроенными внутрь электрооборудования (внутри высоковольтных выключателей, внутри питающих силовых трансформаторов и т.д.). Кроме того трансформаторы тока бывают накладными и переносными. Переносные трансформаторы используют для измерений токовой нагрузки в лабораторных условиях.

По исполнению первичной обмотки бывают одновитковые, многовитковые и шинные трансформаторы тока. По количеству ступеней трансформации – одно- и двухступенчатые.

По напряжению трансформаторы тока делятся на две группы – устройства с напряжением до 1000В и устройства с напряжением выше 1000В.

Кроме обычных измерительных трансформаторов тока, существуют и специальные, такие как трансформаторы тока нулевой последовательности.

aquagroup.ru

Назначение и принцип действия трансформатора тока :: SYL.ru

Человечество в значительной мере зависит от тока. Но просто так он не подчиняется, необходимы специальные аппараты. В качестве оного выступает трансформатор тока. Чем он является и каково его предназначение? Каков принцип действия трансформатора тока? И насколько он важен?

Что такое трансформатор тока?

Под ТТ понимают измерительный аппарат, который необходим, чтобы преобразовать ток. Конструктивно в трансформаторе первичная обмотка включена в цепь последовательно, тогда как вторичная имеет измерительные приборы, а также реле защиты и автоматики. ТТ является основным измерительным устройством в электроэнергетике. Обе обмотки находятся в изоляции. Вторичная во время эксплуатации обычно имеет потенциал, который близок к «земле», что достигается путём заземления одного конца.

Благодаря трансформатору можно учитывать и измерять ток высокого напряжения, используя приборы для низкого. В конце сводится всё к измерению первичного, значение которого записывают в амперах. Следует отличать измерительный трансформатор тока от силового. Так, в первом индукция является непостоянной и напрямую зависит от режима эксплуатации. Поэтому и считаются универсальными трансформаторы тока.

Назначение и принцип действия

Как всё происходит? Каков принцип действия трансформатора тока? Через силовую первичную обмотку, которая имеет определённое число витков, протекает напряжение, которое преодолевает полное сопротивление. Вокруг катушки возникает магнитный поток, который может уловить магнитопровод. Его необходимо расположить перпендикулярно относительно направления тока. Таким образом, будет теряться минимум электроэнергии во время её преобразования в электрическую. Пересекая перпендикулярно расположенные витки вторичной обмотки, магнитный поток активирует электродвижущую силу, под влиянием которой и возникает ток, преодолевающий полное сопротивление катушки и выходной нагрузки. Вместе с этим на зажимах 2-й цепи возникает падение напряжения.

Теперь немного о частных случаях:

  • Принцип действия сварочного трансформатора базируется на максимальной отдаче мощности. Его конструкция должна выдерживать высокое напряжение.
  • Принцип действия однофазного трансформатора базируется на магнитном потоке. Так, если замкнуть вторичную обмотку на какое-то сопротивление, то при появлении тока возникнет движущая сила. Если обратить внимание на закон Ленца, то можно сделать заключение, что магнитный поток будет уменьшаться. Но принцип действия однофазного трансформатора предусматривает подведение постоянного тока к первичной обмотке, в результате чего уменьшения магнитного потока не происходит.

Классификация

Все трансформаторы тока (как для измерений, так и для защиты) поддаются классификации по таким признакам:

  • По роду установки.
  • ТТ, предназначенные для работы в воздухе.
  • Трансформаторы тока для функционирования в условиях закрытых помещений.
  • ТТ, предназначенные для встраивания внутрь электрооборудования.

Основные параметры

Трансформаторам тока выдвигают целый ряд требований. Вся необходимая информация должна быть указана в паспорте или приложенной таблице.

Вот их краткий список:

  • Номинальное напряжение может находиться в широком диапазоне.
  • Номинальный первичный ток, который идёт по 1-й обмотке. Указываются значения для длительной работы аппаратуры.
  • Номинальный вторичный ток, проходящий по 2-й обмотке. Его качество обозначается показателем в 1 или 5 ампер.
  • Вторичная нагрузка соответствует сопротивлению во внешней 2-й цепи и выражается в омах.

Ограничения

По термической стойкости:

  • I1т – рассчитан на номинальное напряжение выше 330 кВ.
  • I3т – применяется в диапазоне значений в 110-220 кВ.
  • I4т – используется при напряжении, которое не превышает 35 кВ.

Принцип действия трансформатора может зависеть от материала:

  • При изготовлении токопроводящих частей из алюминия температура не должна превышать 200°С.
  • Если детали, что проводят ток, сделаны из меди или её сплавов и соприкасаются с маслом или органической изоляцией, то ограничение составляет 250°С.

Также существуют требования к механическим нагрузкам, которые должен выдерживать трансформатор тока при скорости ветра в 40 м/с. Принцип действия устройства может немного поменяться из-за конструктивных дополнений:

  • Если ТТ до 35 кВ, то это значение составляет 500 ньютонов.
  • При значениях в 110-220 кВ необходима стойкость в 1000 Н.
  • При превышении 330 кВ требование к механическим нагрузкам возрастает до уровня 1500 ньютонов.

Опасные факторы при работе с трансформатором тока

При работе с ТТ необходимо быть чрезвычайно осторожным, поскольку существуют значительные риски пострадать вплоть до летального исхода. Итак, следует опасаться:

  • Возможности поражения высоковольтным потенциалом, что может случиться в случае повреждения изоляции. Так как магнитопровод трансформатора тока сделан из металла, то он имеет хорошую проводимость и соединяет магнитным путём отделенные обмотки ТТ (первичную и вторичную). Поэтому существует повышенная опасность, что персонал получит электротравмы, или повредится оборудование вследствие дефектов в изоляционном слое. Чтобы избежать таких ситуаций, заземляют один из вторичных выводов трансформатора.

  • Возможность поражения высоковольтным потенциалом из-за разрыва вторичной цепи. Её выводы промаркированы как «И1» и «И2». Чтобы направление, по которому протекает ток, было полярным и совпадало по всем обмоткам, они всегда во время работы трансформатора подключаются на нагрузку. Это необходимо из-за того, что ток, проходящий по первичной обмотке, имеет мощность высокого потенциала, которая передаётся во вторичную цепь с незначительными потерями. При разрыве в таких случаях резко уменьшаются показатели из-за утечки во внешнюю среду. При таких происшествиях значительно ускоряется падение напряжения на данном разорванном участке. Потенциал, который сформировывается на разомкнутых контактах, при прохождении тока достигает нескольких киловольт. Такое значение является опасным для жизни. Поэтому необходимо убеждаться, что все вторичные цепи на трансформаторах тока надежно собраны. А при выходе из строя устанавливаются шунтирующие закоротки. Принцип действия трансформатора не терпит пренебрежения правилами безопасности, и получить электротравму очень легко.

  • Конструкторские решения, которые были использованы в трансформаторах тока. Любой ТТ, как и все электротехнические устройства, должен решать определённые задачи, которые возникают во время эксплуатации электроустановок. Благо, промышленность предлагает значительный ассортимент. Но в некоторых случаях бывает лучше усовершенствовать имеющуюся конструкцию с точки зрения предприятия, чем изготавливать что-то новое, чем многие и пользуются, не имея достаточного опыта. Без знания, что собой представляет принцип действия трансформатора, последствия такого вмешательства могут создать ситуации, опасные для жизни.

Заключение

В рамках статьи мы обсудили назначение и принцип действия трансформатора тока. Как видите, это устройство является очень важным для нормального функционирования общества. Но вместе с этим оно является и довольно опасным, поэтому всегда стоит придерживаться осторожности и без надобности не лезть внутрь аппарата, особенно тогда, когда работают трансформаторы тока. Назначение и принцип действия таких приспособлений были нами рассмотрены настолько, насколько это позволил размер статьи. Однако все самое важное мы изучили.

www.syl.ru

Трансформаторы тока назначение и принцип действия

Содержание:
  1. Что такое трансформатор тока
  2. Назначение и принцип работы
  3. Классификация трансформаторов тока
  4. Основные параметры и характеристики
  5. Возможные неисправности трансформаторов тока

В электротехнике довольно часто возникает необходимость измерения величин с большими значениями. Для решения этой задачи применяются трансформаторы тока, назначение и принцип действия которых делает возможным проведение любых измерений. С этой целью выполняется последовательное включение первичной обмотки устройства в цепь с переменным током, значение которого необходимо измерить. Вторичная обмотка подключается к измерительным приборам. Между токами в первичной и вторичной обмотке существует определенная пропорция. Все трансформаторы этого типа отличаются высокой точностью. В их конструкцию входит две и более вторичных обмоток, к которым подключаются защитные устройства, измерительные средства и приборы учета.

Что такое трансформатор тока?

К трансформаторам тока относятся устройства, в которых вторичный ток, применяемый для измерений, находится в пропорциональном соотношении с первичным током, поступающим из электрической сети.

Включение в цепь первичной обмотки осуществляется последовательно с токопроводом. Подключение вторичной обмотки выполняется на какую-либо нагрузку в виде измерительных приборов и различных реле. Между токами обеих обмоток возникает пропорциональная зависимость, соответствующая количеству витков. В трансформаторных устройствах высокого напряжения выполняется изоляция между обмотками из расчета на полное рабочее напряжение. Как правило производится заземление одного из концов вторичной обмотки, поэтому потенциалы обмотки и земли будут примерно одинаковыми.

Все трансформаторы тока предназначены для выполнения двух основных функций: измерения и защиты. В некоторых устройствах обе функции могут совмещаться.

  • Измерительные трансформаторы передают полученную информацию к подключенным измерительным приборам. Они устанавливаются в цепях с высоким напряжением, в которые невозможно включить напрямую приборы для измерений. Поэтому только во вторичную обмотку трансформатора выполняется подключение амперметров, счетчиков, токовых обмоток ваттметров и прочих приборов учета. В результате, трансформатор преобразует переменный ток даже очень высокого значения, в переменный ток с показателями, наиболее приемлемыми для использования обычных измерительных приборов. Одновременно обеспечивается изоляция измерительных приборов от цепей с высоким напряжением, повышается электробезопасность обслуживающего персонала.
  • Защитные трансформаторные устройства в первую очередь передают полученную измерительную информацию на устройства управления и защиты. С помощью защитных трансформаторов, переменный ток любого значения преобразуется в переменный ток с наиболее подходящим значением, обеспечивающим питание устройств релейной защиты. Одновременно выполняется изоляция реле, к которых имеется доступ персонала, от цепей высокого напряжения.

Назначение трансформаторов

Трансформаторы тока относятся к категории специальных вспомогательных приборов, используемых совместно с различными измерительными устройствами и реле в цепях переменного тока. Главной функцией таких трансформаторов является преобразование любого значения тока до величин, наиболее удобных для проведения измерений, обеспечения питания отключающих устройств и обмоток реле. За счет изоляции приборов, обслуживающий персонал оказывается надежно защищен от поражения током высокого напряжения.

Измерительные трансформаторы тока предназначены для электрических цепей с высоким напряжением, когда отсутствует возможность прямого подключения измерительных приборов. Их основное назначение заключается в передаче полученных данных об электрическом токе на измерительные устройства, подключаемые к вторичной обмотке.

Немаловажной функцией трансформаторов является контроль над состоянием электрического тока в цепи, к которой они подключены. Во время подключения к силовому реле, выполняются постоянные проверки сетей, наличие и состояние заземления. Когда ток достигает аварийного значения, включается защита, отключающая все используемое оборудование.

Принцип работы

Принцип работы трансформаторов тока основан на законе электромагнитной индукции. Напряжение из внешней сети поступает на силовую первичную обмотку с определенным количеством витков и преодолевает ее полное сопротивление. Это приводит к появлению вокруг катушки магнитного потока, улавливаемого магнитопроводом. Данный магнитный поток располагается перпендикулярно по отношению к направлению тока. За счет этого потери электрического тока в процессе преобразования будут минимальными.

При пересечении витков вторичной обмотки, расположенных перпендикулярно, происходит активация магнитным потоком электродвижущей силы. Под влиянием ЭДС появляется ток, который вынужден преодолевать полное сопротивление катушки и выходной нагрузки. Одновременно на выходе вторичной обмотки наблюдается падение напряжения.

Классификация трансформаторов тока

Все трансформаторы тока можно классифицировать, в зависимости от их особенностей и технических характеристик:

  1. По назначению. Устройства могут быть измерительными, защитными или промежуточными. Последний вариант используется при включении измерительных приборов в токовые цепи релейной защиты и других аналогичных схемах. Кроме того, существуют лабораторные трансформаторы тока, отличающиеся высокой точностью и множеством коэффициентов трансформации.
  2. По типу установки. Существуют трансформаторные устройства для наружной и внутренней установки, накладные и переносные. Некоторые виды приборов могут встраиваться в машины, электрические аппараты и другое оборудование.
  3. В соответствии с конструкцией первичной обмотки. Устройства разделяются на одновитковые или стержневые, многовитковые или катушечные, а также шинные, например, ТШ-0,66.
  4. Внутренняя и наружная установка трансформаторов предполагает проходные и опорные способы монтажа этих устройств.
  5. Изоляция трансформаторов бывает сухая, с применением бакелита, фарфора, и других материалов. Кроме того, применяется обычная и конденсаторная бумажно-масляная изоляция. В некоторых конструкциях используется заливка компаундом.
  6. По количеству ступеней трансформации, устройства могут быть одно- или двухступенчатыми, то есть, каскадными.
  7. Номинальное рабочее напряжение трансформаторов может быть до 1000 В или более 1000 В.

Все характерные классификационные признаки присутствуют в условных обозначениях трансформаторов тока, состоят из определенных буквенных и цифровых символов.

Параметры и характеристики

Каждый трансформатор тока обладает индивидуальными параметрами и техническими характеристиками, определяющими область применения этих устройств.

Номинальный ток. Позволяет устройству работать в течение длительного времени без перегрева. В таких трансформаторах имеется значительный запас по нагреву, а нормальная работа возможна при перегрузках до 20%.

Номинальное напряжение. Его значение должно обеспечивать нормальную работу трансформатора. Именно этот показатель влияет на качество изоляции между обмотками, одна из которых находится под высоким напряжением, а другая заземлена.

Коэффициент трансформации. Представляет собой отношение между токами в первичной и вторичной обмотке и определяется по специальной формуле. Его действительное значение будет отличаться от номинального в связи с определенными потерями в процессе трансформации.

Токовая погрешность. Возникает в трансформаторе под влиянием тока намагничивания. Абсолютное значение первичного и вторичного тока различается между собой как раз на эту величину. Ток намагничивания приводит к созданию в сердечнике магнитного потока. При его возрастании, токовая погрешность трансформатора также увеличивается.

Номинальная нагрузка. Определяет нормальную работу устройства в своем классе точности. Она измеряется в Омах и в некоторых случаях может заменяться таким понятием, как номинальная мощность. Значение тока является строго нормированным, поэтому значение мощности трансформатора полностью зависит лишь от нагрузки.

Номинальная предельная кратность. Представляет собой кратность первичного тока к его номинальному значению. Погрешность такой кратности может достигать до 10%. Во время расчетов сама нагрузка и ее коэффициенты мощности должны быть номинальными.

Максимальная кратность вторичного тока. Представлена в виде отношения максимального вторичного тока и его номинального значения, когда действующая вторичная нагрузка является номинальной. Максимальная кратность связана со степенью насыщения магнитопровода, при котором первичный ток продолжает увеличиваться, а значение вторичного тока не меняется.

Возможные неисправности трансформаторов тока

У трансформатора тока, включенного под нагрузку, иногда возникают неисправности и даже аварийные ситуации. Как правило, это связано с нарушениями электрического сопротивления изоляции обмоток, снижением их проводимости под влиянием повышенных температур. Негативное влияние оказывают случайные механические воздействия или некачественно выполненный монтаж.

В процессе работы оборудования наиболее часто происходит повреждение изоляции, вызывающее межвитковые замыкания обмоток, что существенно снижает передаваемую мощность. Токи утечки могут появиться в результате случайно созданных цепей, вплоть до возникновения короткого замыкания.

С целью предупреждения аварийных ситуаций, специалистами с помощью тепловизоров периодически проверяется вся действующая схема. Это позволяет своевременно устранить дефекты нарушения контактов, снижается перегрев оборудования. Наиболее сложные испытания и проверки проводятся в специальных лабораториях.

electric-220.ru

Трансформатор тока — Википедия

Материал из Википедии — свободной энциклопедии

Измерительный трансформатор тока ТПОЛ-10

Трансформа́тор то́ка — трансформатор, первичная обмотка которого подключена к источнику тока, а вторичная обмотка замыкается на измерительные или защитные приборы, имеющие малые внутренние сопротивления.

Измерительный трансформа́тор то́ка — трансформатор, предназначенный для преобразования тока до значения, удобного для измерения. Первичная обмотка трансформатора тока включается последовательно в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, пропорционален току, протекающему в его первичной обмотке.

Трансформаторы тока (далее — ТТ) широко используются для измерения электрического тока и в устройствах релейной защиты электроэнергетических систем, в связи с чем на них накладываются высокие требования по точности. Трансформаторы тока обеспечивают безопасность измерений, изолируя измерительные цепи от первичной цепи с высоким напряжением, часто составляющим сотни киловольт.

К ТТ предъявляются высокие требования по точности. Как правило, ТТ выполняют с двумя и более группами вторичных обмоток: одна используется для подключения устройств защиты, другая, более точная — для подключения средств учёта и измерения (например, электрических счётчиков).

Особенности конструкции[

ru.wikipedia.org

принцип работы для измерения параметров электросетей

Трансформаторы тока (далее по тексту – ТТ) относятся к категории устройств, преобразующих параметры электромагнитных систем при помощи индуктивно связанных обмоток магнитопроводов. Принцип действия трансформатора тока, основанный на законе электромагнитной индукции, используется в ТТ при передаче и распределении электрической энергии, в развязках электрических цепей, при измерении параметров высоковольтных сетей и токов большой мощности. На рис. ниже показан трансформатор тока модели ТЛМ-10, используемый в системах управления и измерений электрических цепей с номинальным напряжением 10 кВ.

Трансформатор тока модели ТЛМ-10

Индуктивные связи в ТТ

Принцип работы трансформатора тока представляет собой техническую реализацию закона электромагнитной индукции Фарадея, согласно которому в замкнутом токопроводящем контуре при изменении магнитного потока возникает электродвижущая сила, называемая в современной электродинамике индуцированной ЭДС. Простейшим объяснением для «чайников», слабо представляющих, из чего состоит трансформатор, не знающих его устройство или что такое индуцированная ЭДС, и как она может влиять на работу сложнейших трансформаторных систем, послужит схема индуктивных связей трансформатора, приведенная ниже.

Дополнительная информация. Индуктивными связями называют связи между электрическими цепями посредством магнитных полей.

Схема индуктивных связей трансформатора

На схеме показаны три основных элемента трансформатора:

  • поз. 1 – магнитопровод, служащий для размещения токопроводящих контуров-обмоток;
  • поз. 2 – первичный контур, называемый первичной обмоткой, к которому подводят электроэнергию переменного тока;
  • поз. 3 – вторичный контур, называемый вторичной обмоткой. К нему подключается приемник электроэнергии.

При подаче на первичный контур переменного тока напряжением u1  через первичную обмотку начинает проходить переменный ток I1 , создающий магнитный поток Ф, изменяющийся по такой же синусоидальной гармонике. При этом в обмотке первичного контура индуцируется переменная ЭДС (электродвижущая сила) e1 . Контуры трансформатора находятся в индуктивной связи, поскольку через их обмотки проходит единый поток Ф. Соответственно, изменения магнитного поля в первичном контуре будут изменять магнитный поток, а он, в свою очередь, будет индуцировать во вторичном контуре электродвижущую силу e2 , изменяющуюся в той же гармонике. Под воздействием e2  во вторичном контуре возникает переменный ток I2. При замыкании вторичной обмотки на нагрузку ZН  создается вторичная цепь, которая может служить для применения в приемниках энергии, в выпрямителях, усилителях и других приборах с развязанными электрическими цепями.

По своей сути трансформатор является передатчиком энергии между проводящими контурами, преобразуя их электромагнитные характеристики (лат. transformare означает преобразовывать) в силу тока I , сопротивление R  и напряжение U. В соответствии со сложившейся терминологией проволочные или ленточные изолированные проводящие обмотки, намотанные на магнитопровод из ферромагнитных сталей, называют катушками, а сам магнитопровод – сердечником катушки.

Это важно! Передачу энергии путем создания ЭДС в контурах и трансформацию ее характеристик возможно осуществлять лишь для переменного тока. Постоянный ток также формирует магнитное поле, однако оно является постоянным и неизменяемым, тогда как ЭДС в обмотках катушек трансформатора образуется только при изменении окружающего магнитного поля.

На рис. ниже показана конструкция традиционного трансформатора, состоящего из двух катушек и сердечника, собранного из стальных пластин.

Конструкция традиционного трансформатора

Особенности трансформации энергии для ТТ

Для чего нужен трансформатор, в чем состоит его практическое предназначение? Зачем трансформаторные приборы присутствуют во всех электрических системах? На все вопросы ответ один – в практике эксплуатации электрических сетей трансформаторы выполняют важнейшую функцию изменения величины тока или напряжения, поданного от генератора переменного тока, для дальнейшего использования в промышленном электрооборудовании и бытовой технике. Данное преобразование называют масштабированием, поскольку сами трансформаторные приборы энергию не создают и не преобразовывают, а всего лишь увеличивают или уменьшают показатели системы переменного тока. Для количественной оценки изменения преобразованного параметра сети – тока или напряжения, введено понятие коэффициента трансформации K, показывающего, во сколько раз отличаются значения этого параметра на входе и выходе. Для напряжения коэффициент трансформации определяется по соотношению KU = U2 /U1, для тока – по формуле:

KI =I2 / I1 .

Если величины напряжения или тока на выходе превышают единицу (K>1), трансформатор называется повышающим. При К<1 трансформатор – понижающего типа. Для идеального трансформатора напряжения с неизменяющейся индуктивной связью между первичным и вторичным контурами коэффициент трансформации согласуется с количеством витков W обмоточного провода на катушках по прямой пропорциональной зависимости:

KU = W2 / W1  = U2 /U1

В этой формуле W2 и W1 указывают количество витков на катушках.

Если рассматривать трансформаторы тока, назначение и принцип действия этих приборов, то для них соблюдается пропорциональность первичного и вторичного тока:

I1 =I2 / KI   или   I2 = I1 * KI.

Функциональное назначение трансформаторов тока заключается в снижении вторичного тока до величины, гарантирующей безаварийную эксплуатацию электрооборудования и безопасность персонала, то есть канонический коэффициент трансформации по току всегда меньше единицы. Для расчета ТТ удобнее пользоваться номинальным коэффициентом трансформации, определяемым как отношение значения номинального I1 к номинальному I2 . В этом случае К больше единицы.

Величину номинального вторичного тока I2н указывают в паспорте каждого конкретного ТТ в качестве одного из параметров изделия. Значение I2н  составляет 1А или 5А. Для номинального первичного тока I1н  установлен стандартный числовой ряд значений от 1А до 40 000А.

Номинальный коэффициент трансформации ТТ определяют как отношение I1н  к I2н  и обозначают путем указания обоих параметров, например:

  • 150/5;
  • 1000/5 или
  • 600/1.

На рис. ниже показан ТТ типа Т-0,66 с коэффициентом трансформации 75/5 А.

ТТ типа Т-0,66

Особенности конструкции ТТ

Трансформаторы напряжения, по аналогии с ТТ, выполняют функцию изменения другого параметра электрической сети – напряжения. Однако, при сопоставлении, чем отличается трансформатор тока от трансформатора напряжения (далее – ТН), становится очевидным различное предназначение трансформаторов тока и напряжения:

  1. ТТ уменьшают величину тока до показателей, допускающих безопасное подключение измерительной аппаратуры или систем релейной защиты;
  2. Трансформаторы напряжения изменяют напряжение с целью подгонки определенной электрической системы под нужные стандарты. Изменяя параметры напряжения, установленные для универсальной электрической сети (например, трехфазные 220 и 380 В), с помощью ТН можно подключать любое промышленной оборудование и бытовую технику.

ТТ имеет существенное отличие от устройства ТН, поскольку заложенный в трансформатор тока принцип работы вносит свои особенности в конструкцию основных элементов ТТ и прибора в целом. К числу основных особенностей ТТ относят:

  • выполнение первичной обмотки просто в виде одиночной толстой шины с целью минимизации количества витков;
  • намотка провода вторичной обмотки на сердечник большой площади сечения;
  • ток во вторичном контуре ТТ равен 5А и реже 1А.

Измерительные ТТ и ТН

Трансформаторные устройства, регулируя величины напряжения и тока, обеспечивают стабильность энергетической системы. Кроме подачи электропитания требуемых параметров на приборы и оборудование, трансформаторы «помогают» проводить измерения параметров сети с большими значениями напряжения и тока для определения с высокой точностью их номинальных показателей. Назначение измерительных трансформаторов состоит в следующем:

  • отделение цепи измерительных устройств (амперметров, вольтметров, электросчетчиков и других приборов) или систем релейной защиты от сети с высоким напряжением или током;
  • преобразование высоковольтного напряжения или мощного тока до величин, удобных для измерений стандартными приборами;
  • получение максимально точного правильного результата измерений.

Измерительные трансформаторы тока и напряжения считаются вспомогательными приборами и используются совместно со средствами измерения и реле в сетях переменного тока. Если невозможно напрямую подключиться измерительными приборами в высоковольтную сеть, то здесь будет нужен трансформатор тока. Средства измерения подключаются к его вторичной обмотке и получают все необходимые данные по замеряемому параметру.

На рис. ниже показан измерительный трансформатор тока модели ТПЛ-СЭЩ 10 кВ номинальным напряжением 10 кВ, который предназначен для работы с номинальным первичным током  в диапазоне от 10 до 2000 А при номинальном вторичном токе в 5 А.

Измерительный трансформатор тока ТПЛ-СЭЩ 10 кВ

Область применения ТТ

Весь перечень прикладных задач, указывающий, для чего нужны трансформаторы тока, можно свести к двум основным направлениям:

  1. Измерение параметров сети с помощью доступных дешевых измерительных приборов, рассчитанных на малый ток (до 5 А) и низковольтное напряжение. Тем самым обеспечивается безопасное обслуживание измерительной аппаратуры;
  2. Контроль параметров электротока по всей цепи, в которой установлены ТТ. При достижении током предельного (аварийного) значения срабатывает аппаратура защиты, отключающая эксплуатируемое оборудование.

Это важно! Установка трансформаторов тока в контролируемых цепях позволяет концентрировать измерительную аппаратуру на специальных щитах или в составе пультов управления. Правильно выполненный монтаж трансформаторов тока дает возможность размещения измерительных приборов на безопасном удалении от коммутаций цепи и дистанционно управлять работой электрооборудования в автоматическом режиме.

Классы точности ТТ

Для ТТ определены пять классов точности, характеризующих в процентах допустимую погрешность по току при его номинальных значениях:

  • класс точности 0,2 ограничивает погрешность ТТ в пределах 0,2% и применим для трансформаторных устройств, используемых в лабораторных измерениях;
  • класс точности 0,5 допустим для ТТ, обслуживающих аппаратуру точной защиты и оборудование высокоточной наладки;
  • класс 1 – для цепей промышленного оборудования с подключением вольтметров, амперметров и устройств релейной защиты;
  • классы 3 и 10 – промышленные установки, релейные защиты.

Использование ТТ для локальных измерений в энергетических системах и в комплексе с современными системами измерений и контроля позволяет значительно повышать ресурс безаварийной эксплуатации промышленного электрооборудования и сложнейшей бытовой техники. Внедрение ТТ в автоматизированные системы управления электросетями позитивно влияет на снижение потерь электроэнергии в периоды ежедневных пиковых нагрузок и ставит барьеры для прямых хищений электрической энергии.

На рис. ниже показано подключение счетчика электроэнергии через трансформатор тока.

Подключение счетчика электроэнергии через трансформатор тока

Видео

Оцените статью:

elquanta.ru

Трансформатор тока — принцип работы, устройство и назначение

Для моделирования процессов, протекающих в электрических установках, а также безопасного измерения требуется проведение преобразований одних электрических величин в другие, аналогичные, имеющие измененные пропорционально значения. Трансформаторы тока (ТТ) работают на основе электромагнитной индукции, закон которой действует в магнитном и электрическом поле. Он проводит преобразование вектора тока первичного значения с соблюдением пропорции в его пониженное значение с точной передачей угла и величины по модулю.

Трансформатор, в котором вторичное значение протекающего тока пропорционально первичной величине тока, имеющего сдвиг, равный нулю, когда он правильно включен, — это трансформатор тока. У ТТ первичная обмотка включается последовательно в цепь на токопровод, а вторичная обмотка имеет нагрузку в виде измерительных приборов для создания условия протекания электротока по ней, который по величине пропорционален величине тока в первичной обмотке.


Трансформаторы тока

Необходимо отметить, что в ТТ (высокого напряжения) первичная обмотка имеет изоляцию от вторичной обмотки, так как она одним концом заземляется, и потенциал во вторичной обмотке приравнивается к потенциалу земли.

Существует разделение токовых трансформаторов на измерительные и защитные, бывают случаи, когда эти функции в ТТ совмещаются. Трансформатор тока предназначен для передачи измеряемых величин измерительным приборам. Место установки ТТ такого вида на высокой стороне, когда нет возможности провести измерения величин непосредственно приборами измерения, когда высокий ток или напряжение. Приборы измерений (обмотки ваттметров, амперметр, счетчик учета, другие приборы) подключаются к вторичной обмотке ТТ. Назначение трансформатора тока заключается в следующем:

  • возможность преобразования любой величины переменного тока в значение, возможное для измерения приборами стандартного измерения величин;
  • безопасность персонала, проводящего измерения, от доступа к высокому напряжению.

Защитные трансформаторы тока назначение имеют для передачи информации измерений в приборы и устройства управления и защиты, они обеспечивают:

  • возможность преобразования любой величины переменного тока в значение для обеспечения работы релейной защиты;
  • безопасность персонала, который работает с релейной защитой, от доступа к высокому напряжению.

Как работает устройство?


Принцип работы трансформатора тока

Через первичную обмотку токового трансформатора с количеством витков w1 и сопротивлением z1 протекает ток трансформатора I1, этот процесс формирует магнитный поток Ф1, который улавливает сердечник трансформатора (магнитопровода), расположенный под 90 градусов к вектору тока I1. Такое положение сердечника не допускает потерь электроэнергии, когда происходит ее преобразование в магнитную энергию.

Когда поток Ф1 пересекает обмотку с витками w2, он наводит в ней ЭДС (Е2), которая воздействует на обмотку, и в ней возникает ток I2, который протекает по вторичной катушке с сопротивлением z2, и сопротивление подключенной нагрузки (z нагрузки). Во вторичной цепи происходит падение напряжения на зажимах U2.

В данной схеме принципа действия трансформатора тока показано, как находится коэффициент трансформации — это значение К1, которое задается при разработке устройства и тестируется на заводе. Класс точности определяется метрологической инстанцией и показывает реальные значения трансформации. На практике этот коэффициент определяют по номинальным параметрам, так, 1000/5 говорит о том, что при токе в 1000 ампер первичной обмотки вторичная обмотка будет иметь 5 ампер нагрузки.

Как классифицируются токовые трансформаторы?

Специалисты классифицируют токовые трансформаторы, предназначенные для защиты и измерений, по выраженным признакам:

  1. Размещение и установка, когда токовые трансформаторы могут монтироваться:
  • на открытой площадке — ГОСТ15150-69, категория размещения №1;
  • закрытое помещение — ГОСТ15150-69;
  • встраиваемые токовые трансформаторы в электрическое оборудование — ГОСТ 15150-69;
  • токовые трансформаторы для установки в специальном оборудовании (шахты, корабли, электропоезда, другое оборудование).
  1. Метод установки: трансформаторы тока проходные, которые устанавливаются в стеновых проемах или других конструкциях, опорные ТТ устанавливаются на плоскости, встраиваемые токовые трансформаторы в щиты электрооборудования.
  2. Коэффициент трансформации. Может быть один или несколько, которые получаются изменением числа витков первичной и вторичной обмотки ТТ.
  3. Количество ступеней трансформации: каскадные, одноступенчатые.
  4. Количество витков в первичной обмотке: многовитковые токовые трансформаторы, одновитковые ТТ.

Схема токового трансформатора

Одновитковые трансформаторы тока имеют стержневую первичную обмотку (3 трансформатор), а также могут иметь U-образную форму (4 трансформатор).

Назначение и применение

Промышленное производство выпускает токовые трансформаторы для решения задач учета электроэнергии, с целью защиты силовых трансформаторов и линии передачи электрической энергии.


Выносные токовые трансформаторы
На оборудовании применяются конструкции встроенных токовых трансформаторов, для размещения непосредственно на силовом объекте, устройства со стороны 110 кВ

Высоковольтные токовые трансформаторы вместо изолятора применяют специальное трансформаторное масло.


Конструкция трансформатора тока марки ТФЗМ для работы на линии 35 кВ

Трансформаторы тока на линии до 10 кВ в качестве изоляционного материала между обмотками применяют твердые изоляционные материалы.


ТПЛ-10

Возможные неисправности

Наиболее частые неисправности в токовых трансформаторах, по мнению специалистов, следующие:

  • нарушение изоляции в обмотках, когда изделие работает под нагрузкой из-за тепловой перегрузки, механического удара, из-за плохого монтажа;
  • межвитковое замыкание в ТТ, происходит утечка тока, возможность КЗ (короткого замыкания).

Для улучшения эффективной работы рекомендуется делать поверку работы ТТ при помощи тепловизора, когда проявляются некачественные контакты и достигается понижение температурного режима работы оборудования. Проверку ТТ на КЗ должны периодически делать работники лабораторий. Эти действия включают:

  • снятие характеристик по току и напряжению;
  • нагрузка ТТ посторонним источником;
  • снятие параметров в действующей схеме;
  • проведение аналитических исследований по выявлению коэффициента трансформации.


Об обмотке

Требования к конструкции

Когда проектируются токовые трансформаторы, должны соблюдаться следующие требования:

  1. Выводы первичной обмотки делаются по ГОСТ 10434-82, для ТТ наружного исполнения учитывается ГОСТ 21242-75. Выводы вторичной обмотки делаются также по ГОСТ 10434-82, они могут располагаться на конструкции изделия, в который встраивается токовый трансформатор. Для наружного исполнения выводы контактов вторичной обмотки должны закрываться специальной крышкой, в коробке, которая не пропускает влагу.

Маркировка выводов:

  1. Когда в качестве изолятора используется трансформаторное масло, этот вид ТТ должен иметь компенсатор (расширитель), а также указатель количества масла по уровню. Масло расширитель должен иметь достаточный объем для обеспечения работы ТТ во всех режимах и нужного для этого количества масла.
  2. В токовых трансформаторах с указателем количества масла его размер должен быть достаточным для определения объема масла в расширителе с расстояния, безопасного для здоровья персонала.
  3. Если токовый трансформатор весит больше 50 кг, он обязательно оборудуется креплением для подъема. Существуют марки ТТ, в которых нельзя сделать крепления, для этого в документации указывается место для его охвата.
  4. В ТТ, имеющем на вторичной обмотке напряжение больше 350 вольт, должна быть предостерегающая надпись: «Опасно! Высокое напряжение!».
  5. Если токовый трансформатор не встроенной конструкции, он оборудуется контактной площадкой для заземления. Возле зажима заземления устанавливается специальный знак ГОСТ 21130-75.

Как выбрать токовый трансформатор для прибора учета электроэнергии

Для выбора нужного вам ТТ необходимо руководствоваться следующей информацией:

  • знать параметры сети, номинальное напряжение;
  • какой будет ток в первичной и вторичной обмотке ТТ;
  • какой у токового трансформатора коэффициент;
  • класс точности изделия;
  • конструкция токового трансформатора.

Когда определяются параметры напряжения, надо принимать максимально возможное значение напряжения. Для счетчика 0,4 кВ рекомендуется токовый трансформатор 0,66 кВ.


Как подключить счетчик через токовый трансформатор

Величина тока на вторичной обмотке — около 5 ампер, а ток первичной обмотки можно рассчитать по коэффициенту трансформации. Необходимо учитывать всю нагрузку, выбирая коэффициент трансформации, допускается подключение ТТ с завышенным коэффициентом трансформации.

Выбор ТТ по классу точности зависит от цели, в которых используется изделие, коммерческий учет рекомендует класс точности не ниже 0,5S, а для условий технического учета достаточная точность — 1S.

Вывод

Схема замещения ТТ позволяет определить его точность, кроме того, используя схему замещения токового трансформатора можно описать все процессы, протекающие в нем, можно построить векторную диаграмму, но необходимо учесть разницу на намагничивание сердечника вторичной обмотки. Чем больше отклонения в замещенной схеме, тем меньше класс точности ТТ.

Похожие статьи:

domelectrik.ru

Назначение и принцип действия трансформаторов тока

В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

Назначение трансформаторов тока: преобразование тока и разделение цепей

Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

  • Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
  • Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.

Из чего состоит трансформатор тока?

Для понимания принципа действия трансформатора тока сначала разберемся, из чего он состоит. Для более наглядного представления взглянем на рисунок. Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Принцип действия трансформатора тока

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

pomegerim.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о