Транзистор vt1 – VT1 – – KazEdu.kz

Составной транзистор — Википедия

Материал из Википедии — свободной энциклопедии

Пара Дарлингтона составленная из транзисторов n-p-n типа

Составно́й транзи́стор — электрическое соединение двух (или более) биполярных транзисторов, полевых транзисторов или IGBT-транзисторов, с целью улучшения их электрических характеристик. К этим схемам относят так называемую пару Дарлингтона, пару Шиклаи, каскодную схему включения транзисторов, схему так называемого токового зеркала и др.

Пара Дарлингтона с резистором, который используется в качестве нагрузки транзистора VT1.

Составной транзистор (или схема) Дарлингтона (часто — пара Дарлингтона) была предложена в 1953 году инженером Bell Laboratories Сидни Дарлингтоном (Sidney Darlington). Схема является каскадным соединением двух (редко — трех или более) биполярных[1] транзисторов, включённых таким образом, что нагрузкой в эмиттерной цепи предыдущего каскада является переход база-эмиттер транзистора последующего каскада (то есть эмиттер предыдущего транзистора соединяется с базой последующего), при этом коллекторы транзисторов соединены. В этой схеме ток эмиттера предыдущего транзистора является базовым током последующего транзистора.

Коэффициент усиления по току пары Дарлингтона очень высок и приблизительно равен произведению коэффициентов усиления по току транзисторов составляющих такую пару. У мощных транзисторов включенных по схеме пары Дарлингтона, конструктивно выпускаемой в одном корпусе (например, транзистор КТ825) гарантированный коэффициент усиления по току при нормальных условиях эксплуатации) не менее 750[2].

У пар Дарлингтона, собранных на маломощных транзисторах этот коэффициент может достигать значения 50000.

Высокий коэф

ru.wikipedia.org

Составной транзистор (схема Дарлингтона и Шиклаи) – ldsound.ru

Составной транзистор (транзистор Дарлингтона) — объединение двух или более биполярных транзисторов с целью увеличения коэффициента усиления по току. Такой транзистор используется в схемах, работающих с большими токами (например, в схемах стабилизаторов напряжения, выходных каскадов усилителей мощности) и во входных каскадах усилителей, если необходимо обеспечить большой входной импеданс.

 

Условное обозначение составного транзистора

 

Составной транзистор имеет три вывода (база, эмиттер и коллектор), которые эквивалентны выводам обычного одиночного транзистора. Коэффициент усиления по току типичного составного транзистора (иногда ошибочно называемого «супербета»), у мощных транзисторов ≈ 1000 и у маломощных транзисторов ≈ 50000. Это означает, что небольшого тока базы достаточно для того, чтобы составной транзистор открылся.

В отличие от биполярных, полевые транзисторы не используются в составном включении. Объединять полевые транзисторы нет необходимости, так как они и без того обладают чрезвычайно малым входным током. Однако существуют схемы (например, биполярный транзистор с изолированным затвором), где совместно применяются полевые и биполярные транзисторы. В некотором смысле, такие схемы также можно считать составными транзисторами. Так же для составного транзистора достигнуть повышения значения коэффициента усиления можно, уменьшив толщину базы, но это представляет определенные технологические трудности.

Примером супербета (супер-β) транзисторов может служить серия КТ3102, КТ3107. Однако их также можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316).

 

Фото типичного усилителя на составных транзисторах

 

Схема Дарлингтона

 

Один из видов такого транзистора изобрёл инженер-электрик Сидни Дарлингтон (Sidney Darlington).

 

Принципиальная схема составного транзистора

 

Составной транзистор является каскадным соединением нескольких транзисторов, включенных таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка первого транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого при работе транзисторов в активном режиме приблизительно равен произведению коэффициентов усиления первого и второго транзисторов:

 

βс = β1 ∙ β2

 

Покажем, что составной транзистор действительно имеет коэффициент β, значительно больший, чем у его обоих компонентов. Задавая приращение dlб = dlб1, получаем:

 

dlэ1 = (1 + β1) ∙ dlб = dlб2

 

dlк = dlк1

+ dlк2 = β1 ∙ dlб + β2 ∙ ((1 + β1) ∙ dlб)

 

Деля dlк на dlб, находим результирующий дифференциальный коэффициент передачи:

 

βΣ = β1 + β2 + β1 ∙ β2

 

Поскольку всегда β>1, можно считать:

 

βΣ = β1β1

 

Следует подчеркнуть, что коэффициенты β1 и β1 могут различаться даже в случае однотипных транзисторов, поскольку ток эмиттера

Iэ2 в 1 + β2 раз больше тока эмиттера Iэ1 (это вытекает из очевидного равенства Iб2 = Iэ1).

 

Схема Шиклаи

 

Паре Дарлингтона подобно соединение транзисторов по схеме Шиклаи, названное так в честь его изобретателя Джорджа Шиклаи, также иногда называемое комплементарным транзистором Дарлингтона. В отличие от схемы Дарлингтона, состоящей из двух транзисторов одного типа проводимости, схема Шиклаи содержит транзисторы разной полярности (p–n–p и n–p–n). Пара Шиклаи ведет себя как n–p–n-транзистор c большим коэффициентом усиления. Входное напряжение — это напряжение между базой и эмиттером транзистора Q1, а напряжение насыщения равно, по крайней мере, падению напряжения на диоде. Между базой и эмиттером транзистора Q2 рекомендуется включать резистор с небольшим сопротивлением. Такая схема применяется в мощных двухтактных выходных каскадах при использовании выходных транзисторов одной полярности.

 

Каскад Шиклаи, подобный транзистору с n–p–n переходом

 

Каскодная схема

 

Составной транзистор, выполненный по так называемой каскодной схеме, характеризуется тем, что транзистор VT1 включен по схеме с общим эмиттером, а транзистор VT2 — по схеме с общей базой. Такой составной транзистор эквивалентен одиночному транзистору, включенному по схеме с общим эмиттером, но при этом он имеет гораздо лучшие частотные свойства и большую неискаженную мощность в нагрузке, а также позволяет значительно уменьшить эффект Миллера (увеличение эквивалентной ёмкости инвертирующего усилительного элемента, обусловленное обратной связью с выхода на вход данного элемента при его выключении).

 

Достоинства и недостатки составных транзисторов

 

Высокие значения коэффициента усиления в составных транзисторах реализуются только в статическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ — граничная частота усиления по току и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1 и VT2.

 

Достоинства:

а) Высокий коэффициент усиления по току.

б) Cхема Дарлингтона изготавливается в виде интегральных схем и при одинаковом токе рабочая поверхность кремния меньше, чем у биполярных транзисторов. Данные схемы представляют большой интерес при высоких напряжениях.

 

Недостатки:

а) Низкое быстродействие, особенно перехода из открытого состояния в закрытое. По этой причине составные транзисторы используются преимущественно в низкочастотных ключевых и усилительных схемах, на высоких частотах их параметры хуже, чем у одиночного транзистора.

б) Прямое падение напряжения на переходе база-эмиттер в схеме Дарлингтона почти в два раза больше, чем в обычном транзисторе, и составляет для кремниевых транзисторов около 1,2 — 1,4 В (не может быть меньше, чем удвоенное падение напряжения на p-n переходе).

в) Большое напряжение насыщения коллектор-эмиттер, для кремниевого транзистора около 0,9 В (по сравнению с 0,2 В у обычных транзисторов) для маломощных транзисторов и около 2 В для транзисторов большой мощности (не может быть меньше чем падение напряжения на p-n переходе плюс падение напряжения на насыщенном входном транзисторе).

Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора. Величина резистора выбирается с таким расчётом, чтобы ток коллектор-эмиттер транзистора VT1 в закрытом состоянии создавал на резисторе падение напряжения, недостаточное для открытия транзистора VT2. Таким образом, ток утечки транзистора VT1 не усиливается транзистором VT2, тем самым уменьшается общий ток коллектор-эмиттер составного транзистора в закрытом состоянии. Кроме того, применение резистора R1 способствует увеличению быстродействия составного транзистора за счёт форсирования закрытия транзистора VT2. Обычно сопротивление R1 составляет сотни Ом в мощном транзисторе Дарлингтона и несколько кОм в малосигнальном транзисторе Дарлингтона. Примером схемы с эмиттерным резистором служит мощный n-p-n — транзистор Дарлингтона типа кт825, его коэффициент усиления по току равен 10000 (типичное значение) для коллекторного тока, равного 10 А.

ldsound.ru

Двухтранзисторные биполярные ключи в схемах на микроконтроллере

«Один в поле не воин». Так можно символически охарактеризовать однотранзисторные ключи. Естественно, в паре с себе подобными решать поставленные задачи гораздо легче. Введение второго транзистора позволяет снизить требования к разбросу и величине коэффициента передачи А21э- Двухтранзисторные ключи широко применяются для коммутации повышенных напряжений, а также для пропускания большого тока через нагрузку.

На Рис. 2.68, a…y приведены схемы подключения двухтранзисторных ключей на биполярных транзисторах к MK.

Рис. 2.68. Схемы подключения двухтранзисторных ключей на биполярных транзисторах (начало):

а)транзистор VT1 служит эмиттерным повторителем. Он усиливает ток и через ограничительный резистор R2 подаёт его в базу транзистора VT2, который непосредственно управляет нагрузкой RH;

б) транзисторы K77, VT2 включены по схеме Дарлингтона (другое название «составной транзистор»). Общее усиление равно произведению коэффициентов передачи Л21Э обоих транзисторов. Транзистор VT1 обычно ставят маломощный и более высокочастотный, чем VT2. Резистор R1 определяет степень насыщения «пары». Сопротивление резистора R2 выбирается обратно пропорционально току в нагрузке: от нескольких сотен ом до десятков килоом;

в) схема Д.Бокстеля. Диод Шоттки VD1 ускоряет запирание мощного транзистора VT2, повышая в 2…3 раза крутизну фронтов сигнала на частоте 100 кГц. Тем самым нивелируется основной недостаток схем с транзисторами Дарлингтона — низкое быстродействие;

г) аналогично Рис. 2.68, а, но транзистор VT1 открывается при переводе линии MK в режим входа с Z-состоянием или входа с внутренним « pull-up» резистором. В связи с этим уменьшается токовая нагрузка на линию порта, но снижается экономичность за счёт рассеяния дополнительной мощности на резисторе R1 при НИЗКОМ уровне на выходе MK;

д) «само защищённый ключ» на силовом транзисторе VT2 и ограничивающем транзисторе VT1 Как только ток в нагрузке Лн превысит определённый порог, например, из-за аварии или замыкания, на резисторе R3 выделяется напряжение, достаточное для открывания транзистора VT1 Он шунтирует базовый переход транзистора VT2, вызывая ограничение выходного тока;

е) двухтактный усилитель импульсов на транзисторах разной структуры; О

ж) транзистор И72открывается с относительно малой задержкой по времени (R2, VD1, C7), а закрывается — с относительно большой задержкой по времени (C7, R3, VT1)\

з) высоковольтный ключ, обеспечивающий фронты импульсов 0.1 МК с при частоте повторения до 1 МГц. В исходном состоянии транзистор VT1 открыт, а ГТ2закрыт. На время импульса транзистор VT1 открывается и через него быстро разряжается ёмкость нагрузки 7?н. Диод VD1 исключает протекание сквозных токов через транзисторы VT1, VT2\

и) составной эмиттерный повторитель на транзисторах VT1, ГТ2обладает сверхбольшим коэффициентом усиления по току. Резистор 7?2гарантированно закрывает транзисторы при НИЗКОМ уровне на выходе MK;

к)транзистор VT1 в открытом состоянии блокирует транзистор VT2. Резистор R1 служит коллекторной нагрузкой транзистора VT1 и ограничителем базового тока для транзистора VT2\ л) мощный двухтактный каскад с буферной логической микросхемой 7)7)7, которая имеет выходы с открытым коллектором. Сигналы с двух линий MK должны быть противофазными. Резисторы R5, 7?6ограничиваюттоки в нагрузке, подключаемой к цепи 6 вых; О

м) ключ для нагрузки Лн, которая подключается к источнику отрицательного напряжения. Транзистор VT1 служит эмиттерным повторителем, а транзистор VT2 — усилителем с общей базой. Максимальный ток нагрузки определяется по формуле /н[мА] = 3.7 /Л,[кОм]. Диод VDJ защищает транзистор VT2 от переполюсовки питания.

н) ключ на транзисторах разной структуры. Резистор R1 определяет ток в нагрузке RH, но подбирать его надо осторожно, чтобы не превысить ток базы транзистора VT2 при полностью открытом транзисторе VT1 Схема критична к коэффициентам передачи обоих транзисторов;

о) аналогично Рис. 2.68, н, но транзистор VT1 используется как ключ, а не как переменное сопротивление. Ток в нагрузке задаётся резистором R4. Резистор R5 ограничивает начальный пусковой ток транзистора VT2 при большой ёмкостной составляющей нагрузки RH. Схема не критична к коэффициентам передачи транзисторов. Если в качестве К72используется «суперба» транзистор KT825, то сопротивление R4 следует увеличить до 5.1 …10 кОм;

п) практический пример коммутации высоковольтного напряжения 170 В при низком токе нагрузки при сопртивлении RH не менее 27 кОм;

p) аналогично Рис. 2.68, н, но с активным НИЗКИМ уровнем на выходе MK; О

О Рис. 2.68. Схемы подключения двухтранзисторных ключей на биполярных транзисторах (окончание):

с) транзисторы VT1 и кТ2работают в противофазе. Напряжение в нагрузку Лн подаётся через транзистор VT2 и диод VD1, при этом транзистор VT1 должен быть закрыт ВЫСОКИМ уровнем с верхнего выхода MK. Чтобы снять напряжение с нагрузки, транзистор Г72закрывается ВЫСОКИМ уровнем с нижнего выхода MK, после чего транзистор VT1 открывается и через диод VD2 ускоренно разряжает ёмкость нагрузки. Достоинство — высокое быстродействие, возможность быстрой повторной подачи напряжения в нагрузку;

т) на MK подаётся «взвешенное» и отфильтрованное питание в диапазоне 4…4.5 В. Обеспечивают это гасящий стабилитрон VD1 и помехоподавляющий конденсатор C1. При ВЫСОКОМ уровне на выходе МК  транзисторы K77, Г72закрыты, при НИЗКОМ — открыты. Максимально допустимый ток стабилитрона VD1 должен быть таким, чтобы он был больше суммы тока потребления MK, тока через резистор R1 при НИЗКОМ уровне на выходе MK и тока внешних цепей, если они подключены к MK по другим линиям портов;

у) видеоусилитель натранзисторах VT1 и VT2, которые включены по схеме Шиклаи (Sziklai). Это разновидность схемы Дарлингтона, но на транзисторах разной проводимости. Данная «парочка» эквивалентна одному транзистору структуры п—р—п со сверхвысоким коэффициентом усиления Л21Э. Диоды VD1, КД2защищаюттранзисторы от выбросов напряжения, проникающих извне по цепи  ВЫх- Резистор R1 ограничивает ток при случайном коротком замыкании в кабеле, подстыкованном к внешней удалённой нагрузке 75 Ом.

Источник: Рюмик, С. М., 1000 и одна микроконтроллерная схема. Вып. 2 / С. М. Рюмик. — М.:ЛР Додэка-ХХ1, 2011. — 400 с.: ил. + CD. — (Серия «Программируемые системы»).

nauchebe.net

Составные транзисторы. Схемы включения. | HomeElectronics

Транзисторы как силовые элементы многих радиоэлектронных устройств для нормальной работы должны выполнять следующие функции:

1. Обеспечивать управление заданным током нагрузки при большом усилении по мощности.

2. Обладать достаточной (с учётом заданной выходной мощности и диапазонов изменения входного и выходного напряжений) рассеиваемой мощностью.

3. Иметь максимально допустимое напряжение коллектор – эмиттер, позволяющее без опасности пробоя обеспечивать необходимое падение напряжение на переходе коллектор – эмиттер при возможных значениях входного и выходного напряжений.

В некоторых случаях имеющиеся в наличии транзисторы не позволяют выполнить одно или несколько вышеописанных условий, тогда прибегают к помощи так называемых составных транзисторов. Схем составных транзисторов существует великое множество, но основных схем существует всего три.

Тандемное включение транзисторов (схемы Дарлингтона и Шиклаи)

Довольно часто возникает ситуация, когда необходимого коэффициента усиления одного транзистора не хватает. В этом случае транзисторы соединяют тандемно (то есть выходной ток первого транзистора является входным током для второго). Существует две схемы такого включения: схема Дарлингтона и схема Шиклаи. Отличие заключается лишь в том, что в схеме Дарлингтона используются транзисторы одинакового типа проводимости, а в схеме Шиклаи – разного типа проводимости.



Схема Дарлингтона



Схема Шиклаи

Данные пары – это просто два каскада эмиттерного повторителя. Иногда данные составные схемы транзисторов называют «супер-β» пары, так как они функционируют как один транзистор с высоким коэффициентом усиления.

Общий коэффициент передачи тока будет равен:


h21e(ОБЩ) = h21e(VT1)*h21e(VT2)

При использовании данных схем вполне возможна такая ситуация, когда нагрузка уменьшится до нуля (или некоторого минимального значения, близкого к нулю) или при повышении температуры базовый ток транзистора VT1 может стать равным нулю или даже переменить направление за счёт неуправляемого обратного тока коллектора. Во избежание запирания транзистора VT2 его режим следует стабилизировать с помощью резистора R1.

Величину сопротивления R1 можно определить по формуле:


R1 ≤ UE min/ICBO(VT1)

Параллельное включение транзисторов

Современные транзисторы позволяют реализовать электронные схемы расчитаные на широкие диапазоны изменений токов и напряжений, но в отдельных случаях для увеличения допустимой мощности рассеивания применяется параллельное включение транзисторов.



Схема параллельного включения транзисторов

Максимально допустимый ток протекающий через такой составной транзистор равен:


IKmax(общ) = IKmax(VT1) + IKmax(VT2)

При такой схеме включения транзисторов следует учитывать, что вследствие разброса параметров параллельно включённых транзисторов токи между ними распределяются неравномерно. Большая часть тока будет протекать через транзистор, имеющий больший коэффициент усиления. Рассеиваемые транзисторами мощности можно выровнять включением в их эмиттерные цепи дополнительных симметрирующих резисторов с небольшими сопротивлениями. Так как на практике трудно подбирать такие сопротивление для каждого транзистора, в практических схемах в эмиттеры всех транзисторов ставят резисторы одного сопротивления. Сопротивление симметрирующих резисторов R1 и R2 можно определить по формуле


R1 = R2 ≈ 0,5n/IK,

где n – число параллельно соединенных транзисторов

IK — ток проходящий через коллектор.

Такой способ связан с ухудшением усилительных свойств транзисторов, однако его достоинством является возможность получения мощного силового элемента при использовании относительно маломощных транзисторов.

Последовательное включение транзисторов

Во время работы силового транзистора на его переходе коллектор – эмиттер падает напряжение, представляющее собой разность входного и выходного напряжений. В отдельных случаях эта разность может превышать максимально допустимое напряжений коллектор – эмиттер транзистора, имеющегося в распоряжении. В этом случае необходимо использовать последовательное соединение нескольких транзисторов.



Схема последовательного включения транзисторов

Эквивалентный транзистор будет иметь следующие параметры:


UCEmax(общ) = UCEmax(VT1) + UCEmax(VT2)

Для симметрирования напряжений, которые будут падать на переходе коллектор – эмиттер транзисторов вводят симметрирующие резисторы R1 и R2 сопротивление, которых можно определить по формуле


R1 = R2 < UCEmax/2IB,

где IB – ток базы составного регулирующего транзистора.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Скажи спасибо автору нажми на кнопку социальной сети

www.electronicsblog.ru

ЗАМЕНА ТРАНЗИСТОРА ДАРЛИНГТОНА ПОЛЕВЫМИ ТРАНЗИСТОРАМИ – СДЕЛАЙ САМ

Биполярные транзисторы, включенные по схеме Дарлингтона, т. е. соединенные с общим коллектором (транзистор Дарлингтона), часто являются составным элементов радиолюбительских конструкций. Как известно, при таком включении коэффициент усиления по току, как правило, увеличивается в десятки раз. Однако добиться значительного запаса работоспособности по напряжению, воздействующему на каскад, удается не всегда. Усилители по схеме Дарлингтона, состоящие из двух биполярных транзисторов (Рис. 1.23), часто выходят из строя при воздействии импульсного напряжения, даже если оно не превышает значение электрических параметров, указанных в справочной литературе.

С этим неприятным эффектом можно бороться разными способами. Одним из них — самым простым — является наличие в паре транзистора с большим (в несколько раз) запасом ресурса по напряжению коллектор-эмиттер. Относительно высокая стоимость таких «высоковольтных» транзисторов приводит к увеличению себестоимости конструкции. Можно, конечно, приобрести специальные составные кремниевые транзисторы в одном корпусе, например: КТ712, КТ825, КТ827, КТ829, КТ834, КТ848, КТ852, КТ853, КТ894, КТ897, КТ898, КТ972, КТ973 и др. Этот список включает мощные и средней мощности приборы, разработанные практически для всего спектра радиотехнических устройств. А можно воспользоваться классической схемой Дарлингтона — с двумя параллельно включенными полевыми транзисторами типа КП501В — или использовать приборы КП501А…В, КП540 и другие с аналогичными электрическими характеристиками (Рис. 1.24). При этом вывод затвора подключают вместо базы VT1, а вывод истока — вместо эмиттера VT2, вывод стока — вместо объединенных коллекторов VT1, VT2.

Рис. 1.23. Схема включения транзисторов по схеме Дарлингтона

Рис. 1.24. Замена полевыми транзисторами составного транзистора по схеме Дарлингтона

После такой несложной доработки, т.е. замены узлов в электрических схемах, универсального применения, усилитель тока на транзисторах VT1, VT2 не выходит из строя даже при 10-кратной и более перегрузке по напряжению. Причем сопротивление ограничительного резистора в цепи затвора VT1 также увеличивается в несколько раз. Это приводит к тому, что полевые транзисторы имеют более высокое входное сопротивление и, как следствие, выдерживают перегрузки при импульсном характере управления данным электронным узлом.

Коэффициент усиления по току полученного каскада не менее 50. Увеличивается прямо пропорционально увеличению напряжения питания узла.

Элементы схемы и их назначение

Резистор Rt. Сопротивление резистора           зависит от характера на грузки и выбирается таким, чтобы на выводе затвора параллельно соединенных полевых транзисторов присутствовало 0,5 Упит. При этом максимальный ток не должен превышать 0.2 А (в случае применения полевого транзистора из серии КП501).

Полевые транзисторы VT1, VT2. При отсутствии дискретных транзисторов типа КП501А…В можно без потери качества работы устройства использовать микросхему 1014КТ1В. В отличие, например, от 1014КТ1А и 1014КТ1Б эта микросхема выдерживает более высокие перегрузки по приложенному напряжению импульсного характера — до 200 В постоянного напряжения. Цоколевка включения транзисторов микросхемы 1014КТ1А…1014К1В показана на Рис. 1.25.

Так же как и в предыдущем варианте (Рис. 1.24), полевые транзисторы включают параллельно.

Рис. 1.25.

Цоколевка полевых транзисторов в микросхеме 1014КТ1А…В

Автор опробовал десятки электронных узлов, включенных по схеме Дарлингтона. Такие узлы используются в радиолюбительских конструкциях в качестве токовых ключей аналогично составным транзисторам, включенным по схеме Дарлингтона. К перечисленным выше особенностям полевых транзисторов можно добавить их энергоэкономичность, так как в закрытом состоянии из-за высокого входного сопротивления они практически не потребляют тока. Что касается стоимости таких транзисторов, то сегодня она практически такая же, как и стоимость среднемощных транзисторов типа КТ815, КТ817, КТ819 (и аналогичным им), которые принято использовать в качестве усилителя тока для управления устройствами нагрузки.

Источник: Кяшкаров А. П., Собери сам: Электронные конструкции за один вечер. — М.: Издательский дом «Додэка-ХХ1», 2007. — 224 с.: ил. (Серия «Собери сам»).

nauchebe.net

Управление мощной нагрузкой постоянного тока. Часть 2

Когда на раскачку нагрузки мощности одного транзистора не хватает, то применяют составной транзистор (транзистор Дарлингтона). Тут суть в том, что один транзистор открывает другой. А вместе они работают как единый транзистор с коэффициентом усиления по току равным произведению коэффициентов первого и второго транзов.


Если взять, например, транзистор MJE3055T у него максимальный ток 10А, а коэффициент усиления всего около 50, соответственно, чтобы он открылся полностью, ему надо вкачать в базу ток около двухста миллиампер. Обычный вывод МК столько не потянет, а если влючить между ними транзистор послабже (какой-нибудь BC337), способный протащить эти 200мА, то запросто. Но это так, чтобы знал. Вдруг придется городить управление из подручного хлама — пригодится.

На практике обычно используются готовые транзисторные сборки. Внешне от обычного транзистора ничем не отличается. Такой же корпус, такие же три ножки. Вот только мощи в нем больно дофига, а управляющий ток микроскопический 🙂 В прайсах обычно не заморачиваются и пишут просто — транзистор Дарлигнтона или составной транзистор.

Например пара BDW93C (NPN) и BDW94С (PNP) Вот их внутренняя структура из даташита.


Обрати внимание, что там уже встроен защитный диод (нужен для защиты транзистора от пробоя при обрыве индуктивной нагрузки) и есть дополнительные резисторы. Когда VT1 закрыт то у него все равно есть ток утечки, так вот чтобы он не приоткрывал транзистор VT2 ставят R2, который отводит через себя значительную часть этого тока. R1 стоит для той же цели, но для защиты от утечки со стороны внешнего мира.

Мало того, существуют сборки дарлингтонов. Когда в один корпус упаковывают сразу несколько. Незаменимая вещь когда надо рулить каким-нибудь мощным светодиодным таблом или шаговым двигателем (хотя там лучше L298 или L293 я еще не встречал). Отличный пример такой сборки — очень популярная и легко доступная ULN2003, способная протащить до 500мА на каждый из своих семи сборок. Выходы можно включать в параллель, чтобы повысить предельный ток. Итого, одна ULN может протащить через себя аж 3.5А, если запараллелить все ее входы и выходы. Что мне в ней радует — выход напротив входа, очень удобно под нее плату разводить. Напрямик.

В даташите указана внутренняя структура этой микросхемы. Как видишь, тут также есть защитные диоды. Несмотря на то, что нарисованы как будто бы операционные усилители, здесь выход типа открытый коллектор. То есть он умеет замыкать только на землю. Что становится ясно из того же даташита если поглядеть на структуру одного вентиля.


Что до практического применения, то вот таким макаром, через одну ULN2003 можно рулить, например, семью релюшками или соленоидами.

Продолжение следует

easyelectronics.ru

Составной транзистор Википедия

Пара Дарлингтона составленная из транзисторов n-p-n типа

Составно́й транзи́стор — электрическое соединение двух (или более) биполярных транзисторов, полевых транзисторов или IGBT-транзисторов, с целью улучшения их электрических характеристик. К этим схемам относят так называемую пару Дарлингтона, пару Шиклаи, каскодную схему включения транзисторов, схему так называемого токового зеркала и др.

Пара Дарлингтона

Пара Дарлингтона с резистором, который используется в качестве нагрузки транзистора VT1.

Составной транзистор (или схема) Дарлингтона (часто — пара Дарлингтона) была предложена в 1953 году инженером Bell Laboratories Сидни Дарлингтоном (Sidney Darlington). Схема является каскадным соединением двух (редко — трех или более) биполярных[1] транзисторов, включённых таким образом, что нагрузкой в эмиттерной цепи предыдущего каскада является переход база-эмиттер транзистора последующего каскада (то есть эмиттер предыдущего транзистора соединяется с базой последующего), при этом коллекторы транзисторов соединены. В этой схеме ток эмиттера предыдущего транзистора является базовым током последующего транзистора.

Коэффициент усиления по току пары Дарлингтона очень высок и приблизительно равен произведению коэффициентов усиления по току транзисторов составляющих такую пару. У мощных транзисторов включенных по схеме пары Дарлингтона, конструктивно выпускаемой в одном корпусе (например, транзистор КТ825) гарантированный коэффициент усиления по току при нормальных условиях эксплуатации) не менее 750[2].

У пар Дарлингтона, собранных на маломощных транзисторах этот коэффициент может достигать значения 50000.

Высокий коэффициент усиления по току обеспечивает управление малым током, поданным на управляющий вход составного транзистора, выходными токами превышающими входной на несколько порядков.

Достигнуть повышения коэффициента усиления по току можно также уменьшив толщину базы при изготовлении транзистора, такие транзисторы выпускаются промышленностью и называются «супербета транзистор», но процесс их изготовления представляет определённые технологические трудности и такие транзисторы имеют очень низкие коллекторные рабочие напряжения, не превышающие нескольких вольт. Примерами супербета транзисторов могут служить серии одиночных транзисторов КТ3102, КТ3107. Однако и такие транзисторы иногда объединяют в схеме Дарлингтона. Поэтому в относительно сильноточных и высоковольтных схемах, где требуется снизить управляющий ток, используются пары Дарлингтона или пары Шиклаи.

Иногда и схему Дарлингтона не совсем корректно называют «супербета транзистор»[3].

Составные транзисторы Дарлингтона используются в сильноточных схемах, например, в схемах линейных стабилизаторов напряжения, выходных каскадах усилителей мощности) и во входных каскадах усилителей, если необходимо обеспечить большой входной импеданс и малые входные токи.

Составной транзистор имеет три электрических вывода, которые эквивалентны выводам базы, эмиттера и коллектора обычного одиночного транзистора. Иногда в схеме для ускорения закрывания выходного транзистора и снижения влияния начального тока входного транзистора используется резистивная нагрузка эмиттера входного транзистора, как показано на рисунке.

Пару Дарлингтона электрически в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в линейном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов, например, двух:

βD≈β1⋅β2{\displaystyle \beta _{D}\approx \beta _{1}\cdot \beta _{2}}
где βD{\displaystyle \beta _{D}} — коэффициент усиления по току пары Дарлингтона;
β1,{\displaystyle \beta _{1},} β2{\displaystyle \beta _{2}} — коэффициенты усиления по току транзисторов пары.

Покажем, что составной транзистор действительно имеет коэффициент β{\displaystyle \beta }, значительно больший, чем у его обоих транзисторов. Анализ проведен для схемы без эмиттерного резистора R1{\displaystyle R_{1}} (см. рисунок).

Ток эмиттера IE{\displaystyle I_{E}} любого транзистора через базовый ток IB,{\displaystyle I_{B},} статический коэффициент передачи тока базы β{\displaystyle \beta } и из 1-го правила Кирхгофа выражается формулой:

IE=IB+IC=IB+IB⋅β=IB⋅(1+β),{\displaystyle I_{E}=I_{B}+I_{C}=I_{B}+I_{B}\cdot \beta =I_{B}\cdot (1+\beta ),}
где IC{\displaystyle I_{C}} — ток коллектора.

Так как ток эмиттера второго транзистора IE2{\displaystyle I_{E2}}, опять же из 1-го правила Кирхгофа равен:

IE2=IB1+IC1+IC2,{\displaystyle I_{E2}=I_{B1}+I_{C1}+I_{C2},}
где IB1{\displaystyle I_{B1}} — базовый ток 1-го транзистора;
IC1,{\displaystyle I_{C1},} IC2{\displaystyle I_{C2}} — коллекторные токи транзисторов.

Имеем:

βD=β1+β2+β1⋅β2,{\displaystyle \beta _{D}=\beta _{1}+\beta _{2}+\beta _{1}\cdot \beta _{2},}
где β1,{\displaystyle \beta _{1},} β2,{\displaystyle \beta _{2},} — статические коэффициенты передачи тока базы на коллектор транзисторов 1 и 2.

Так как у транзисторов β>>1,{\displaystyle \beta >>1,} то βD≈β1⋅β2.{\displaystyle \beta _{D}\approx \beta _{1}\cdot \beta _{2}.}

Следует отметить, что коэффициенты β1{\displaystyle \beta _{1}} и β2{\displaystyle \beta _{2}} различаются даже в случае применения пары совершенно одинаковых по всем параметрам транзисторов, поскольку ток эмиттера IE2{\displaystyle I_{E2}} в 1+β2{\displaystyle 1+\beta _{2}} раз больше тока эмиттера IE1{\displaystyle I_{E1}}, (это вытекает из очевидного равенства IB2=IE1,{\displaystyle I_{B2}=I_{E1},} а статический коэффициент передачи тока транзистора заметно зависит от тока коллектора и может различаться в разы при разных токах[4].

Пара Шиклаи

Каскад Шиклаи, эквивалентный n-p-n транзистору

Паре Дарлингтона подобно соединение транзисторов по схеме Шиклаи (Sziklai pair), названное так в честь его изобретателя Джорджа К. Шиклаи, также иногда называемое комплементарным транзистором Дарлингтона[5]. В отличие от схемы Дарлингтона, состоящей из двух транзисторов одного типа проводимости, схема Шиклаи содержит транзисторы разного типа проводимости(p-n-p и n-p-n). Пара Шиклаи электрически эквивалентна n-p-n-транзистору c большим коэффициентом усиления. Входное напряжение — это напряжение между базой и эмиттером транзистора Q1, а напряжение насыщения равно по крайней мере падению напряжения на диоде[уточнить]. Между базой и эмиттером транзистора Q2 обычно включают резистор с небольшим сопротивлением. Такая схема применяется в мощных двухтактных выходных каскадах при использовании выходных транзисторов одной проводимости.[уточнить]

Каскодная схема

Основная статья: Каскодный усилитель

Составной транзистор, выполненный по так называемой каскодной схеме, характеризуется тем, что транзистор VT1 включен по схеме с общим эмиттером, а транзистор VT2 — по схеме с общей базой. Такой составной транзистор эквивалентен одиночному транзистору, включенному по схеме с общим эмиттером, но при этом он имеет гораздо лучшие частотные свойства, высокое выходное сопротивление и больший линейный диапазон, то есть меньше искажает передаваемый сигнал. Так как потенциал коллектора входного транзистора практически не изменяется, это существенно подавляет нежелательное влияние эффекта Миллера и расширяет рабочий диапазон по частоте.

Достоинства и недостатки составных транзисторов

Высокие значения коэффициента усиления в составных транзисторах реализуются только в статическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ — граничная частота усиления по току и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1 и VT2.

Достоинства составных пар Дарлингтона и Шиклаи:

  • Высокий коэффициент усиления по току.
  • Схема Дарлингтона изготавливается в составе интегральных схем и при одинаковом токе площадь занимаемая парой на поверхности кристалла кремния меньше, чем у одиночного биполярного транзистора.
  • Применяются при относительно высоких напряжениях.

Недостатки составного транзистора:

  • Низкое быстродействие, особенно в ключевом режиме при переходе из открытого состояния в закрытое. Поэтому составные транзисторы используются преимущественно в низкочастотных ключевых и усилительных схемах, работающих в линейном режиме. На высоких частотах их частотные параметры хуже, чем у одиночного транзистора.
  • Прямое падение напряжения Uбэ составного транзистора в схеме Дарлингтона почти в два раза больше[6], чем у одиночного транзистора, и составляет для кремниевых транзисторов около 1,2 — 1,4 В, так как равна сумме падений напряжения на прямосмещённых p-n переходах двух транзисторов.
  • Большое напряжение насыщения коллектор-эмиттер, для кремниевого транзистора около 0,9 В (по сравнению с 0,2 В у обычных транзисторов) для маломощных транзисторов и около 2 В для транзисторов большой мощности, так как не может быть меньше чем падение напряжения на прямосмещённом p-n переходе плюс падение напряжения на насыщенном входном транзисторе.[уточнить]

Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора. Величина резистора выбирается с таким расчётом, чтобы ток коллектор-эмиттер транзистора VT1 в закрытом состоянии (начальный ток коллектора) создавал на резисторе падение напряжения, недостаточное для открытия транзистора VT2. Таким образом, ток утечки транзистора VT1 не усиливается транзистором VT2, тем самым уменьшается общий ток коллектор-эмиттер составного транзистора в закрытом состоянии. Кроме того, применение резистора R1 способствует увеличению быстродействия составного транзистора за счёт форсирования закрытия транзистора, так как неосновные носители, накопленные в базе VT2 при его запирании из режима насыщения не только рассасываются, но и стекают через этот резистор. Обычно сопротивление R1 выбирают величиной сотни ом в мощном транзисторе Дарлингтона и несколько килоом в маломощном транзисторе Дарлингтона. Примером схемы Дарлингтона выполненной в одном корпусе со встроенным эмиттерным резистором служит мощный n-p-n транзистор Дарлингтона типа КТ825, его типовой коэффициент усиления по току около 1000 при коллекторном токе 10 А.

Примечания

  1. ↑ Полевые транзисторы, в отличие от биполярных, не используются в составном включении, так как обладая высоким входным сопротивлением, управляются напряжением, а не током и такое включение нецелесообразно.
  2. ↑ Технический паспорт транзистора КТ825.
  3. ↑ Супербе́та (супер-β) транзисторами называют транзисторы со сверхбольшим значением коэффициента усиления по току, полученным за счёт очень малой толщины базы, а не за счёт составного включения. При этом рабочий базовый ток одиночного транзистора можно снизить до десятков пА. Такие транзисторы применены в первом каскаде операционных усилителей со сверхмалыми входными токами, например, типов LM111 и LM316.
  4. Степаненко И. П. Основы теории транзисторов и транзисторных схем. — 4-е изд., перераб. и доп.. — М.: Энергия, 1977. — С. 233, 234. — 672 с.
  5. Хоровиц П., Хилл У. Искусство схемотехники: В 3-х томах: Пер. с. англ. — 4-е изд., перераб. и доп. — М.: Мир, 1993. — Т. 1. — С. 104, 105. — 413 с. — 50 000 экз. — ISBN 5-03-002337-2.
  6. ↑ Это не всегда (не во всех применениях) является недостатком, но всегда — особенностью, которую надо учитывать при расчёте схемы по постоянному току, и которая не позволяет напрямую заменить одиночный транзистор на составной Дарлингтона.

wikiredia.ru

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *