Вентиль транзистора – Транзисторный вентиль — Большая Энциклопедия Нефти и Газа, статья, страница 1

1.2. Управляемые тиристорные вентили

Управляемые
полупроводниковые вентили представлены
тиристорами
и обозначаются VS.
Тиристор — это четырехслойный р-п-р-п
полупроводниковый
прибор (рис. 2), который используется в
качестве электронного
ключа. Он включается при подаче на
управляющий
электрод УЭ
короткого
положительного импульса

Рис. 2. Структура
и вольт-амперная характеристика тиристора

при
условии, что на анод А
подано
положительное по отношению
к катоду К
напряжение.
Статические ВАХ тиристора
приведены на рис. 2. В открытом состоянии
прямой ток через
тиристор ограничивается сопротивлением
нагрузки. Закрывается
тиристор изменением полярности анодного
напряжения
или уменьшением тока удержания до
значения меньше
Iудт.
В настоящее время существуют также
полностью
управляемые тиристоры, которые запираются
подачей отрицательного импульса на УЭ.

Из
рассмотрения статических ВАХ видно,
что тиристор можно
привести в открытое состояние путем
увеличения приложенного
к нему прямого напряжения до критического
значения
UвклТ
без воздействия на управляющий переход
(Iу=0).
Тиристор может также перейти в открытое
состояние
и при меньшем значении напряжения, чем
UвклT,
если
скорость
его нарастания достаточно высока. Однако
такое включение
тиристора нежелательно, поэтому тиристоры
нормально работают при входном
синусоидальном напряжении,
скорость нарастания которого не превышает
нескольких
десятков вольт за микросекунду.

Для
тиристора различают параметры, относящиеся
к цепи
основного тока и цепи управления.
Основная цепь тиристора,
кроме параметров прямого тока, аналогичных
параметрам силовых полупроводниковых
диодов, характеризуется
напряжением включения UвклT,
током включения Iвкл,
а
также током удержания
IудТ,
минимальное значение которого
определяется режимом цепи управления.
В свою очередь,
цепь управления (как р-п
переход)
характеризуется напряжениями
и токами в прямом и обратном направлениях.

Общая
мощность РТ,
рассеиваемая тиристором, состоит из
мощности потерь в прямом и обратном
направлениях по основной
цепи и на управляющем электроде:.

PT=PсpmaxT
+ Py.cpmaxT

Надежность
тиристоров, как любого полупроводникового
прибора,
обеспечивается выбором безопасных
электрических и тепловых режимов работы.

Максимально
допустимые токи по основной цепи
определяются
конструкцией тиристора. Нагрев тиристора
зависит от падения напряжения и
действующих значений токов по
основной цепи и управляющему электроду.

Кроме тиристоров
с управляемым моментом отпирания в
настоящее время применяются и полностью
управляемые тиристоры, которые могут
не только отпираться, но и запираться
с помощью внешних управляющих импульсов.
Полностью управляемые тиристоры при
одном и том же выходном напряжении
позволяют менять временное положение
импульса открытого состояния тиристора.
В результате для питающей сети входное
сопротивление сети приближается к
активному и уменьшаются потери за счет
реактивной составляющей входного тока
выпрямителя.

1.3. Управляемые вентили на транзисторах

В
современных устройствах питания в
качестве полностью управляемых мощных
ключевых элементов применяют биполярные,
полевые с изолированным затвором
(MOSFET)
и составные транзисторы. В качестве
составных транзисторов используется
специальная полупроводниковая структура,
называемая IGBT
транзистором. На рис. 1 приведено её
обозначение, а на рис.2 эквивалентная
схема.

Рис. 1 Рис.2

На
рис. 3 и 4 представлены структура
полупроводниковых слоев IGBT
транзистора и внешний вид такого
транзистора на напряжение более3000 В и
импульсный ток 3000 А.

Рис. 3 Рис. 4

Литература

1. Электропитание
устройств и систем телекоммуникаций:
Уч пособие для вузов / В.М. Бушуев, В.А.
Деминский, Л.Ф.Захаров и др. — М.: Горячая
линия -Телеком, 2009 -384 с.: ил.

2. Грумбина А.Б.
Электрические машины и источники питания
радиоэлектронных устройств –
М.:Энергоатомиздат, 1990.-368с.

3. Мэк Р. Импульсные
источники питания/Пер. с англ. – М.: ИД
«ДодэкаXXI»,
2008, 272 c.

4. Готтлиб И.М.
Источники питания. Инверторы, конверторы,
линейные и импульсные стабилизаторы.
Москва: Постмаркет, 2000. – 552с.

5. Москатов Е.А.
Источники питания. — «МК-Пресс», СПб.:
«КОРОНА-ВЕК», 2011, — 208 с.,ил.

6. Гейтенко Е.Н.
Источники вторичного электропитания.
Схемотехника и расчет. Учебное пособие.
–М.: СОЛОН-ПРЕСС, 2008.448с.

studfiles.net

Как работает транзистор: схемы

Для усиления электрических импульсов используются полупроводниковые триоды. Так как работает транзистор за счет изменения напряжения в сети, он может регулировать силу тока в определенном электрическом устройстве.

Виды транзисторов

Транзистор – это полупроводниковый активный радиоэлемент, который необходим для генерирования, преобразования и усиления электрического сигнала (его частоты и силы). Его еще называют полупроводниковым триодом. Этот элемент схемы необходим для работы практически всех известных электрических устройств (коммутатор зажигания, диодный мост, блок питания, переключатель нагрузки, датчик и т. д.). Он был запатентован в начале 20-го века при участии известного ученого-физика Юлия Эдгара Лилиенфельда, но его совершенствование произошло только на базе уже существующего биполярного в 60-х. Только спустя 20 лет Шокли, Бардином и Браттейном были созданы первые биполярные триоды.

Фото – конструкция

Конструктивно транзистор состоит из трех электродов: база, эмиттер, коллектор. Здесь эмиттером и коллектором представлены основные детали устройства, база выполняет функции управления сетью, усиления тока и его преобразования. Схема с этим электрическим элементом обозначается в виде трех электродных отводов, заключенных в круг. Стрелка указывает направление тока в эмиттере.

Фото – виды триодов

Существует два типа транзисторов: полевой и биполярный, они отличаются друг от друга принципом работы и областью использования. Полевой элемент управляется входящим напряжение сети, в то время, как биполярный – током. Рассмотрим их работу более подробно.

Фото – структура

Полевой транзистор – это однопереходный элемент, т. к. в нем протекает заряд только с одним знаком (+ или -). Поэтому они называются униполярными. Эти детали классифицируются по типу управления:

  1. С р-n переходом или барьером Шоттки;
  2. С изолированным затвором MOSFET;
  3. МДП или металл-диэлектрик-проводник.

Изолированный элемент практически ничем не отличается от неизолированного, за исключением дополнительного слоя диэлектрика между затвором и каналом. Его называют МОП-транзистором из-за конструкции: металл-оксид-полупроводник.

Фото – устройство полевого

Биполярный транзистор известен своим свойством пропускать заряды с разным знаком через одну базу. В этом элементе ток продвигается через базу на коллектор. Бывает таких исполнений:

  1. n-p-n;
  2. p-n-p;
  3. С изолированным отводом IGBT.

npn – это транзисторы с обратной проводимостью. pnp – с прямой. Одним из подвидов обратного полупроводникового триода является оптотрон, который открывается не за счет тока, а при распознавании света. Элемент в таком режиме работы используется в разных датчиках освещенности, выключателях и т. д.

Фото – устройство биполярного

Помимо этого, данные элементы могут разниться по мощности, размеру, используемому материалу для базы. Мощность транзисторов находится в пределах от 100 мВт до 1 Вт и более, современная электроника использует все виды, в зависимости от назначения и конструктивных особенностей прибора.

Ранее биполярные транзисторы имели относительно большой размер, сравнительно с современными деталями. Сейчас электроника использует даже так называемые «острова» – это элементы, которые представлены на схеме в виде точки. Они практически незаметны постороннему глаз, но позволяют пропускать и контролировать сильные импульсы.

У каждого типа транзисторов есть определенные достоинства и недостатки:

  1. Полевые могут разрушаться при низких температурах и высокой влажности;
  2. Полевой регулятор сигналов очень чувствителен к статическому электричеству. Учитывая, что через усилитель проходят разряды тока до нескольких тысяч Вольт, его затвор может быть легко разрушен;
  3. Биполярные модели имеют малое сопротивление;
  4. Электронная схема с общей базой для подключения обратных транзисторов должна подключаться к двум разным источникам питания.

Принцип работы для начинающих

Полевой триод управляется воздействием на носители тока электрического поля, а не током входной базовой цепи. Основа этого элемента – кремниево-фосфорная пластина типа n, которая от смеси кремния и бора отличается большим количеством свободных электродов. На этой пластине находится затвор с каналом – он называется p-областью. Этот канал имеет два окончания – сток и исток, которые также имеют область p, но только с увеличенным количеством электронов. Благодаря этому, между каналом и затвором создается p-n переход.

Фото – принцип работы

Контактные выводы соединяют между собой затвор, исток и сток. Если к истоку подключен плюс, а к стоку минус от источника питания, то система канала начнет получать ток. Он будет создаваться за счет движения электронов между проводниками цепи. Это называется ток стока. Обратите внимание на то, что когда к истоку подключен положительный вывод, область обеднения расширяется, а канал сужается, за счет чего значительно увеличивается сопротивление стока. Соответственно, если область обеднения будет сужаться, то ток стока увеличиваться. Так работает полевой транзистор.

Фото – разница между триодами

Биполярный обратный npn работает за счет цепи эмиттер-коллектор. Когда к схеме подключается ток, то транзистор открывается. Если изменить напряжение тока, поступающего на базу, то можно будет управлять током в цепи. Этот принцип работы используется в большинстве моделей современной электроники.

Главным образом электротехника применяет транзисторы полярного и униполярного типа для усиления сигналов разнообразных датчиков или регулирования тока сети питания. Примечательной особенностью этих элементов является то, что на них можно собирать разные логические микросхемы, выступающие в роли логического умножителя, отрицателя и т. д.

Видео: объяснение работы транзистора
https://www.youtube.com/watch?v=37V3gDGvhPQ

Работа в схеме

Транзисторы – это одни из самых популярных и необходимых элементов схем в электронике. Рассмотрим, как эти элементы используются на триггере и регенераторе. Импульсный триггер Шмиттта – это генератор, в котором все входящее напряжение делится компаратором на три диапазона. Он состоит из транзисторов, которые соединены между собой гальванической связью и резистором, резисторов нагрузки и конденсатора.

Фото – работа транзистора в триггере Шмитта

Когда триггер подключается к источнику питания, то один его МОП-транзистор открывается, а второй закрывается. После этого в цепи появляется некоторое напряжение, уровень которого зависит от обвязки элементов схемы.

Использование полупроводниковых триодов в регенераторе необходимо для упрощения регулирования частоты тока. Главным достоинством использования транзисторной схемы здесь является то, что образующийся каскад может контролировать волны любой величины, начиная от ультразвука.

Фото – схема регенератора

Состоит такой регенератор из двух биполярных транзисторов 0,5 В, катушки и резистора. Такую схему можно подключить как автогенератор, тогда большая часть катушки уйдет в коллекторный отвод, а меньшая – в базовый. Напряжение к транзисторам подается через резисторы, с их помощью можно изменять напряжение и сопротивление сигнала между эмиттером и базой.

www.asutpp.ru

Передаточный вентиль

Библиотека:Проводка
Введён в:2.7.0
Внешний вид:

Поведение

У передаточного вентиля три входа, называемые исток, n-затвор, и p-затвор; и один выход, называемый сток. На схемах вход исток и выход сток изображаются соединёнными двумя пластинами; Logisim отрисовывает стрелку, указывающую направление потока от входа к выходу. Два входа затвор изображены как линии, соединённые с пластинами, параллельными каждой из пластин, соединяющих исток со стоком. У линии входа p-затвор есть кружок, а у линии входа n-затвор его нет.


p-затвор
истоксток
n-затвор

Передаточный вентиль — это просто комбинация двух комплементарных транзисторов. Фактически, то же поведение может быть достигнуто в Logisim с помощью всего одного транзистора. Однако конструкторы иногда предпочитают использовать сочетающиеся пары транзисторов из-за относящихся к электротехнике вопросов, связанных с напряжением утечки, что является более сложным явлением, чем те, что Logisim пытается моделировать.

Ожидается, что значения на n-затворе и p-затворе противоположны друг другу. Если на p-затворе 0, а на n-затворе 1, то значение с истока передаётся на сток. Если на p-затворе 1, а на n-затворе 0, то соединение разрывается, и значение на стоке остаётся плавающим. Во всех остальных случаях на стоке значение ошибки — если только на истоке не плавающее значение, в таком случае — на стоке тоже плавающее значение. Это поведение обобщено следующей таблицей.

p-затворn-затворсток
00X*
01исток
10Z
11X*
X/ZлюбоеX*
любоеX/ZX*

* Если на истоке Z, то на стоке Z; в противном случае на стоке X.

Если значение атрибута Биты данных больше единицы, то каждый вход затвор остаётся однобитным, но значения с затворов применяются одновременно к каждому биту входа исток.

Контакты (предполагается, что компонент направлен на восток, положение затвора — сверху/справа)

Западный край (вход, разрядность соответствует атрибуту Биты данных)

Вход исток компонента, значение с которого будет передано на выход, если это инициировано входами p-затвор и n-затвор.


Северный край (вход, разрядность равна 1)

Вход p-затвор компонента.


Южный край (вход, разрядность равна 1)

Вход n-затвор компонента.


Восточный край (выход, разрядность соответствует атрибуту Биты данных)
Выход компонента, значение на котором будет совпадать со значением на входе исток, если на p-затворе 0 и на n-затворе 1, или будет плавающим, если на p-затворе 1 и на n-затворе 0. При всех других значениях на p-затворе и n-затворе, на выходе будет значение ошибки.


Атрибуты

Когда компонент выбран, или уже добавлен, комбинации от Alt-0 до Alt-9 меняют его атрибут Биты данных, а клавиши со стрелками меняют его атрибут Направление.

Направление

Направление компонента (его выхода относительно его входа).


Положение затвора

Положение входа затвор.


Биты данных

Разрядность входов и выходов компонента.


Поведение Инструмента Нажатие

Нет.

Поведение Инструмента Текст

Нет.

Назад к Справке по библиотеке

www.cburch.com

Транзисторный вентиль — Большая Энциклопедия Нефти и Газа, статья, страница 1

Транзисторный вентиль

Cтраница 1

Простейшая схема транзисторного вентиля ИЛИ-НЕ показана на рис. 8.9. Эта схема использовалась в семействе логических элементов РТЛ ( резисторно-тран-зисторная логика), которые из-за низкой стоимости были популярны в 1960 — х годах, но в настоящее время они совершенно не употребляются. ВЫСОКИЙ уровень, действующий по любому входу ( или по обоим одновременно), откроет хотя бы один транзистор и на выходе возникнет НИЗКИЙ уровень. Поскольку по своей сути такой вентиль является инвертирующим, то для того, чтобы получить из него вентиль ИЛИ, к нему нужно добавить инвертор, как показано на рисунке.
 [1]

На рис. 8.9. показана простейшая схема транзисторного вентиля ИЛИ-НЕ. Эта схема использовалась в семействе логических элементов РТЛ ( резисторно-транзисторная логика), которые благодаря своей низкой стоимости были популярны в 1960 — х годах, однако в настоящее время полностью вышли из употребления. ВЫСОКИЙ уровень, действующий по любому входу ( или по обоим одновременно), откроет хотя бы один транзистор и на выходе возникает НИЗКИЙ уровень. Поскольку такой вентиль является инвертирующим по самой своей сути, то для того, чтобы получить из него вентиль ИЛИ, к нему нужно добавить инвертор, как показано на рисунке.
 [3]

Его основой является четырехразрядная микропроцессорная секция ( МПС), выполненная на прогрессивной биполярной технологии интегрально-инжекционной логики ( ИИЛ) и содержащая около 1500 транзисторных вентилей.
 [4]

Для этих вентилей в отличие от электронных и транзисторных вентилей полного управления, применяемых в цепях преобразования информации, характерно применение в последних каскадах усиления мощности и в главных энергетических цепях, выполняющих полезную работу.
 [5]

Страницы:  

   1




www.ngpedia.ru

Логический вентиль

Изобретение относится к электронике и предназначено для использования в интегральных логических устройствах на комплементарных униполярных полевых транзисторах структуры металл-окисел-полупроводник (МОП) с индуцированными каналами p и n типов проводимости и биполярных транзисторах n-p-n и p-n-p структур. Техническим результатом является повышение надежности за счет снижения паразитных емкостей базовых узлов. Логический вентиль содержит МОП-ключи p и n типов проводимости, истоковые выводы которых соответственно подключены к шинам положительного и отрицательного полюсов напряжения питания, эмиттерные повторители на биполярных транзисторах n-p-n и p-n-p структур, коллекторы которых соответственно подключены к шинам положительного и отрицательного полюсов напряжения питания, а эмиттеры соединены с выходом логического вентиля, МОП-ключи p и n типов проводимости составляют более двух комплементарных пар, в каждой из которых стоковые выводы МОП-ключей соединены и подключены к базе биполярного транзистора соответствующего эмиттерного повторителя. 3 ил.

 

Изобретение относится к электронике и предназначено для использования в интегральных логических устройствах на комплементарных униполярных полевых транзисторах структуры металл-окисел-полупроводник (МОП) с индуцированными каналами p и n типов проводимости и биполярных транзисторах n-p-n и p-n-p структур.

Известны логические вентили, выполненные на комплементарных МОП-транзисторах, см., например, Горюнов Е.П. Элементы и узлы ЭЦВМ. Учеб. пособие для втузов. М.: Высшая школа, 1976 [1], с. 176, рис. 9.22. Р- и n-МОП-транзисторы в таких вентилях составляют ключи, попеременно подключающие выход вентиля к шинам положительного и отрицательного полюсов напряжения питания, формируя, таким образом, выходные уровни логических единицы и нуля. Недостатком таких устройств является низкая нагрузочная способность из-за низкой проводимости каналов МОП-транзисторов.

Повысить нагрузочную способность логического вентиля на комплементарных МОП-транзисторах позволяет дополнение его биполярными транзисторами n-p-n и p-n-p структур, образующими выходные эмиттерные повторители, см. [1], с. 224, рис. 11.2. Данное решение по технической сущности и достигаемому положительному эффекту наиболее близко к изобретению.

Наиболее близкий аналог содержит МОП-ключ p типа проводимости и биполярный транзистор n-p-n структуры, истоковый вывод и коллектор которых соединены с шиной положительного полюса напряжения питания, а также n-МОП-ключ и биполярный p-n-p транзистор, истоком и коллектором подключенные к шине отрицательного полюса напряжения питания. Базы биполярных транзисторов соединены и подключены к стоковым выводам МОП-ключей, а эмиттеры соединены и являются выходом логического вентиля.

Устройство работает следующим образом.

При формировании логической единицы на выходе логического вентиля в p-МОП-ключе открывается канал, соединяющий базы биполярных транзисторов с шиной положительного полюса напряжения питания. В это время в n-МОП-ключе канала нет. Вследствие этого на базы биполярных транзисторов выходных эмиттерных повторителей поступает потенциал положительного полюса источника питания.

Нулевое состояние логического вентиля возникает при наличии канала в n-МОП-ключе и отсутствии его в p-МОП-ключе, когда базовый узел выходных биполярных транзисторов подключен к шине отрицательного полюса напряжения питания.

Высокая нагрузочная способность устройства достигается благодаря способности эмиттерных повторителей многократно усиливать передаваемый на выход ток МОП-ключей. Быстродействие логического вентиля, таким образом, в большей степени определяет не скорость перезаряда емкости нагрузки, а задержка переключения напряжения базового узла. Емкость этого узла в основном складывается из емкостей объединяемых в нем стоков транзисторов МОП-ключей, количество которых возрастает при усложнении реализуемой вентилем логической функции.

Это является недостатком устройства-аналога, ограничивающим его функциональные возможности при необходимости получения высокого быстродействия.

Задачей изобретения является достижение технического результата, заключающегося в расширении функциональных возможностей устройства без снижения быстродействия.

Технический результат достигается для логического вентиля, содержащего МОП-ключи p и n типов проводимости, истоковые выводы которых соответственно подключены к шинам положительного и отрицательного полюсов напряжения питания, эмиттерные повторители на биполярных транзисторах n-p-n и p-n-p структур, коллекторы которых соответственно подключены к шинам положиттельного и отрицательного полюсов напряжения питания, а эмиттеры соединены с выходом логического вентиля, отличающегося тем, что МОП-ключи p и n типов проводимости составляют более двух комплементарных пар, в каждой из которых стоковые выводы МОП-ключей соединены и подключены к базе биполярного транзистора соответствующего эмиттерного повторителя.

Указанное выполнение логического элемента позволяет снизить паразитные емкости базовых узлов выходных эмиттерных повторителей за счет уменьшения количества объединяемых в них стоков МОП-транзисторов.

Отличительным признаком изобретения является то, что в составе устройства содержится более двух пар комплементарных МОП-ключей и более двух эмиттерных повторителей.

Изобретение поясняется чертежами Фиг. 1-3, на которых изображены структурная схема логического вентиля и принципиальные электрические схемы мажоритарного инвертора 2 из 3, рассматриваемого в качестве примера реализации устройства, в решениях с одной и шестью парами КМОП-ключей.

Логический вентиль Фиг. 1 содержит эмиттерные повторители в количестве Р на биполярных транзисторах 1-1-1-P n-p-n структуры и N эмиттерных повторителей на биполярных транзисторах 2-1-2-N p-n-p структуры, эмиттеры транзисторов 1-1-1-Р и 2-1-2-N соединены с выходом логического вентиля, Р пар КМОП-ключей, состоящих из МОП-ключей 3-1-3-Р р типа проводимости и МОП-ключей 4-1-4-Р n типа проводимости, стоковые узлы которых попарно соединены и соответственно подключены к базовым выводам n-p-n транзисторов 1-1-1-Р, N пар КМОП-ключей, состоящих из МОП-ключей 5-1-5-N p типа проводимости и МОП-ключей 6-1-6-N n типа проводимости, стоковые узлы которых попарно соединены и соответственно подключены к базовым выводам p-n-p транзисторов 2-1-2-N. Коллекторы n-p-n транзисторов 1-1-1-Р, истоковые узлы p-МОП-ключей 3-1-3-Р и 5-1-5-N подключены к шине +UП положительного полюса напряжения питания. Коллекторы p-n-p транзисторов 2-1-2-N, истоковые узлы n-МОП-ключей 4-1-4-Р и 6-1-6-N подключены к шине -UП отрицательного полюса напряжения питания.

Работа устройства основана на попеременном подключении при помощи КМОП-ключей 3-1-3-Р, 4-1-4-Р и 5-1-5-N, 6-1-6-N базовых выводов одного и более n-p-n транзисторов 1-1-1-Р к шине +UП или базовых выводов одного и более n-p-n транзисторов 2-1-2-N к шине -UП для формирования на выходе соответственно напряжения высокого или низкого логического уровня. Во всех определенных состояниях логического вентиля исключено одновременное наличие высокого уровня напряжения на базах n-p-n транзисторов 1-1-1-Р и низкого уровня напряжения на базах p-n-р транзисторов 2-1-2-N.

Объединенные по выходам эмиттерные повторители на транзисторах 1-1-1-Р выполняют дизъюнкцию логических сигналов, поступающих на их базы, поэтому логические уровни напряжений на стоковых узлах пар КМОП-ключей 3-1-3-Р и 4-1-4-Р определяют функции F1(X), F2(X), … ,FP(X), дизъюнкция которых декомпозирует общую функцию устройства. Для этого проводимости р-МОП-ключей 3-1-3-Р соответствуют этим функциям, а проводимости n-МОП-ключей 4-1-4-Р — их инверсиям F¯1(X)
, F¯2(X)
, … ,F¯P
.

Транзисторы 2-1-2-N формируют нулевые состояния функции F(X), для чего управляющие ими пары КМОП-ключей 5-1-5-N и 6-1-6-N выполняют группу функций G1(X), G2(X), … ,GN(X), конъюнкция которых тождественна функции устройства. Проводимости р-МОП-ключей 5-1-5-N соответствуют функциям G1(X), G2(X), … ,GN(X), а проводимости n-МОП-ключей 6-1-6-N — их инверсиям G¯1(X)
, G¯2(X)
, … ,G¯N(X)
.

Таким образом, цепи р-МОП-транзисторов, содержащиеся в ключах 3-1-3Р, представляют собой отдельные параллельные цепи эквивалентного единого р-МОП-ключа, а n-МОП-транзисторные цепи ключей 6-1-6-N соответствуют отдельным параллельным цепям эквивалентного единого n-МОП-ключа. Математическую взаимосвязь функций проводимости КМОП-ключей 3-1-3-Р, 4-1-4-Р, 5-1-5-N, 6-1-6-N отражают следующие логические формулы:

Логический вентиль может принимать состояние ′′Выключено′′, если для него предусмотрены состояния, в которых на всех базах n-p-n транзисторов 1-1-1-Р соответствующие КМОП-ключи 3-1-3-Р и 4-1-4-Р формируют напряжения низкого уровня, а КМОП-ключи 5-1-5-N и 6-1-6-N создают высокое напряжение на базах всех p-n-р транзисторов 4-1-4-N.

Рассмотрим пример реализации логического вентиля с функцией мажоритарного инвертора 2 из 3, которая принимает значения логической единицы в случаях, когда не менее двух из трех ее аргументов равны логическому нулю, или значения логического нуля, если не менее двух ее аргументов равны логической единице. Логическую единицу и логический нуль соответственно представляют напряжения высокого и низкого уровней.

На чертеже Фиг. 2 показана принципиальная электрическая схема, содержащая по одной паре КМОП-ключей и эмиттерных повторителей.

Мажоритарный инвертор содержит с первого по шестой МОП-транзисторы 7-12 с каналом p типа проводимости и с первого по шестой МОП-транзисторы 13-18 с каналом n типа проводимости, составляющие p- и n-МОП-ключи. Затворы p-МОП-транзисторов 7-12 и n-МОП-транзисторов 13-18 с первых по шестые соответственно попарно соединены и подключены к первому А, второму В, первому А, третьему С, второму В, третьему С входам устройства. Стоки первых МОП-транзисторов 7 и 13 соединены с истоками вторых МОП-транзисторов 8 и 14 соответствующих типов. Стоки третьих МОП-транзисторов 11 и 17 соединены с истоками четвертых МОП-транзисторов 10 и 16 соответствующих типов. Стоки пятых МОП-транзисторов 11 и 17 соединены с истоками шестых МОП-транзисторов 12 и 18 совпадающих типов. Истоки первых, третьих и пятых МОП-транзисторов р- и n типов 7, 9, 11 и 13, 15, 17 соответственно подключены к шинам +UП и -UП положительного и отрицательного полюсов напряжения питания. Стоки вторых, четвертых и шестых МОП-транзисторов 8, 10, 12 и 14, 16, 18 подключены к базам образующих выходные эмиттерные повторители n-p-n транзистора 1 и p-n-р транзистора 2, коллекторы которых соответственно подключены к шинам +UП и -UП, а эмиттеры являются выходом устройства.

МОП-транзисторы 7-18 образуют цепи между базами транзисторов 1 и 2 и шинами +UП и -UП, содержащие по два последовательно соединенных транзистора, подключения затворов которых к трем входам А, В, С устройства составляют все три возможных комбинации по два из трех: А, В — р-МОП-транзисторы 7, 8 и n-МОП-13, 14;

A, С — p-МОП-транзисторы 9, 10 и n-МОП-15, 16;

B, С — p-МОП-транзисторы 11, 12 и n-МОП-17, 18.

Двухтранзисторные последовательные цепи образуют сквозные p-каналы при наличие не менее двух логических нулей среди поступающих на входы А, В, С устройства сигналов или n-каналы, когда среди трех входных сигналов А, В, С более одной логической единицы. Это обеспечивает формирование на выходе логического уровня, противоположного преобладающему на входах А, В, С.

Многоключевое решение мажоритарного инвертора 2 из 3 представляет принципиальная схема на чертеже Фиг. 3, она содержит шесть эмиттерных повторителей на n-p-n транзисторах 1-1, 1-2, 1-3 и p-n-р транзисторах 2-1, 2-2, 2-3 и шесть пар КМОП-ключей.

Первая пара КМОП-ключей состоит из первого, второго р-МОП-транзисторов 19, 20 и первого, второго n-МОП-транзисторов 21, 22. Сток транзистора 19 подключен к истоку транзистора 20, сток которого вместе со стоками транзисторов 21, 22 соединены с базой n-p-n транзистора 1-1.

Вторая пара КМОП-ключей состоит из третьего, четвертого n-МОП-транзисторов 23, 24 и третьего, четвертого p-МОП-транзисторов 25, 26. Сток транзистора 23 подключен к истоку транзистора 24, сток которого вместе со стоками транзисторов 25, 26 соединены с базой p-n-р транзистора 2-1.

Третья пара КМОП-ключей состоит из пятого, шестого p-МОП-транзисторов 27, 28 и пятого, шестого n-МОП-транзисторов 29, 30. Сток транзистора 27 подключен к истоку транзистора 28, сток которого вместе со стоками транзисторов 29, 30 соединены с базой n-p-n транзистора 1-2.

Четвертая пара КМОП-ключей состоит из седьмого, восьмого n-МОП-транзисторов 31, 32 и седьмого, восьмого p-МОП-транзисторов 33, 34. Сток транзистора 31 подключен к истоку транзистора 32, сток которого вместе со стоками транзисторов 33, 34 соединены с базой p-n-р транзистора 2-2.

Пятая пара КМОП-ключей состоит из восьмого, девятого р-МОП-транзисторов 35, 36 и восьмого, девятого n-МОП-транзисторов 37, 38. Сток транзистора 35 подключен к истоку транзистора 36, сток которого вместе со стоками транзисторов 37, 38 соединены с базой n-p-n транзистора 1-3.

Шестая пара КМОП-ключей состоит из десятого, одиннадцатого n-МОП-транзисторов 39, 40 и десятого, одиннадцатого p-МОП-транзисторов 41, 42. Сток транзистора 39 подключен к истоку транзистора 40, сток которого вместе со стоками транзисторов 41, 42 соединены с базой p-n-р транзистора 2-3.

Истоки p-МОП-транзисторов 19, 25, 26, 27, 33, 33, 34, 41, 42 и коллекторы n-p-n транзисторов 1-1, 1-2, 1-3 соединены с шиной +UП положительного полюса напряжения питания, а истоки n-МОП-транзисторов 21, 22, 23, 29, 30, 31, 37, 38, 39 и коллекторы p-n-р транзисторов 2-1, 2-2, 2-3 соединены с шиной -UП отрицательного полюса напряжения питания. Затворы транзисторов 19, 21, 23, 25, 27, 29, 31, 33 соединены с первым входом А устройства, затворы транзисторов 20, 22, 24, 26, 35, 37, 39, 41 соединены со вторым входом В устройства, а затворы транзисторов 28, 30, 32, 34, 36, 38, 40, 42 соединены с третьим входом С устройства.

Каждая из P-канальных цепей, содержащих пары p-МОП-транзисторов 19 и 20, 27 и 28, 35 и 36 эквивалентна одной из параллельных цепей из пар p-МОП-транзисторов 7 и 8, 9 и 10, 11 и 12 соответственно в двухключевой схеме (фиг. 2). Комплементарные им n-канальные цепи на транзисторах 21 и 22, 29 и 30, 37 и 38 имеют соответствующие инверсные проводимости.

N-канальные цепи на парах n-МОП-транзисторов 23 и 24, 31 и 32, 39 и 40 соответственно эквивалентны параллельным цепям из пар n-МОП-транзисторов 13 и 14, 15 и 16, 17 и 18 в схеме на чертеже фиг. 2. Проводимости комплементарных им цепей из р-МОП-транзисторов 21 и 22, 29 и 30, 37 и 38 соответственно инверсны.

Первая, третья и пятая пары КМОП-ключей, управляющие n-p-n транзисторами, формируют напряжения высокого уровня в случаях одновременного наличия логических нулей на парах входов А и В, А и С, В и С, что соответствует логическим выражениям A¯B¯
, A¯C¯
, B¯C¯
, а вторая, четвертая и шестая пары КМОП-ключей, управляющие p-n-p транзисторами, создают низкие уровни в случаях логических единиц на тех же парах входов, в соответствии с выражениями AB¯
, AC¯
, BC¯
.

Объединение эмиттеров транзисторов 1-1, 1-2, 1-3 и 2-1, 2-2, 2-3 в узле выхода выполняет дизъюнкцию сигналов со стоковых узлов первой, третьей и пятой пар КМОП-ключей, то есть A¯B¯+A¯C¯+B¯C¯
, и конъюнкцию сигналов со стоковых узлов второй, четвертой и шестой пар — (A¯+B¯)(A¯+C¯)(B¯+C¯)
, эквивалентную выражению A¯B¯+A¯C¯+B¯C¯
в силу ее самодвойственности.

Преимущество многоключевого решения мажоритарного инвертора 2 из 3 в быстродействии достигается уменьшением паразитных емкостей в узлах баз его биполярных транзисторов, определяемых количеством объединяемых в них транзисторных выводов, что позволяет ускорить процессы изменения напряжений в них при переключениях выходных состояний. В схеме фиг. 3 эта емкость снижена примерно в двое, так как ее создают три стоковых и один базовый выводы, в то время как в схеме фиг. 2 она складывается из паразитных емкостей шести стоков и двух баз.

Многоключевое решение логического вентиля на комплементарных МОП и биполярных транзисторах тем эффективнее, чем больше параллельных цепей можно выделить в отдельные КМОП-ключи.

Логический вентиль, содержащий МОП-ключи p и n типов проводимости, истоковые выводы которых соответственно подключены к шинам положительного и отрицательного полюсов напряжения питания, эмиттерные повторители на биполярных транзисторах n-p-n и p-n-p структур, коллекторы которых соответственно подключены к шинам положительного и отрицательного полюсов напряжения питания, а эмиттеры соединены с выходом логического вентиля, отличающийся тем, что МОП-ключи p и n типов проводимости составляют более двух комплементарных пар, в каждой из которых стоковые выводы МОП-ключей соединены и подключены к базе биполярного транзистора соответствующего эмиттерного повторителя.

www.findpatent.ru

транзисторы

Транзисторы

В электронике, транзистор представляет
собой полупроводниковый прибор, который
обычно используется для усиления или
переключения электронных сигналов.
Транзистор состоит из цельного куска
некоторых полупроводниковых материалов
с, как минимум, тремя клеммами для
подключения к внешней цепи. Напряжение
или ток, приложенные к одной паре выводов
транзистора, изменяют ток, протекающий
через другую пару выводов. Потому что
контролируемая (выходная) мощность
может быть гораздо больше, чем контрольная
(входная) мощность, транзисторы
обеспечивают усиление сигнала.

Транзистор является фундаментальным
строительным блоком современных
электронных устройств, а также он
используется в радио, телефонах,
компьютерах и других электронных
системах. Некоторые транзисторы упакованы
индивидуально, но большинство из них
находятся в интегральных схемах.

Первый патент на принцип полевого
транзистора был подан в Канаде одним
австро-венгерским физиком Юлием Эдгаром
Лилиенфельдом 22 октября 1925 года, но
Лилиенфельд не публиковал научные
статьи о своих устройств. В 1934 году один
немецкий физик, доктор Оскар Хейл
запатентовал другой полевой транзистор.

17 ноября 1947 года, Джон Бардин и Уолтер
Браттейн, в AT&TBellLabs,
отметили, что, когда электрические
контакты были приложены к кристаллу
германия, выходная мощность была больше,
чем вход ВиЮйам Шокли увидел потенциал
в этом, и он работал в течение следующих
нескольких месяцев над значительным
расширением знаний о полупроводниках.
Он, по мнению многих, был «отцом»
транзистора. Термин — «транзистор» был
придуман Джоном Р. Пирсом.

Транзистор, по мнению многих, являются
величайшим изобретением ХХ века, или
одним из величайших. Это ключевой
активный компонент практически во всей
современной электронике. Важность
транзистора в современном обществе
основывается способности его массового
производства с использованием высоко
автоматизированного процесса, который
обеспечивает удивительно низкую цену.

Хотя есть несколько компаний, каждая
из которых производит более миллиарда
индивидуально упакованных (известных
как дискретные) транзисторов каждый
год, большое количество транзисторов
изготавливаются в интегральных схемах
(часто сокращается до ИС, микрочипы или
просто чипы) для получения полных
электронных схем. Логический вентиль
состоит из около двадцати транзисторов
в то время как передовые микропроцессоры,
начиная с 2006 года, могут использовать
до 1,7 млрд транзисторов.

Низкая стоимость, гибкость и надежность
транзисторов, все эти факторы в
совокупности сделали их повсеместными
устройствами. Транзисторные мехатронные
схемы заменили электромеханические
устройства для контроля приборов и
оборудования. Часто проще и дешевле
использовать стандартные микроконтроллеры
и написать компьютерную программу для
выполнения функции управления, чем для
разрабатывать эквивалентную механическую
функцию контроля.

Использование

Биполярный плоскостной транзистор, или
БПТ, был первым изобретенным транзистором,
и на протяжении 1970-х годов, был наиболее
часто используемым транзистором. Даже
после того, МОП-транзисторы стали
доступны, БПТ выбирался для многих
аналоговых схем, таких как простые
усилители в силу их большей линейности
и простоты изготовления. Желательные
свойства транзисторов, такие, как их
полезность в маломощных устройствах
позволило им захватить почти все доли
рынка для цифровых схем, в последнее
время, МОП-транзисторы захватили
большинство аналоговых и силовых цепей,
включая современные тактовые аналоговые
схемы, регуляторы напряжения, усилители,
передатчики мощности, драйвера моторов
и т.д.

Как транзистор работает

Существенная польза транзистора
происходит от его способности использовать
небольшой сигнал, подаваемый между
одной парой своих выводов, чтобы
контролировать гораздо больший сигнал
на другой паре выводов. Это свойство
называется коэффициентом усиления.
Транзистор может контролировать его
выходной сигнал в пропорции к входному
сигналу, то есть, он может выступать в
качестве усилителя. Транзистор также
может быть использован для включения
или выключения тока в цепи, как электрически
управляемый коммутатор, где величина
тока определяется другими элементами
схемы.

Два типа транзисторов имеют незначительные
различия в том, как они используются в
схеме. Биполярный плоскостной транзистор
имеет выводы (названные базовыми),
коллектор и эмиттер. Малый ток на базовом
выводе может контролировать или
переключать гораздо больший ток между
коллектором и эмиттером. Для полевого
транзистора, выводы названы вентилем,
источником и стоком, и напряжение у
вентиля может контролировать ток между
источником и стоком.

Транзистор как переключатель

Транзисторы обычно используются в
качестве электронных переключателей,
как для высокомощных устройств, включая
импульсные блоки питания, так и для и
маломощных устройств, таких как логические
вентили. Транзисторы действуют как
переключатель, и этот тип операций
является общим во всех цифровых схемах,
где только «вкл» и «выкл»
положения актуальны.

Транзистор как усилитель

Усилитель с общим эмиттером устроен
так, что небольшие изменения в напряжении
изменяют ток, текущий через базу
транзистора и транзисторное усиления
тока в сочетании со свойствами схемы
означает, что небольшие колебания во
входном напряжении производят большие
изменения в выходном напряжении.

От мобильных телефонов до телевизоров,
большое количество продукция включает
в себя усилители для воспроизведения
звука, радио передачи и обработки
сигналов. Первые аудио усилители с
дискретными транзисторами едва предлагали
несколько сотен милливатт, но мощность
и качество звука постепенно увеличивается,
так как стали доступны лучшие транзисторы
и архитектура усилителя развивалась.
Современные транзисторные аудио
усилители на несколько сотен ватт и
являются общедоступными и относительно
недорогими.

Некоторые производители музыкальных
усилителей совмещают транзисторы и
электронные лампы (вакуумные лампы) в
одной и той же схеме, т.к. они уверены,
что лампы имеют характерный звук.

studfiles.net

ЛОГИЧЕСКИЙ ВЕНТИЛЬ

Изобретение относится к электронике и предназначено для использования в интегральных логических устройствах на комплементарных униполярных полевых транзисторах структуры металл-окисел-полупроводник (МОП) с индуцированными каналами p и n типов проводимости и биполярных транзисторах n-p-n и p-n-p структур.

Известны логические вентили, выполненные на комплементарных МОП-транзисторах, см., например, Горюнов Е.П. Элементы и узлы ЭЦВМ. Учеб. пособие для втузов. М.: Высшая школа, 1976 [1], с. 176, рис. 9.22. Р- и n-МОП-транзисторы в таких вентилях составляют ключи, попеременно подключающие выход вентиля к шинам положительного и отрицательного полюсов напряжения питания, формируя, таким образом, выходные уровни логических единицы и нуля. Недостатком таких устройств является низкая нагрузочная способность из-за низкой проводимости каналов МОП-транзисторов.

Повысить нагрузочную способность логического вентиля на комплементарных МОП-транзисторах позволяет дополнение его биполярными транзисторами n-p-n и p-n-p структур, образующими выходные эмиттерные повторители, см. [1], с. 224, рис. 11.2. Данное решение по технической сущности и достигаемому положительному эффекту наиболее близко к изобретению.

Наиболее близкий аналог содержит МОП-ключ p типа проводимости и биполярный транзистор n-p-n структуры, истоковый вывод и коллектор которых соединены с шиной положительного полюса напряжения питания, а также n-МОП-ключ и биполярный p-n-p транзистор, истоком и коллектором подключенные к шине отрицательного полюса напряжения питания. Базы биполярных транзисторов соединены и подключены к стоковым выводам МОП-ключей, а эмиттеры соединены и являются выходом логического вентиля.

Устройство работает следующим образом.

При формировании логической единицы на выходе логического вентиля в p-МОП-ключе открывается канал, соединяющий базы биполярных транзисторов с шиной положительного полюса напряжения питания. В это время в n-МОП-ключе канала нет. Вследствие этого на базы биполярных транзисторов выходных эмиттерных повторителей поступает потенциал положительного полюса источника питания.

Нулевое состояние логического вентиля возникает при наличии канала в n-МОП-ключе и отсутствии его в p-МОП-ключе, когда базовый узел выходных биполярных транзисторов подключен к шине отрицательного полюса напряжения питания.

Высокая нагрузочная способность устройства достигается благодаря способности эмиттерных повторителей многократно усиливать передаваемый на выход ток МОП-ключей. Быстродействие логического вентиля, таким образом, в большей степени определяет не скорость перезаряда емкости нагрузки, а задержка переключения напряжения базового узла. Емкость этого узла в основном складывается из емкостей объединяемых в нем стоков транзисторов МОП-ключей, количество которых возрастает при усложнении реализуемой вентилем логической функции.

Это является недостатком устройства-аналога, ограничивающим его функциональные возможности при необходимости получения высокого быстродействия.

Задачей изобретения является достижение технического результата, заключающегося в расширении функциональных возможностей устройства без снижения быстродействия.

Технический результат достигается для логического вентиля, содержащего МОП-ключи p и n типов проводимости, истоковые выводы которых соответственно подключены к шинам положительного и отрицательного полюсов напряжения питания, эмиттерные повторители на биполярных транзисторах n-p-n и p-n-p структур, коллекторы которых соответственно подключены к шинам положиттельного и отрицательного полюсов напряжения питания, а эмиттеры соединены с выходом логического вентиля, отличающегося тем, что МОП-ключи p и n типов проводимости составляют более двух комплементарных пар, в каждой из которых стоковые выводы МОП-ключей соединены и подключены к базе биполярного транзистора соответствующего эмиттерного повторителя.

Указанное выполнение логического элемента позволяет снизить паразитные емкости базовых узлов выходных эмиттерных повторителей за счет уменьшения количества объединяемых в них стоков МОП-транзисторов.

Отличительным признаком изобретения является то, что в составе устройства содержится более двух пар комплементарных МОП-ключей и более двух эмиттерных повторителей.

Изобретение поясняется чертежами Фиг. 1-3, на которых изображены структурная схема логического вентиля и принципиальные электрические схемы мажоритарного инвертора 2 из 3, рассматриваемого в качестве примера реализации устройства, в решениях с одной и шестью парами КМОП-ключей.

Логический вентиль Фиг. 1 содержит эмиттерные повторители в количестве Р на биполярных транзисторах 1-1-1-P n-p-n структуры и N эмиттерных повторителей на биполярных транзисторах 2-1-2-N p-n-p структуры, эмиттеры транзисторов 1-1-1-Р и 2-1-2-N соединены с выходом логического вентиля, Р пар КМОП-ключей, состоящих из МОП-ключей 3-1-3-Р р типа проводимости и МОП-ключей 4-1-4-Р n типа проводимости, стоковые узлы которых попарно соединены и соответственно подключены к базовым выводам n-p-n транзисторов 1-1-1-Р, N пар КМОП-ключей, состоящих из МОП-ключей 5-1-5-N p типа проводимости и МОП-ключей 6-1-6-N n типа проводимости, стоковые узлы которых попарно соединены и соответственно подключены к базовым выводам p-n-p транзисторов 2-1-2-N. Коллекторы n-p-n транзисторов 1-1-1-Р, истоковые узлы p-МОП-ключей 3-1-3-Р и 5-1-5-N подключены к шине +UП положительного полюса напряжения питания. Коллекторы p-n-p транзисторов 2-1-2-N, истоковые узлы n-МОП-ключей 4-1-4-Р и 6-1-6-N подключены к шине -UП отрицательного полюса напряжения питания.

Работа устройства основана на попеременном подключении при помощи КМОП-ключей 3-1-3-Р, 4-1-4-Р и 5-1-5-N, 6-1-6-N базовых выводов одного и более n-p-n транзисторов 1-1-1-Р к шине +UП или базовых выводов одного и более n-p-n транзисторов 2-1-2-N к шине -UП для формирования на выходе соответственно напряжения высокого или низкого логического уровня. Во всех определенных состояниях логического вентиля исключено одновременное наличие высокого уровня напряжения на базах n-p-n транзисторов 1-1-1-Р и низкого уровня напряжения на базах p-n-р транзисторов 2-1-2-N.

Объединенные по выходам эмиттерные повторители на транзисторах 1-1-1-Р выполняют дизъюнкцию логических сигналов, поступающих на их базы, поэтому логические уровни напряжений на стоковых узлах пар КМОП-ключей 3-1-3-Р и 4-1-4-Р определяют функции F1(X), F2(X), … ,FP(X), дизъюнкция которых декомпозирует общую функцию устройства. Для этого проводимости р-МОП-ключей 3-1-3-Р соответствуют этим функциям, а проводимости n-МОП-ключей 4-1-4-Р — их инверсиям
,
, … ,
.

Транзисторы 2-1-2-N формируют нулевые состояния функции F(X), для чего управляющие ими пары КМОП-ключей 5-1-5-N и 6-1-6-N выполняют группу функций G1(X), G2(X), … ,GN(X), конъюнкция которых тождественна функции устройства. Проводимости р-МОП-ключей 5-1-5-N соответствуют функциям G1(X), G2(X), … ,GN(X), а проводимости n-МОП-ключей 6-1-6-N — их инверсиям
,
, … ,
.

Таким образом, цепи р-МОП-транзисторов, содержащиеся в ключах 3-1-3Р, представляют собой отдельные параллельные цепи эквивалентного единого р-МОП-ключа, а n-МОП-транзисторные цепи ключей 6-1-6-N соответствуют отдельным параллельным цепям эквивалентного единого n-МОП-ключа. Математическую взаимосвязь функций проводимости КМОП-ключей 3-1-3-Р, 4-1-4-Р, 5-1-5-N, 6-1-6-N отражают следующие логические формулы:

Логический вентиль может принимать состояние ′′Выключено′′, если для него предусмотрены состояния, в которых на всех базах n-p-n транзисторов 1-1-1-Р соответствующие КМОП-ключи 3-1-3-Р и 4-1-4-Р формируют напряжения низкого уровня, а КМОП-ключи 5-1-5-N и 6-1-6-N создают высокое напряжение на базах всех p-n-р транзисторов 4-1-4-N.

Рассмотрим пример реализации логического вентиля с функцией мажоритарного инвертора 2 из 3, которая принимает значения логической единицы в случаях, когда не менее двух из трех ее аргументов равны логическому нулю, или значения логического нуля, если не менее двух ее аргументов равны логической единице. Логическую единицу и логический нуль соответственно представляют напряжения высокого и низкого уровней.

На чертеже Фиг. 2 показана принципиальная электрическая схема, содержащая по одной паре КМОП-ключей и эмиттерных повторителей.

Мажоритарный инвертор содержит с первого по шестой МОП-транзисторы 7-12 с каналом p типа проводимости и с первого по шестой МОП-транзисторы 13-18 с каналом n типа проводимости, составляющие p- и n-МОП-ключи. Затворы p-МОП-транзисторов 7-12 и n-МОП-транзисторов 13-18 с первых по шестые соответственно попарно соединены и подключены к первому А, второму В, первому А, третьему С, второму В, третьему С входам устройства. Стоки первых МОП-транзисторов 7 и 13 соединены с истоками вторых МОП-транзисторов 8 и 14 соответствующих типов. Стоки третьих МОП-транзисторов 11 и 17 соединены с истоками четвертых МОП-транзисторов 10 и 16 соответствующих типов. Стоки пятых МОП-транзисторов 11 и 17 соединены с истоками шестых МОП-транзисторов 12 и 18 совпадающих типов. Истоки первых, третьих и пятых МОП-транзисторов р- и n типов 7, 9, 11 и 13, 15, 17 соответственно подключены к шинам +UП и -UП положительного и отрицательного полюсов напряжения питания. Стоки вторых, четвертых и шестых МОП-транзисторов 8, 10, 12 и 14, 16, 18 подключены к базам образующих выходные эмиттерные повторители n-p-n транзистора 1 и p-n-р транзистора 2, коллекторы которых соответственно подключены к шинам +UП и -UП, а эмиттеры являются выходом устройства.

МОП-транзисторы 7-18 образуют цепи между базами транзисторов 1 и 2 и шинами +UП и -UП, содержащие по два последовательно соединенных транзистора, подключения затворов которых к трем входам А, В, С устройства составляют все три возможных комбинации по два из трех: А, В — р-МОП-транзисторы 7, 8 и n-МОП-13, 14;

A, С — p-МОП-транзисторы 9, 10 и n-МОП-15, 16;

B, С — p-МОП-транзисторы 11, 12 и n-МОП-17, 18.

Двухтранзисторные последовательные цепи образуют сквозные p-каналы при наличие не менее двух логических нулей среди поступающих на входы А, В, С устройства сигналов или n-каналы, когда среди трех входных сигналов А, В, С более одной логической единицы. Это обеспечивает формирование на выходе логического уровня, противоположного преобладающему на входах А, В, С.

Многоключевое решение мажоритарного инвертора 2 из 3 представляет принципиальная схема на чертеже Фиг. 3, она содержит шесть эмиттерных повторителей на n-p-n транзисторах 1-1, 1-2, 1-3 и p-n-р транзисторах 2-1, 2-2, 2-3 и шесть пар КМОП-ключей.

Первая пара КМОП-ключей состоит из первого, второго р-МОП-транзисторов 19, 20 и первого, второго n-МОП-транзисторов 21, 22. Сток транзистора 19 подключен к истоку транзистора 20, сток которого вместе со стоками транзисторов 21, 22 соединены с базой n-p-n транзистора 1-1.

Вторая пара КМОП-ключей состоит из третьего, четвертого n-МОП-транзисторов 23, 24 и третьего, четвертого p-МОП-транзисторов 25, 26. Сток транзистора 23 подключен к истоку транзистора 24, сток которого вместе со стоками транзисторов 25, 26 соединены с базой p-n-р транзистора 2-1.

Третья пара КМОП-ключей состоит из пятого, шестого p-МОП-транзисторов 27, 28 и пятого, шестого n-МОП-транзисторов 29, 30. Сток транзистора 27 подключен к истоку транзистора 28, сток которого вместе со стоками транзисторов 29, 30 соединены с базой n-p-n транзистора 1-2.

Четвертая пара КМОП-ключей состоит из седьмого, восьмого n-МОП-транзисторов 31, 32 и седьмого, восьмого p-МОП-транзисторов 33, 34. Сток транзистора 31 подключен к истоку транзистора 32, сток которого вместе со стоками транзисторов 33, 34 соединены с базой p-n-р транзистора 2-2.

Пятая пара КМОП-ключей состоит из восьмого, девятого р-МОП-транзисторов 35, 36 и восьмого, девятого n-МОП-транзисторов 37, 38. Сток транзистора 35 подключен к истоку транзистора 36, сток которого вместе со стоками транзисторов 37, 38 соединены с базой n-p-n транзистора 1-3.

Шестая пара КМОП-ключей состоит из десятого, одиннадцатого n-МОП-транзисторов 39, 40 и десятого, одиннадцатого p-МОП-транзисторов 41, 42. Сток транзистора 39 подключен к истоку транзистора 40, сток которого вместе со стоками транзисторов 41, 42 соединены с базой p-n-р транзистора 2-3.

Истоки p-МОП-транзисторов 19, 25, 26, 27, 33, 33, 34, 41, 42 и коллекторы n-p-n транзисторов 1-1, 1-2, 1-3 соединены с шиной +UП положительного полюса напряжения питания, а истоки n-МОП-транзисторов 21, 22, 23, 29, 30, 31, 37, 38, 39 и коллекторы p-n-р транзисторов 2-1, 2-2, 2-3 соединены с шиной -UП отрицательного полюса напряжения питания. Затворы транзисторов 19, 21, 23, 25, 27, 29, 31, 33 соединены с первым входом А устройства, затворы транзисторов 20, 22, 24, 26, 35, 37, 39, 41 соединены со вторым входом В устройства, а затворы транзисторов 28, 30, 32, 34, 36, 38, 40, 42 соединены с третьим входом С устройства.

Каждая из P-канальных цепей, содержащих пары p-МОП-транзисторов 19 и 20, 27 и 28, 35 и 36 эквивалентна одной из параллельных цепей из пар p-МОП-транзисторов 7 и 8, 9 и 10, 11 и 12 соответственно в двухключевой схеме (фиг. 2). Комплементарные им n-канальные цепи на транзисторах 21 и 22, 29 и 30, 37 и 38 имеют соответствующие инверсные проводимости.

N-канальные цепи на парах n-МОП-транзисторов 23 и 24, 31 и 32, 39 и 40 соответственно эквивалентны параллельным цепям из пар n-МОП-транзисторов 13 и 14, 15 и 16, 17 и 18 в схеме на чертеже фиг. 2. Проводимости комплементарных им цепей из р-МОП-транзисторов 21 и 22, 29 и 30, 37 и 38 соответственно инверсны.

Первая, третья и пятая пары КМОП-ключей, управляющие n-p-n транзисторами, формируют напряжения высокого уровня в случаях одновременного наличия логических нулей на парах входов А и В, А и С, В и С, что соответствует логическим выражениям
,
,
, а вторая, четвертая и шестая пары КМОП-ключей, управляющие p-n-p транзисторами, создают низкие уровни в случаях логических единиц на тех же парах входов, в соответствии с выражениями
,
,
.

Объединение эмиттеров транзисторов 1-1, 1-2, 1-3 и 2-1, 2-2, 2-3 в узле выхода выполняет дизъюнкцию сигналов со стоковых узлов первой, третьей и пятой пар КМОП-ключей, то есть
, и конъюнкцию сигналов со стоковых узлов второй, четвертой и шестой пар —
, эквивалентную выражению
в силу ее самодвойственности.

Преимущество многоключевого решения мажоритарного инвертора 2 из 3 в быстродействии достигается уменьшением паразитных емкостей в узлах баз его биполярных транзисторов, определяемых количеством объединяемых в них транзисторных выводов, что позволяет ускорить процессы изменения напряжений в них при переключениях выходных состояний. В схеме фиг. 3 эта емкость снижена примерно в двое, так как ее создают три стоковых и один базовый выводы, в то время как в схеме фиг. 2 она складывается из паразитных емкостей шести стоков и двух баз.

Многоключевое решение логического вентиля на комплементарных МОП и биполярных транзисторах тем эффективнее, чем больше параллельных цепей можно выделить в отдельные КМОП-ключи.

Логический вентиль, содержащий МОП-ключи p и n типов проводимости, истоковые выводы которых соответственно подключены к шинам положительного и отрицательного полюсов напряжения питания, эмиттерные повторители на биполярных транзисторах n-p-n и p-n-p структур, коллекторы которых соответственно подключены к шинам положительного и отрицательного полюсов напряжения питания, а эмиттеры соединены с выходом логического вентиля, отличающийся тем, что МОП-ключи p и n типов проводимости составляют более двух комплементарных пар, в каждой из которых стоковые выводы МОП-ключей соединены и подключены к базе биполярного транзистора соответствующего эмиттерного повторителя.



edrid.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о