Википедия что такое гравитация – Что такое гравитация и гравитационные волны. – Научные статьи – Каталог статей

Содержание

Гравитация — Википедия

Гравита́ция (притяже́ние, всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas — «тяжесть») — универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых (по сравнению со скоростью света) скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. В квантовом пределе гравитационное взаимодействие предположительно описывается квантовой теорией гравитации, которая ещё не разработана.

Гравитация играет крайне важную роль в структуре и эволюции Вселенной (устанавливая связь между плотностью Вселенной и скоростью её расширения)[1], определяя ключевые условия равновесия и устойчивости астрономических систем[2]. Без гравитации во Вселенной не было бы планет, звёзд, галактик, чёрных дыр[3].

Гравитационное притяжение

Закон всемирного тяготения

В рамках классической механики гравитационное притяжение описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m1{\displaystyle m_{1}} и m2{\displaystyle m_{2}}, разделёнными расстоянием r{\displaystyle r}, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть:

F=Gm1m2r2{\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}}

Здесь G{\displaystyle G} — гравитационная постоянная, равная примерно 6,67×10−11 м³/(кг·с²)[4][5]. Этот закон выполняется в приближении при малых по сравнению со скоростью света v≪c{\displaystyle v\ll c} скоростей и слабого гравитационного взаимодействия (если для изучаемого объекта, расположенного на расстоянии R{\displaystyle R} от тела массой M{\displaystyle M}, величина GMc2R≪1{\displaystyle {\frac {GM}{c^{2}R}}\ll 1}[6]). В общем случае гравитация описывается общей теорией относительности Эйнштейна.

Закон всемирного тяготения — одно из приложений закона обратных квадратов, встречающегося также и при изучении излучений (см., например, Давление света), и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести, потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что, как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты — планеты, звёзды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами в космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, чёрные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель (IV в. до н. э.) считал, что объекты с разной массой падают с разной скоростью. И только много позже (1589) Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.

Видео по теме

Небесная механика и некоторые её задачи

Раздел механики, изучающий движение тел в пустом пространстве только под действием гравитации, называется небесной механикой.

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух точечных или сферических тел в пустом пространстве. Эта задача в рамках классической механики решается аналитически в замкнутой форме; результат её решения часто формулируют в виде трёх законов Кеплера.

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе эта неустойчивость не позволяет предсказать точно движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: Солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы, аттракторы, хаотичность и т. д. Наглядный пример таких явлений — сложная структура колец Сатурна.

Несмотря на попытки точно описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса.

Сильные гравитационные поля

В сильных гравитационных полях (а также при движении в гравитационном поле с релятивистскими скоростями) начинают проявляться эффекты общей теории относительности (ОТО):

Гравитационное излучение

Одним из важных предсказаний ОТО является гравитационное излучение, наличие которого было подтверждено прямыми наблюдениями в 2015 году[7]. Однако и раньше были весомые косвенные свидетельства в пользу его существования, а именно: потери энергии в тесных двойных системах, содержащих компактные гравитирующие объекты (такие как нейтронные звезды или чёрные дыры), в частности, обнаруженные в 1979 году в знаменитой системе PSR B1913+16 (пульсаре Халса — Тейлора) — хорошо согласуются с моделью ОТО, в которой эта энергия уносится именно гравитационным излучением

[8].

Гравитационное излучение могут генерировать только системы с переменным квадрупольным или более высокими мультипольными моментами, этот факт говорит о том, что гравитационное излучение большинства природных источников направленное, что существенно усложняет его обнаружение. Мощность гравитационного n{\displaystyle n} -польного источника пропорциональна (v/c)2n+2{\displaystyle (v/c)^{2n+2}}, если мультиполь имеет электрический тип, и (v/c)2n+4{\displaystyle (v/c)^{2n+4}} — если мультиполь магнитного типа[9], где v{\displaystyle v} — характерная скорость движения источников в излучающей системе, а c{\displaystyle c} — скорость света в вакууме. Таким образом, доминирующим моментом будет квадрупольный момент электрического типа, а мощность соответствующего излучения равна:

L=15Gc5⟨d3Qijdt3d3Qijdt3⟩,{\displaystyle L={\frac {1}{5}}{\frac {G}{c^{5}}}\left\langle {\frac {d^{3}Q_{ij}}{dt^{3}}}{\frac {d^{3}Q^{ij}}{dt^{3}}}\right\rangle ,}

где Qij{\displaystyle Q_{ij}} — тензор квадрупольного момента распределения масс излучающей системы. Константа Gc5=2,76×10−53{\displaystyle {\frac {G}{c^{5}}}=2,76\times 10^{-53}} (1/Вт) позволяет оценить порядок величины мощности излучения.

Начиная с 1969 года (эксперименты Вебера (англ.)), создаются детекторы гравитационного излучения. В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (LIGO, VIRGO, TAMA (англ.), GEO 600), а также проект космического гравитационного детектора LISA (Laser Interferometer Space Antenna — лазерно-интерферометрическая космическая антенна). Наземный детектор в России разрабатывается в Научном центре гравитационно-волновых исследований «Дулкын»[10] республики Татарстан.

Тонкие эффекты гравитации

Измерение кривизны пространства на орбите Земли (рисунок художника)

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и поэтому их обнаружение и экспериментальная проверка весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчёта (или эффект Лензе-Тирринга) и гравитомагнитное поле. В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли. Обработка полученных данных велась до мая 2011 года и подтвердила существование и величину эффектов геодезической прецессии и увлечения инерциальных систем отсчёта, хотя и с точностью, несколько меньшей изначально предполагавшейся.

После интенсивной работы по анализу и извлечению помех измерений, окончательные итоги миссии были объявлены на пресс-конференции по NASA-TV 4 мая 2011 года и опубликованы в Physical Review Letters[11]. Измеренная величина геодезической прецессии составила −6601,8±18,3 миллисекунды дуги в год, а эффекта увлечения — −37,2±7,2 миллисекунды дуги в год (ср. с теоретическими значениями −6606,1 mas/год и −39,2 mas/год).

Классические теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая[12] классическая теория гравитации — общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Общая теория относительности

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии. Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем — метрикой четырёхмерного пространства-времени, а напряжённость гравитационного поля — с аффинной связностью пространства-времени, определяемой метрикой.

Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих геометрические свойства пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырёхмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.

Известно, что в ОТО имеются затруднения в связи с неинвариантностью энергии гравитационного поля, поскольку данная энергия не описывается тензором и может быть теоретически определена разными способами. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия (так как спин протяжённого объекта также не имеет однозначного определения). Считается, что существуют определённые проблемы с однозначностью результатов и обоснованием непротиворечивости (проблема гравитационных сингулярностей).

Однако экспериментально ОТО подтверждается до самого последнего времени (2012 год). Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое только и доступно сейчас экспериментальной проверке.

Теория Эйнштейна — Картана

Теория Эйнштейна — Картана (ЭК) была разработана как расширение ОТО, внутренне включающее в себя описание воздействия на пространство-время, кроме энергии-импульса, также и спина объектов[13]. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана — Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса: один из них аналогичен ОТО, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением; второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения.
Получаемые поправки к ОТО, в условиях современной Вселенной, настолько малы, что пока не видно даже гипотетических путей для их измерения.

Теория Бранса — Дикке

В скалярно-тензорных теориях, самой известной из которых является теория Бранса — Дикке (или Йордана — Бранса — Дикке), гравитационное поле как эффективная метрика пространства-времени определяется воздействием не только тензора энергии-импульса материи, как в ОТО, но и дополнительного гравитационного скалярного поля. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Следовательно, скалярно-тензорные теории, как ОТО и РТГ, относятся к метрическим теориям, дающим объяснение гравитации, используя только геометрию пространства-времени и его метрические свойства. Наличие скалярного поля приводит к двум группам уравнений для компонент гравитационного поля: одна для метрики, вторая — для скалярного поля. Теория Бранса — Дикке вследствие наличия скалярного поля может рассматриваться также как действующая в пятимерном многообразии, состоящем из пространства-времени и скалярного поля[14].

Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского

[15]. Благодаря наличию безразмерного параметра в теории Йордана — Бранса — Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана — Бранса — Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.

Квантовая теория гравитации

Несмотря на более чем полувековую историю попыток, гравитация — единственное из фундаментальных взаимодействий, для которого пока ещё не построена общепризнанная непротиворечивая квантовая теория. При низких энергиях, в духе квантовой теории поля, гравитационное взаимодействие можно представить как обмен гравитонами — калибровочными бозонами со спином 2. Однако получающаяся теория неперенормируема, и поэтому считается неудовлетворительной.

В последние десятилетия разработаны несколько перспективных подходов к решению задачи квантования гравитации: теория струн, петлевая квантовая гравитация и прочие.

Теория струн

В ней вместо частиц и фонового пространства-времени выступают струны и их многомерные аналоги — браны. Для многомерных задач браны являются многомерными частицами, но с точки зрения частиц, движущихся внутри этих бран, они являются пространственно-временными структурами. Вариантом теории струн является М-теория.

Петлевая квантовая гравитация

В ней делается попытка сформулировать квантовую теорию поля без привязки к пространственно-временному фону, пространство и время по этой теории состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время. Хотя многие космологические модели могут описать поведение вселенной только от Планковского времени после Большого Взрыва, петлевая квантовая гравитация может описать сам процесс взрыва, и даже заглянуть раньше. Петлевая квантовая гравитация позволяет описать все частицы стандартной модели, не требуя для объяснения их масс введения бозона Хиггса.

Причинная динамическая триангуляция

Причинная динамическая триангуляция — пространственно-временное многообразие в ней строится из элементарных евклидовых симплексов (треугольник, тетраэдр, пентахор) размеров порядка планковских с учётом принципа причинности. Четырёхмерность и псевдоевклидовость пространства-времени в макроскопических масштабах в ней не постулируются, а являются следствием теории.

Гравитация в микромире

Гравитация в микромире при низких энергиях элементарных частиц на много порядков слабее остальных фундаментальных взаимодействий. Так, отношение силы гравитационного взаимодействия двух покоящихся протонов к силе электростатического взаимодействия равно 10−36{\displaystyle 10^{-36}}.

Для сравнения закона всемирного тяготения с законом Кулона величину GNm{\displaystyle {\sqrt {G_{N}}}m} называют гравитационным зарядом. В силу принципа эквивалентности массы и энергии гравитационный заряд равен GNEc2{\displaystyle {\sqrt {G_{N}}}{\frac {E}{c^{2}}}}. Гравитационное взаимодействие становится равным по силе электромагнитному, когда гравитационный заряд равен электрическому GNEc2=e{\displaystyle {\sqrt {G_{N}}}{\frac {E}{c^{2}}}=e}, то есть при энергиях E=ec2GN=1018{\displaystyle E={\frac {ec^{2}}{\sqrt {G_{N}}}}=10^{18}} ГэВ, пока недостижимых на ускорителях элементарных частиц.[16][17]

Предполагается, что гравитационное взаимодействие было таким же сильным, как и остальные взаимодействия в первые 10−43{\displaystyle 10^{-43}} сек после Большого взрыва[18].

См. также

Примечания

  1. Вайнберг С. Первые три минуты. — М.: Энергоиздат, 1981. — С. 135.
  2. Нарликар Дж. Неистовая вселенная. — М.: Мир, 1985. — С. 25. — Тираж 100 000 экз.
  3. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 144. — Тираж 50 000 экз.
  4. ↑ Improved Determination of G Using Two Methods // Phys. Rev. Lett. 111, 101102 (2013), DOI:10.1103/PhysRevLett.111.101102
  5. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. M. Tino. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature (18 June 2014).
  6. Нарликар Дж. Неистовая вселенная. — М.: Мир, 1985. — С. 70. — Тираж 100 000 экз.
  7. LIGO Scientific Collaboration and Virgo Collaboration, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy. Observation of Gravitational Waves from a Binary Black Hole Merger // Physical Review Letters. — 2016-02-11. — Т. 116, вып. 6. — С. 061102. — DOI:10.1103/PhysRevLett.116.061102.
  8. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 87. — Тираж 50 000 экз.
  9. ↑ См. аналогию между слабым гравитационным полем и электромагнитным полем в статье гравитомагнетизм.
  10. ↑ Научный Центр Гравитационно-Волновых Исследований «Дулкын» Архивная копия от 25 сентября 2006 на Wayback Machine
  11. C. W. F. Everitt et al. Gravity Probe B: Final results of a space experiment to test general relativity, Physical Review Letters (1 мая 2011). Проверено 6 мая 2011.
  12. ↑ Канонической эта теория является в том смысле, что она наиболее хорошо разработана и широко используется в современной небесной механике, астрофизике и космологии, причём количество надёжно установленных противоречащих ей экспериментальных результатов практически равно нулю.
  13. Иваненко Д. Д., Пронин П. И., Сарданашвили Г. А. Калибровочная теория гравитации. — М.: Изд. МГУ, 1985.
  14. ↑ Brans, C. H.; Dicke, R. H. (November 1 1961). «Mach’s Principle and a Relativistic Theory of Gravitation». Physical Review 124 (3): 925—935. DOI:10.1103/PhysRev.124.925. Retrieved on 2006-09-23.
  15. ↑ С ортодоксальной точки зрения это уравнение представляет собой координатное условие.
  16. Яворский Б. М., Детлаф А. А., Лебедев А. К. Справочник по физике для инженеров и студентов вузов. — М.: Оникс, 2007. — С. 948. — ISBN 978-5-488-01248-6 — Тираж 5100 экз.
  17. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 145. — Тираж 50 000 экз.
  18. Вайнберг С. Первые три минуты. — М.: Энергоиздат, 1981. — С. 136.

Литература

  • Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900—1915). — М.: Наука, 1981. — 352c.
  • Визгин В. П. Единые теории в 1-й трети XX в. — М.: Наука, 1985. — 304c.
  • Иваненко Д. Д., Сарданашвили Г. А. Гравитация. 3-е изд. — М.: УРСС, 2008. — 200с.
  • Мизнер Ч., Торн К., Уилер Дж. Гравитация. — М.: Мир, 1977.
  • Торн К. Черные дыры и складки времени. Дерзкое наследие Эйнштейна. — М.: Государственное издательство физико-математической литературы, 2009.

Ссылки

wiki2.red

Гравитация — Википедия. Что такое Гравитация

Гравита́ция (притяже́ние, всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas — «тяжесть») — универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых (по сравнению со скоростью света) скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. В квантовом пределе гравитационное взаимодействие предположительно описывается квантовой теорией гравитации, которая ещё не разработана.

Гравитация играет крайне важную роль в структуре и эволюции Вселенной (устанавливая связь между плотностью Вселенной и скоростью её расширения)[1], определяя ключевые условия равновесия и устойчивости астрономических систем[2]. Без гравитации во Вселенной не было бы планет, звёзд, галактик, чёрных дыр[3].

Гравитационное притяжение

Закон всемирного тяготения

В рамках классической механики гравитационное притяжение описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m1{\displaystyle m_{1}} и m2{\displaystyle m_{2}}, разделёнными расстоянием r{\displaystyle r}, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть:

F=Gm1m2r2{\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}}

Здесь G{\displaystyle G} — гравитационная постоянная, равная примерно 6,67×10−11 м³/(кг·с²)[4][5]. Этот закон выполняется в приближении при малых по сравнению со скоростью света v≪c{\displaystyle v\ll c} скоростей и слабого гравитационного взаимодействия (если для изучаемого объекта, расположенного на расстоянии R{\displaystyle R} от тела массой M{\displaystyle M}, величина GMc2R≪1{\displaystyle {\frac {GM}{c^{2}R}}\ll 1}[6]). В общем случае гравитация описывается общей теорией относительности Эйнштейна.

Закон всемирного тяготения — одно из приложений закона обратных квадратов, встречающегося также и при изучении излучений (см., например, Давление света), и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести, потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что, как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты — планеты, звёзды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами в космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, чёрные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель (IV в. до н. э.) считал, что объекты с разной массой падают с разной скоростью. И только много позже (1589) Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.

Небесная механика и некоторые её задачи

Раздел механики, изучающий движение тел в пустом пространстве только под действием гравитации, называется небесной механикой.

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух точечных или сферических тел в пустом пространстве. Эта задача в рамках классической механики решается аналитически в замкнутой форме; результат её решения часто формулируют в виде трёх законов Кеплера.

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе эта неустойчивость не позволяет предсказать точно движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: Солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы, аттракторы, хаотичность и т. д. Наглядный пример таких явлений — сложная структура колец Сатурна.

Несмотря на попытки точно описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса.

Сильные гравитационные поля

В сильных гравитационных полях (а также при движении в гравитационном поле с релятивистскими скоростями) начинают проявляться эффекты общей теории относительности (ОТО):

Гравитационное излучение

Одним из важных предсказаний ОТО является гравитационное излучение, наличие которого было подтверждено прямыми наблюдениями в 2015 году[7]. Однако и раньше были весомые косвенные свидетельства в пользу его существования, а именно: потери энергии в тесных двойных системах, содержащих компактные гравитирующие объекты (такие как нейтронные звезды или чёрные дыры), в частности, обнаруженные в 1979 году в знаменитой системе PSR B1913+16 (пульсаре Халса — Тейлора) — хорошо согласуются с моделью ОТО, в которой эта энергия уносится именно гравитационным излучением[8].

Гравитационное излучение могут генерировать только системы с переменным квадрупольным или более высокими мультипольными моментами, этот факт говорит о том, что гравитационное излучение большинства природных источников направленное, что существенно усложняет его обнаружение. Мощность гравитационного n{\displaystyle n} -польного источника пропорциональна (v/c)2n+2{\displaystyle (v/c)^{2n+2}}, если мультиполь имеет электрический тип, и (v/c)2n+4{\displaystyle (v/c)^{2n+4}} — если мультиполь магнитного типа[9], где v{\displaystyle v} — характерная скорость движения источников в излучающей системе, а c{\displaystyle c} — скорость света в вакууме. Таким образом, доминирующим моментом будет квадрупольный момент электрического типа, а мощность соответствующего излучения равна:

L=15Gc5⟨d3Qijdt3d3Qijdt3⟩,{\displaystyle L={\frac {1}{5}}{\frac {G}{c^{5}}}\left\langle {\frac {d^{3}Q_{ij}}{dt^{3}}}{\frac {d^{3}Q^{ij}}{dt^{3}}}\right\rangle ,}

где Qij{\displaystyle Q_{ij}} — тензор квадрупольного момента распределения масс излучающей системы. Константа Gc5=2,76×10−53{\displaystyle {\frac {G}{c^{5}}}=2,76\times 10^{-53}} (1/Вт) позволяет оценить порядок величины мощности излучения.

Начиная с 1969 года (эксперименты Вебера (англ.)), создаются детекторы гравитационного излучения. В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (LIGO, VIRGO, TAMA (англ.), GEO 600), а также проект космического гравитационного детектора LISA (Laser Interferometer Space Antenna — лазерно-интерферометрическая космическая антенна). Наземный детектор в России разрабатывается в Научном центре гравитационно-волновых исследований «Дулкын»[10] республики Татарстан.

Тонкие эффекты гравитации

Измерение кривизны пространства на орбите Земли (рисунок художника)

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и поэтому их обнаружение и экспериментальная проверка весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчёта (или эффект Лензе-Тирринга) и гравитомагнитное поле. В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли. Обработка полученных данных велась до мая 2011 года и подтвердила существование и величину эффектов геодезической прецессии и увлечения инерциальных систем отсчёта, хотя и с точностью, несколько меньшей изначально предполагавшейся.

После интенсивной работы по анализу и извлечению помех измерений, окончательные итоги миссии были объявлены на пресс-конференции по NASA-TV 4 мая 2011 года и опубликованы в Physical Review Letters[11]. Измеренная величина геодезической прецессии составила −6601,8±18,3 миллисекунды дуги в год, а эффекта увлечения — −37,2±7,2 миллисекунды дуги в год (ср. с теоретическими значениями −6606,1 mas/год и −39,2 mas/год).

Классические теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая[12] классическая теория гравитации — общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Общая теория относительности

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии. Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем — метрикой четырёхмерного пространства-времени, а напряжённость гравитационного поля — с аффинной связностью пространства-времени, определяемой метрикой.

Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих геометрические свойства пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырёхмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.

Известно, что в ОТО имеются затруднения в связи с неинвариантностью энергии гравитационного поля, поскольку данная энергия не описывается тензором и может быть теоретически определена разными способами. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия (так как спин протяжённого объекта также не имеет однозначного определения). Считается, что существуют определённые проблемы с однозначностью результатов и обоснованием непротиворечивости (проблема гравитационных сингулярностей).

Однако экспериментально ОТО подтверждается до самого последнего времени (2012 год). Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое только и доступно сейчас экспериментальной проверке.

Теория Эйнштейна — Картана

Теория Эйнштейна — Картана (ЭК) была разработана как расширение ОТО, внутренне включающее в себя описание воздействия на пространство-время, кроме энергии-импульса, также и спина объектов[13]. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана — Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса: один из них аналогичен ОТО, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением; второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения.
Получаемые поправки к ОТО, в условиях современной Вселенной, настолько малы, что пока не видно даже гипотетических путей для их измерения.

Теория Бранса — Дикке

В скалярно-тензорных теориях, самой известной из которых является теория Бранса — Дикке (или Йордана — Бранса — Дикке), гравитационное поле как эффективная метрика пространства-времени определяется воздействием не только тензора энергии-импульса материи, как в ОТО, но и дополнительного гравитационного скалярного поля. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Следовательно, скалярно-тензорные теории, как ОТО и РТГ, относятся к метрическим теориям, дающим объяснение гравитации, используя только геометрию пространства-времени и его метрические свойства. Наличие скалярного поля приводит к двум группам уравнений для компонент гравитационного поля: одна для метрики, вторая — для скалярного поля. Теория Бранса — Дикке вследствие наличия скалярного поля может рассматриваться также как действующая в пятимерном многообразии, состоящем из пространства-времени и скалярного поля[14].

Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского[15]. Благодаря наличию безразмерного параметра в теории Йордана — Бранса — Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана — Бранса — Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.

Квантовая теория гравитации

Несмотря на более чем полувековую историю попыток, гравитация — единственное из фундаментальных взаимодействий, для которого пока ещё не построена общепризнанная непротиворечивая квантовая теория. При низких энергиях, в духе квантовой теории поля, гравитационное взаимодействие можно представить как обмен гравитонами — калибровочными бозонами со спином 2. Однако получающаяся теория неперенормируема, и поэтому считается неудовлетворительной.

В последние десятилетия разработаны несколько перспективных подходов к решению задачи квантования гравитации: теория струн, петлевая квантовая гравитация и прочие.

Теория струн

В ней вместо частиц и фонового пространства-времени выступают струны и их многомерные аналоги — браны. Для многомерных задач браны являются многомерными частицами, но с точки зрения частиц, движущихся внутри этих бран, они являются пространственно-временными структурами. Вариантом теории струн является М-теория.

Петлевая квантовая гравитация

В ней делается попытка сформулировать квантовую теорию поля без привязки к пространственно-временному фону, пространство и время по этой теории состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время. Хотя многие космологические модели могут описать поведение вселенной только от Планковского времени после Большого Взрыва, петлевая квантовая гравитация может описать сам процесс взрыва, и даже заглянуть раньше. Петлевая квантовая гравитация позволяет описать все частицы стандартной модели, не требуя для объяснения их масс введения бозона Хиггса.

Причинная динамическая триангуляция

Причинная динамическая триангуляция (англ. Causal dynamical triangulation) — пространственно-временное многообразие в ней строится из элементарных евклидовых симплексов (треугольник, тетраэдр, пентахор) размеров порядка планковских с учётом принципа причинности. Четырёхмерность и псевдоевклидовость пространства-времени в макроскопических масштабах в ней не постулируются, а являются следствием теории.

Гравитация в микромире

Гравитация в микромире при низких энергиях элементарных частиц на много порядков слабее остальных фундаментальных взаимодействий. Так, отношение силы гравитационного взаимодействия двух покоящихся протонов к силе электростатического взаимодействия равно 10−36{\displaystyle 10^{-36}}.

Для сравнения закона всемирного тяготения с законом Кулона величину GNm{\displaystyle {\sqrt {G_{N}}}m} называют гравитационным зарядом. В силу принципа эквивалентности массы и энергии гравитационный заряд равен GNEc2{\displaystyle {\sqrt {G_{N}}}{\frac {E}{c^{2}}}}. Гравитационное взаимодействие становится равным по силе электромагнитному, когда гравитационный заряд равен электрическому GNEc2=e{\displaystyle {\sqrt {G_{N}}}{\frac {E}{c^{2}}}=e}, то есть при энергиях E=ec2GN=1018{\displaystyle E={\frac {ec^{2}}{\sqrt {G_{N}}}}=10^{18}} ГэВ, пока недостижимых на ускорителях элементарных частиц.[16][17]

Предполагается, что гравитационное взаимодействие было таким же сильным, как и остальные взаимодействия в первые 10−43{\displaystyle 10^{-43}} сек после Большого взрыва[18].

См. также

Примечания

  1. Вайнберг С. Первые три минуты. — М.: Энергоиздат, 1981. — С. 135.
  2. Нарликар Дж. Неистовая вселенная. — М.: Мир, 1985. — С. 25. — Тираж 100 000 экз.
  3. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 144. — Тираж 50 000 экз.
  4. ↑ Improved Determination of G Using Two Methods // Phys. Rev. Lett. 111, 101102 (2013), DOI:10.1103/PhysRevLett.111.101102
  5. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. M. Tino. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature (18 June 2014).
  6. Нарликар Дж. Неистовая вселенная. — М.: Мир, 1985. — С. 70. — Тираж 100 000 экз.
  7. LIGO Scientific Collaboration and Virgo Collaboration, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy. Observation of Gravitational Waves from a Binary Black Hole Merger // Physical Review Letters. — 2016-02-11. — Т. 116, вып. 6. — С. 061102. — DOI:10.1103/PhysRevLett.116.061102.
  8. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 87. — Тираж 50 000 экз.
  9. ↑ См. аналогию между слабым гравитационным полем и электромагнитным полем в статье гравитомагнетизм.
  10. ↑ Научный Центр Гравитационно-Волновых Исследований «Дулкын» Архивная копия от 25 сентября 2006 на Wayback Machine
  11. C. W. F. Everitt et al. Gravity Probe B: Final results of a space experiment to test general relativity, Physical Review Letters (1 мая 2011). Проверено 6 мая 2011.
  12. ↑ Канонической эта теория является в том смысле, что она наиболее хорошо разработана и широко используется в современной небесной механике, астрофизике и космологии, причём количество надёжно установленных противоречащих ей экспериментальных результатов практически равно нулю.
  13. Иваненко Д. Д., Пронин П. И., Сарданашвили Г. А. Калибровочная теория гравитации. — М.: Изд. МГУ, 1985.
  14. ↑ Brans, C. H.; Dicke, R. H. (November 1 1961). «Mach’s Principle and a Relativistic Theory of Gravitation». Physical Review 124 (3): 925—935. DOI:10.1103/PhysRev.124.925. Retrieved on 2006-09-23.
  15. ↑ С ортодоксальной точки зрения это уравнение представляет собой координатное условие.
  16. Яворский Б. М., Детлаф А. А., Лебедев А. К. Справочник по физике для инженеров и студентов вузов. — М.: Оникс, 2007. — С. 948. — ISBN 978-5-488-01248-6 — Тираж 5100 экз.
  17. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 145. — Тираж 50 000 экз.
  18. Вайнберг С. Первые три минуты. — М.: Энергоиздат, 1981. — С. 136.

Литература

  • Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900—1915). — М.: Наука, 1981. — 352c.
  • Визгин В. П. Единые теории в 1-й трети XX в. — М.: Наука, 1985. — 304c.
  • Иваненко Д. Д., Сарданашвили Г. А. Гравитация. 3-е изд. — М.: УРСС, 2008. — 200с.
  • Мизнер Ч., Торн К., Уилер Дж. Гравитация. — М.: Мир, 1977.
  • Торн К. Черные дыры и складки времени. Дерзкое наследие Эйнштейна. — М.: Государственное издательство физико-математической литературы, 2009.

Ссылки

wiki.sc

Что такое гравитация простыми словами

Общее понятие гравитации

Гравитация – это, казалось бы, простое понятие, известное каждому человеку еще со времен школьной скамьи. Все мы помним историю о том, как на голову Ньютона упало яблоко, и он открыл закон всемирного тяготения. Однако все не так просто, как кажется. В той статье мы попытаемся дать ясный и исчерпывающий ответ на вопрос: что такое гравитация? А также рассмотрим главные мифы и заблуждения об этом интересном явлении.

Говоря простыми словами, гравитация — это притяжение между двумя любыми объектами во вселенной. Гравитацию можно определить, зная массу тел и расстояние от одного до другого. Чем сильнее гравитационное поле, тем больше будет вес тела и выше его ускорение. Например, на Луне вес космонавта будет в шесть раз меньше, чем на Земле. Сила гравитационного поля зависит от размеров объекта, который оно окружает. Так, лунная сила притяжения в шесть раз ниже земной. Впервые обосновал это научно и доказал с помощью математических вычислений ещё в XVII веке Исаак Ньютон.

Что упало на голову Ньютону

Несмотря на то, что сам великий английский ученый частично подтверждал известную всем легенду о яблоке и ушибе головы, всё же, сейчас можно сказать с уверенностью, что при открытии закона всемирного тяготения обошлось без травм и озарений. Основой, заложившей новую эру в естественных науках, стал труд «Математические начала натуральной философии». В нем Ньютон описывает закон тяготения и важные законы механики, открытые им за долгие годы напряженной работы. Знаменитый физик был натурой неторопливой и рассудительной, как и положено гениальному ученому. А поэтому от начала раздумий о природе тяготения до издания научной работы о ней прошло больше 20 лет. Впрочем, легенда об упавшем фрукте могла иметь под собой и какие-то реальные основания, вот только голова физика однозначно осталась цела.

Законы притяжения изучались и до Исаака Ньютона самыми различными научными деятелями. Но только он впервые математически доказал прямую взаимосвязь между тяготением и движением планет. То есть падающим с ветки яблоком и вращением луны вокруг земли управляет одна и та же сила – гравитация. И она действует на любые два тела во вселенной. Эти открытия заложили основу так называемой небесной механики, а также науки о динамике. Ньютоновская модель господствовала в науке более двух веков вплоть до появления теории относительности и квантовой механики.

Что думают о гравитации современные ученые

Гравитация является самым слабым из четырех известных на данный момент фундаментальных взаимодействий, которым подчиняются все частицы и составленные из них тела. Помимо гравитационного взаимодействия сюда же входят электромагнитное, сильно и слабое. Исследуются они на основании разных теорий, так, например, в приближенных скоростях небольшой гравитации применяют теорию тяготения еще самого Ньютона. А в общем случае используют общую теорию относительности Эйнштейна. Кроме того, описание гравитации в квантовом пределе должно будет осуществляться при помощи еще не появившейся квантовой теории.

Безусловно, сегодня физика сложна и выходит далеко за рамки представлений об окружающем мире обычного человека. Но интересоваться ей необходимо хотя бы на уровне основных понятий, ведь вполне возможно, что уже в ближайшее время мы можем стать свидетелями удивительных открытий в этой области, которые кардинально изменят жизнь человечества. Будет неловко, если вы вообще не поймете, что происходит.

Мифы о гравитации

Не только незнание, но и постоянные новые открытия в данной научной сфере порождают различные несуразицы и мифы о гравитации. Итак, несколько общепринятых заблуждений об этом уникальном явлении:

  • Искусственные спутники никогда не сойдут с орбиты Земли и будут вечно вращаться вокруг неё. Это неправда. Дело в том, что помимо земного притяжения в космосе имеются и другие различные факторы, влияющие на орбиту тел. Это и торможение атмосферы для низких орбит и гравитационные поля Луны и других планет. Скорее всего, если дать спутнику вращаться без контроля на долгое время, его орбита будет изменяться, и в конечном счете он либо улетит в космические просторы, либо упадет на поверхность ближайшего тела.
  • В космосе отсутствует гравитация. Даже на станциях, на которых космонавты пребывают в невесомости есть довольно сильная гравитация, чуть меньше, чем на Земле. Почему же тогда они не падают? Можно сказать, что сотрудники станции как бы находятся в состоянии постоянного падения, но никак упадут.
  • Объект, приблизившийся к чёрной дыре, будет разорван. Довольно известный миф. Сила притяжение черной дыры действительно увеличится при приближении к ней, но совсем не обязательно, что приливные силы окажутся настолько мощными. Скорее всего они на горизонте событий обладают конечным значением, поскольку расстояние считается от центра дыры.

requesto.ru

Поверхностная гравитация — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 ноября 2017; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 ноября 2017; проверки требуют 2 правки.

Поверхностная гравитация (англ. surface gravity) — ускорение свободного падения, испытываемое на поверхности астрономического или иного объекта. Поверхностную гравитацию можно рассматривать как ускорение вследствие притяжения, испытываемое гипотетической пробной частицей, находящейся вблизи поверхности объекта и обладающей пренебрежимо малой массой, чтобы не вносить возмущения.

Поверхностная гравитация измеряется в единицах ускорения, которые в системе СИ равны м/с2. Иногда её удобно выражать в единицах земного ускорения свободного падения g = 9,80665 м/с2.[1] В астрофизике поверхностную гравитацию иногда выражают в виде lg g, который представляет собой десятичный логарифм от значения ускорения, выраженного в системе единиц СГС, в которой ускорение измеряется в см/с2.[2] Следовательно, поверхностная гравитация Земли в системе СГС равна 980,665 см/с2, а десятичный логарифм этой величины равен 2,992.

Гравитация на поверхности белого карлика очень сильна, а для нейтронных звёзд она ещё сильнее. Компактность нейтронной звезды приводит к тому, что для неё поверхностная гравитация составляет около 7·1012 м/с2, типичные значения имеют порядок 1012 м/с2, что в 100 000 000 000 раз превышает значение земной поверхностной гравитации. При этом скорость убегания с поверхности нейтронной звезды имеет порядок 105 км/с (треть скорости света).

ru.wikipedia.org

Гравитация – Gpedia, Your Encyclopedia

Гравита́ция (притяже́ние, всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas — «тяжесть») — универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых (по сравнению со скоростью света) скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. В квантовом пределе гравитационное взаимодействие предположительно описывается квантовой теорией гравитации, которая ещё не разработана.

Гравитация играет крайне важную роль в структуре и эволюции Вселенной (устанавливая связь между плотностью Вселенной и скоростью её расширения)[1], определяя ключевые условия равновесия и устойчивости астрономических систем[2]. Без гравитации во Вселенной не было бы планет, звёзд, галактик, чёрных дыр[3].

Гравитационное притяжение

Закон всемирного тяготения

В рамках классической механики гравитационное притяжение описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m1{\displaystyle m_{1}} и m2{\displaystyle m_{2}}, разделёнными расстоянием r{\displaystyle r}, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть:

F=Gm1m2r2{\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}}

Здесь G{\displaystyle G} — гравитационная постоянная, равная примерно 6,67×10−11 м³/(кг·с²)[4][5]. Этот закон выполняется в приближении при малых по сравнению со скоростью света v≪c{\displaystyle v\ll c} скоростей и слабого гравитационного взаимодействия (если для изучаемого объекта, расположенного на расстоянии R{\displaystyle R} от тела массой M{\displaystyle M}, величина GMc2R≪1{\displaystyle {\frac {GM}{c^{2}R}}\ll 1}[6]). В общем случае гравитация описывается общей теорией относительности Эйнштейна.

Закон всемирного тяготения — одно из приложений закона обратных квадратов, встречающегося также и при изучении излучений (см., например, Давление света), и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести, потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что, как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты — планеты, звёзды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами в космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, чёрные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель (IV в. до н. э.) считал, что объекты с разной массой падают с разной скоростью. И только много позже (1589) Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.

Небесная механика и некоторые её задачи

Раздел механики, изучающий движение тел в пустом пространстве только под действием гравитации, называется небесной механикой.

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух точечных или сферических тел в пустом пространстве. Эта задача в рамках классической механики решается аналитически в замкнутой форме; результат её решения часто формулируют в виде трёх законов Кеплера.

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе эта неустойчивость не позволяет предсказать точно движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: Солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы, аттракторы, хаотичность и т. д. Наглядный пример таких явлений — сложная структура колец Сатурна.

Несмотря на попытки точно описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса.

Сильные гравитационные поля

В сильных гравитационных полях (а также при движении в гравитационном поле с релятивистскими скоростями) начинают проявляться эффекты общей теории относительности (ОТО):

Гравитационное излучение

Одним из важных предсказаний ОТО является гравитационное излучение, наличие которого было подтверждено прямыми наблюдениями в 2015 году[7]. Однако и раньше были весомые косвенные свидетельства в пользу его существования, а именно: потери энергии в тесных двойных системах, содержащих компактные гравитирующие объекты (такие как нейтронные звезды или чёрные дыры), в частности, обнаруженные в 1979 году в знаменитой системе PSR B1913+16 (пульсаре Халса — Тейлора) — хорошо согласуются с моделью ОТО, в которой эта энергия уносится именно гравитационным излучением[8].

Гравитационное излучение могут генерировать только системы с переменным квадрупольным или более высокими мультипольными моментами, этот факт говорит о том, что гравитационное излучение большинства природных источников направленное, что существенно усложняет его обнаружение. Мощность гравитационного n{\displaystyle n} -польного источника пропорциональна (v/c)2n+2{\displaystyle (v/c)^{2n+2}}, если мультиполь имеет электрический тип, и (v/c)2n+4{\displaystyle (v/c)^{2n+4}} — если мультиполь магнитного типа[9], где v{\displaystyle v} — характерная скорость движения источников в излучающей системе, а c{\displaystyle c} — скорость света в вакууме. Таким образом, доминирующим моментом будет квадрупольный момент электрического типа, а мощность соответствующего излучения равна:

L=15Gc5⟨d3Qijdt3d3Qijdt3⟩,{\displaystyle L={\frac {1}{5}}{\frac {G}{c^{5}}}\left\langle {\frac {d^{3}Q_{ij}}{dt^{3}}}{\frac {d^{3}Q^{ij}}{dt^{3}}}\right\rangle ,}

где Qij{\displaystyle Q_{ij}} — тензор квадрупольного момента распределения масс излучающей системы. Константа Gc5=2,76×10−53{\displaystyle {\frac {G}{c^{5}}}=2,76\times 10^{-53}} (1/Вт) позволяет оценить порядок величины мощности излучения.

Начиная с 1969 года (эксперименты Вебера (англ.)), создаются детекторы гравитационного излучения. В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (LIGO, VIRGO, TAMA (англ.), GEO 600), а также проект космического гравитационного детектора LISA (Laser Interferometer Space Antenna — лазерно-интерферометрическая космическая антенна). Наземный детектор в России разрабатывается в Научном центре гравитационно-волновых исследований «Дулкын»[10] республики Татарстан.

Тонкие эффекты гравитации

Измерение кривизны пространства на орбите Земли (рисунок художника)

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и поэтому их обнаружение и экспериментальная проверка весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчёта (или эффект Лензе-Тирринга) и гравитомагнитное поле. В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли. Обработка полученных данных велась до мая 2011 года и подтвердила существование и величину эффектов геодезической прецессии и увлечения инерциальных систем отсчёта, хотя и с точностью, несколько меньшей изначально предполагавшейся.

После интенсивной работы по анализу и извлечению помех измерений, окончательные итоги миссии были объявлены на пресс-конференции по NASA-TV 4 мая 2011 года и опубликованы в Physical Review Letters[11]. Измеренная величина геодезической прецессии составила −6601,8±18,3 миллисекунды дуги в год, а эффекта увлечения — −37,2±7,2 миллисекунды дуги в год (ср. с теоретическими значениями −6606,1 mas/год и −39,2 mas/год).

Классические теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая[12] классическая теория гравитации — общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Общая теория относительности

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии. Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем — метрикой четырёхмерного пространства-времени, а напряжённость гравитационного поля — с аффинной связностью пространства-времени, определяемой метрикой.

Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих геометрические свойства пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырёхмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.

Известно, что в ОТО имеются затруднения в связи с неинвариантностью энергии гравитационного поля, поскольку данная энергия не описывается тензором и может быть теоретически определена разными способами. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия (так как спин протяжённого объекта также не имеет однозначного определения). Считается, что существуют определённые проблемы с однозначностью результатов и обоснованием непротиворечивости (проблема гравитационных сингулярностей).

Однако экспериментально ОТО подтверждается до самого последнего времени (2012 год). Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое только и доступно сейчас экспериментальной проверке.

Теория Эйнштейна — Картана

Теория Эйнштейна — Картана (ЭК) была разработана как расширение ОТО, внутренне включающее в себя описание воздействия на пространство-время, кроме энергии-импульса, также и спина объектов[13]. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана — Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса: один из них аналогичен ОТО, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением; второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения.
Получаемые поправки к ОТО, в условиях современной Вселенной, настолько малы, что пока не видно даже гипотетических путей для их измерения.

Теория Бранса — Дикке

В скалярно-тензорных теориях, самой известной из которых является теория Бранса — Дикке (или Йордана — Бранса — Дикке), гравитационное поле как эффективная метрика пространства-времени определяется воздействием не только тензора энергии-импульса материи, как в ОТО, но и дополнительного гравитационного скалярного поля. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Следовательно, скалярно-тензорные теории, как ОТО и РТГ, относятся к метрическим теориям, дающим объяснение гравитации, используя только геометрию пространства-времени и его метрические свойства. Наличие скалярного поля приводит к двум группам уравнений для компонент гравитационного поля: одна для метрики, вторая — для скалярного поля. Теория Бранса — Дикке вследствие наличия скалярного поля может рассматриваться также как действующая в пятимерном многообразии, состоящем из пространства-времени и скалярного поля[14].

Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского[15]. Благодаря наличию безразмерного параметра в теории Йордана — Бранса — Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана — Бранса — Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.

Квантовая теория гравитации

Несмотря на более чем полувековую историю попыток, гравитация — единственное из фундаментальных взаимодействий, для которого пока ещё не построена общепризнанная непротиворечивая квантовая теория. При низких энергиях, в духе квантовой теории поля, гравитационное взаимодействие можно представить как обмен гравитонами — калибровочными бозонами со спином 2. Однако получающаяся теория неперенормируема, и поэтому считается неудовлетворительной.

В последние десятилетия разработаны несколько перспективных подходов к решению задачи квантования гравитации: теория струн, петлевая квантовая гравитация и прочие.

Теория струн

В ней вместо частиц и фонового пространства-времени выступают струны и их многомерные аналоги — браны. Для многомерных задач браны являются многомерными частицами, но с точки зрения частиц, движущихся внутри этих бран, они являются пространственно-временными структурами. Вариантом теории струн является М-теория.

Петлевая квантовая гравитация

В ней делается попытка сформулировать квантовую теорию поля без привязки к пространственно-временному фону, пространство и время по этой теории состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время. Хотя многие космологические модели могут описать поведение вселенной только от Планковского времени после Большого Взрыва, петлевая квантовая гравитация может описать сам процесс взрыва, и даже заглянуть раньше. Петлевая квантовая гравитация позволяет описать все частицы стандартной модели, не требуя для объяснения их масс введения бозона Хиггса.

Причинная динамическая триангуляция

Причинная динамическая триангуляция — пространственно-временное многообразие в ней строится из элементарных евклидовых симплексов (треугольник, тетраэдр, пентахор) размеров порядка планковских с учётом принципа причинности. Четырёхмерность и псевдоевклидовость пространства-времени в макроскопических масштабах в ней не постулируются, а являются следствием теории.

Гравитация в микромире

Гравитация в микромире при низких энергиях элементарных частиц на много порядков слабее остальных фундаментальных взаимодействий. Так, отношение силы гравитационного взаимодействия двух покоящихся протонов к силе электростатического взаимодействия равно 10−36{\displaystyle 10^{-36}}.

Для сравнения закона всемирного тяготения с законом Кулона величину GNm{\displaystyle {\sqrt {G_{N}}}m} называют гравитационным зарядом. В силу принципа эквивалентности массы и энергии гравитационный заряд равен GNEc2{\displaystyle {\sqrt {G_{N}}}{\frac {E}{c^{2}}}}. Гравитационное взаимодействие становится равным по силе электромагнитному, когда гравитационный заряд равен электрическому GNEc2=e{\displaystyle {\sqrt {G_{N}}}{\frac {E}{c^{2}}}=e}, то есть при энергиях E=ec2GN=1018{\displaystyle E={\frac {ec^{2}}{\sqrt {G_{N}}}}=10^{18}} ГэВ, пока недостижимых на ускорителях элементарных частиц.[16][17]

Предполагается, что гравитационное взаимодействие было таким же сильным, как и остальные взаимодействия в первые 10−43{\displaystyle 10^{-43}} сек после Большого взрыва[18].

См. также

Примечания

  1. Вайнберг С. Первые три минуты. — М.: Энергоиздат, 1981. — С. 135.
  2. Нарликар Дж. Неистовая вселенная. — М.: Мир, 1985. — С. 25. — Тираж 100 000 экз.
  3. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 144. — Тираж 50 000 экз.
  4. ↑ Improved Determination of G Using Two Methods // Phys. Rev. Lett. 111, 101102 (2013), DOI:10.1103/PhysRevLett.111.101102
  5. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. M. Tino. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature (18 June 2014).
  6. Нарликар Дж. Неистовая вселенная. — М.: Мир, 1985. — С. 70. — Тираж 100 000 экз.
  7. LIGO Scientific Collaboration and Virgo Collaboration, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy. Observation of Gravitational Waves from a Binary Black Hole Merger // Physical Review Letters. — 2016-02-11. — Т. 116, вып. 6. — С. 061102. — DOI:10.1103/PhysRevLett.116.061102.
  8. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 87. — Тираж 50 000 экз.
  9. ↑ См. аналогию между слабым гравитационным полем и электромагнитным полем в статье гравитомагнетизм.
  10. ↑ Научный Центр Гравитационно-Волновых Исследований «Дулкын» Архивная копия от 25 сентября 2006 на Wayback Machine
  11. C. W. F. Everitt et al. Gravity Probe B: Final results of a space experiment to test general relativity, Physical Review Letters (1 мая 2011). Проверено 6 мая 2011.
  12. ↑ Канонической эта теория является в том смысле, что она наиболее хорошо разработана и широко используется в современной небесной механике, астрофизике и космологии, причём количество надёжно установленных противоречащих ей экспериментальных результатов практически равно нулю.
  13. Иваненко Д. Д., Пронин П. И., Сарданашвили Г. А. Калибровочная теория гравитации. — М.: Изд. МГУ, 1985.
  14. ↑ Brans, C. H.; Dicke, R. H. (November 1 1961). «Mach’s Principle and a Relativistic Theory of Gravitation». Physical Review 124 (3): 925—935. DOI:10.1103/PhysRev.124.925. Retrieved on 2006-09-23.
  15. ↑ С ортодоксальной точки зрения это уравнение представляет собой координатное условие.
  16. Яворский Б. М., Детлаф А. А., Лебедев А. К. Справочник по физике для инженеров и студентов вузов. — М.: Оникс, 2007. — С. 948. —

www.gpedia.com

Гравитация — Традиция

Происхождение и эволюция гравитации – гравитационных волн. Рисунок Система из двух нейтронных звезд порождает среду — рябь пространства-времени

Гравита́ция (всемирное тяготение, тяготение) — фундаментальное взаимодействие в природе, которому подвержены все тела, имеющие массу. Главным образом, гравитация действует в масштабах космоса.

Термин гравитация используется также как название раздела в физике, изучающего гравитационное поле и гравитационное взаимодействие.

Гравитационное взаимодействие[править]

Важнейшим свойством гравитации является то, что вызываемое ею ускорение малых пробных тел почти не зависит от массы этих тел. Это связано с тем, что гравитация как сила в природе прямо пропорциональна массе взаимодействующих тел. При размерах тел, достигающих размеров планет и звёзд, гравитационная сила становится определяющей и формирует шарообразную форму этих объектов. При дальнейшем увеличении размеров до уровня скоплений галактик и сверхскоплений проявляется эффект ограниченной скорости гравитационного взаимодействия. Это приводит к тому, что сверхскопления имеют уже не округлую форму, а напоминают вытянутые сигарообразные волокна, примыкающие к узлам с самыми массивными скоплениями галактик. Гравитационное взаимодействие — одно из четырёх фундаментальных взаимодействий в нашем мире. В рамках классической механики, гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, согласно которому сила гравитационного притяжения между двумя телами массы \(~m_1\) и \(~m_2\), разделённых расстоянием \(~R\) есть

\(~F = – G \cdot {m_1 \cdot m_2\over R^2}\).

Здесь \(~G \) — гравитационная постоянная, равная \(~6,673(10)\cdot 10^{-11}\) м3/(кг с2). Знак минус означает, что сила, действующая на пробное тело, всегда направлена по радиус-вектору от пробного тела к источнику гравитационного поля, т. е. гравитационное взаимодействие приводит всегда к притяжению тел.

Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность поля тяжести влечёт за собой закон сохранения суммы кинетической и потенциальной энергии, что при изучении движения тел в поле тяжести часто существенно упрощает решение.

В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал и сила зависят только от положения тела в данный момент времени. Однако учёт лоренц-инвариантности гравитационной силы и запаздывания распространения гравитационного воздействия с помощью решения для потенциалов Льенара и Вихерта приводит к тому, что в движущихся с постоянной скоростью системах отсчёта возникает дополнительная компонента силы за счёт гравитационного поля кручения. Ситуация полностью эквивалентна ситуации с электрической силой, когда при движении наблюдателя он обнаруживает ещё магнитное поле и магнитную силу, пропорциональную скорости своего движения. Это делает необходимым учёт ограниченности скорости распространения гравитации, приводящей к свойству близкодействия и запаздывания гравитационного взаимодействия. В конце 19 и в начале 20 века усилиями ряда физиков – О. Хевисайда, А. Пуанкаре, Г. Минковского, А. Зоммерфельда, Х. Лоренца и др. – были заложены основы лоренц-инвариантной теории гравитации (ЛИТГ), описывающей гравитацию в инерциальных системах отсчёта при релятивистских скоростях.

В результате закон всеобщего тяготения Исаака Ньютона (1687) был включён в лоренц-инвариантную теорию гравитации, которая достаточно хорошо предсказывала общее поведение гравитации. В 1915 году Альбертом Эйнштейном была создана общая теория относительности (ОТО), описывающая явления в гравитационном поле в терминах геометрии пространства-времени и с учётом влияния гравитации на результаты пространственно-временных измерений.

Небесная механика и некоторые её задачи[править]

Раздел механики, изучающий движение тел в пустом пространстве только под действием гравитации, называется небесной механикой.

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух тел в пустом пространстве. Эта задача решается аналитически до конца; результат её решения часто формулируют в виде трёх законов Кеплера.

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (т. е. движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении, достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе эта неустойчивость не позволяет предсказать движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: Солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений, и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы, аттракторы, хаотичность и т. д. Наглядный пример таких явлений — нетривиальная структура колец Сатурна.

Несмотря на попытки описать долговременное поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса.

Сильные гравитационные поля[править]

В сильных гравитационных полях или при движении с релятивистскими скоростями, начинают проявляться эффекты общей теории относительности:

  • отклонение закона тяготения от ньютоновского;
  • запаздывание потенциалов, связанное с конечной скоростью распространения гравитационных возмущений; появление гравитационных волн;
  • эффекты нелинейности: гравитационные волны имеют свойство взаимодействовать друг с другом, поэтому принцип суперпозиции волн в сильных полях уже не выполняется;
  • изменение геометрии видимого пространства-времени;
  • допускается развитие сингулярностей и возникновение чёрных дыр. Правда, первое очевидно требует для своего описания квантовой теории (каковой ОТО как таковая не является), т.е. реальность сингулярностей не только не доказана, но нельзя сказать, что достаточно хорошо обоснована. В реальности же обнаруживаются лишь такие весьма плотные космические объекты, как нейтронные звёзды (или даже гораздо массивнее), отнесение же таких массивных объектов к категории черных дыр в определенной мере условно (это делается просто в предположении верности ОТО, которая является для астрофизиков “стандартной теорией” – т.е. теорией, достаточно хорошо соответствующей текущим экспериментальным и наблюдательным данным, но выбранной из ряда других в качестве основной в значительной мере условно).

Гравитационное излучение[править]

Одним из предсказаний ОТО является гравитационное излучение, наличие которого до сих пор не подтверждено прямыми наблюдениями. Однако имеются косвенные наблюдательные свидетельства в пользу его существования, а именно: потери энергии в двойной системе с пульсаром PSR B1913+16 — пульсаром Халса-Тейлора — хорошо согласуются с моделью, в которой эта энергия уносится гравитационным излучением.

Согласно ОТО, гравитационное излучение могут генерировать только системы с переменным квадрупольным или более высокими мультипольными моментами. Мощность гравитационного i-польного источника пропорциональна \(~(v/c)^{2i + 2}\), если мультиполь имеет электрический тип, и \(~(v/c)^{2i + 4}\) – если мультиполь магнитного типа [1], где v – характерная скорость движения источников в излучающей системе, а c – скорость света. Таким образом, доминирующим моментом получается квадрупольный момент электрического типа, а мощность соответствующего излучения равна: $$~L = \frac{1}{5}\frac{G }{c^5}\langle \frac{d^3 Q_{ij}}{dt^3} \frac{d^3 Q^{ij}}{dt^3}\rangle ,$$ где \(~Q_{ij}\) – тензор квадрупольного момента распределения масс излучающей системы. Константа \(~\frac{c^5}{G } = 3,63 \times 10^{52}\) Вт позволяет оценить порядок величины мощности излучения.

Попытки прямого обнаружения гравитационного излучения предпринимаются с 1969 г. (эксперименты Вебера [2]). В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (LIGO, VIRGO, TAMA, GEO 600), а также проект космического гравитационного детектора LISA (Laser Interferometer Space Antenna — лазерно-интерферометрическая космическая антенна). Наземный детектор в России разрабатывается в Научном Центре Гравитационно-Волновых Исследований “Дулкын” [2] республики Татарстан.

Тонкие эффекты гравитации[править]

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и их обнаружение и экспериментальная проверка поэтому весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчета (или эффект Лензе-Тирринга) и гравимагнитное поле. В 2005 году автоматический аппарат НАСА Gravity Probe B провёл эксперимент по измерению этих эффектов вблизи Земли, но результаты, представленные в 2007 г. оказались неоднозначными из-за больших погрешностей измерений.

Квантовая теория гравитации[править]

Несмотря на полувековую историю попыток, гравитация — единственное из фундаментальных взаимодействий, для которого пока ещё не построена непротиворечивая перенормируемая квантовая теория. При низких энергиях, в духе квантовой теории поля, гравитационное взаимодействие можно представить как обмен гравитонами — калибровочными бозонами со спином 2 (если исходить из концепции ОТО), или со спином 1 или 0 для лоренц-инвариантной теории гравитации (ЛИТГ).

Проблемой здесь является то, что при высоких энергиях описание для ОТО перестаёт работать. Поэтому в настоящее время квантовая гравитация является предметом интенсивных теоретических исследований.

Современные теории гравитации[править]

В связи с тем, что до сих пор не вскрыта внутренняя структура ни одного фундаментального поля, не измерены параметры переносчиков поля, возникает возможность описания гравитационного поля несколькими конкурирующими теориями. Все эти теории дают похожие результаты в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты (см. статью альтернативные теории гравитации). Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Общая теория относительности[править]

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии. Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем или метрикой четырехмерного пространства-времени, а напряженность гравитационного поля – с аффинной связностью пространства-времени, определяемой метрикой. Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих метрику пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырехмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.

Известно, что в ОТО имеются затруднения с объяснением факта неинвариантности энергии гравитационного поля, поскольку данная энергия не описывается тензором. В недавней работе [3] было показано, что принцип эквивалентности не выполняется в отношении массы-энергии самого гравитационного поля. В частности, гравитационная масса-энергия поля неподвижного тела, и инертная масса-энергия поля движущегося с постоянной скоростью этого же тела не совпадают друг с другом. Эта ситуация не объяснима в ОТО. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия.

Считается, что в ОТО существуют определенные проблемы с однозначностью результатов и обоснованием непротиворечивости. В самом деле, благодаря предельной универсальности в выборе допустимых систем отсчёта ОТО сама по себе не может дать критерий того, является ли теоретически выбранная заранее форма метрического тензора и система отсчёта действительно правильно описывающими конкретную ситуацию (например, в Солнечной системе). Решение Шварцшильда для метрики вокруг точечной массы калибруется по условию её перехода на бесконечности в единичную метрику Минковского. Но поскольку в решение для метрики не входит радиус точечной массы (а только гравитационная масса, видимая из бесконечности), метрика Шварцшильда в любой точке вблизи этой массы не обязательно является метрикой для реальных массивных тел, обладающих радиусом и по-разному искривляющих пространство-время. Учёт свойств конкретных массивных тел также не даёт желаемой однозначности результатов для метрики. [4]

Прогресс в развитии ОТО отсутствовал также в связи с тем, что эта теория долгое время была не аксиоматизирована, как большинство других физических теорий. Построение систем аксиом позволило ограничить область применимости ОТО и указать возможности для построения более общих теорий [5] Кроме этого была обнаружена несовместимость ОТО с квантовой механикой, включая затруднения со вторичным квантованием уравнений теории.

На сегодняшний день существуют уже надёжно установленные и не объясняемые с помощью ОТО экспериментальные результаты. К ним относятся: эффект «Пионера»; flyby эффект; увеличение астрономической единицы; квадрупольно-октупольная аномалия фонового микроволнового излучения; тёмная энергия; тёмная материя. [6] Некоторые альтернативные эйнштейновскому, но стандартные для современной физики, подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в пределе слабого поля, которое в основном и доступно экспериментальной проверке.

Теория Эйнштейна-Картана[править]

Теория Эйнштейна-Картана (ЭК) предлагается как дополнение для ОТО, необходимое для описания метрики с участием вращающихся объектов [3]. В теории ЭК вводится аффинное кручение, а вместо неэвклидовой геометрии для пространства-времени используется геометрия Римана-Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для метрики содержат два уравнения. Одно из них аналогично ОТО, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением. Второе уравнение содержит тензор кручения и тензор спина материи и излучения. В масштабах Солнечной системы получаемые поправки к ОТО слишком малы для их измерения.

Релятивистская теория гравитации[править]

Релятивистская теория гравитации (РТГ) разрабатывается академиком Логуновым А.А. с группой сотрудников. [7] В своих работах они доказывают следующие отличия их теории от ОТО [8] :

  • гравитация есть не геометрическое поле, а реальное физическое силовое поле, описываемое тензором.
  • гравитационные явления следует рассматривать в рамках плоского пространства Минковского, в котором однозначно выполняются законы сохранения энергии-импульса и момента количества движения. Тогда движение тел в пространстве Минковского эквивалентно движению этих тел в эффективном римановом пространстве.
  • В тензорных уравнениях для определения метрики следует учитывать массу гравитона, а также использовать калибровочные условия, связанные с метрикой пространства Минковского. Это не позволяет уничтожить гравитационное поле даже локально выбором какой-то подходящей системы отсчёта.

Как и в ОТО, в РТГ под веществом понимаются все формы материи (включая и электромагнитное поле), за исключением самого гравитационного поля. Следствия из теории РТГ таковы: чёрных дыр как физических объектов, предсказываемых в ОТО, не существует; Вселенная плоская, однородная, изотропная, неподвижная и евклидовая.

C другой стороны, существуют и содержательные аргументы противников РТГ, сводящиеся к следующим положениям:

  • РТГ есть биметрическая теория, эквивалентная так называемой полевой трактовке ОТО как надстройке над ненаблюдаемым пространством Минковского: “В релятивистской теории гравитации… фигурируют в точности те же лагранжианы…, которые приводят к уравнениям гравитационного поля”[9], “математическое содержание РТГ сводится к математическому содержанию ОТО (в полевой формулировке)” [10]. Этот аргумент в таком изложении, по-видимому не учитывает возможных топологических различий между обычной моделью ОТО и РТГ, или же, по крайней мере, маскирует их.
  • Дополнительные уравнения РТГ представляют собой всего лишь координатные условия: “Весь набор уравнений РТГ в терминах метрики искривленного пространства-времени можно свести к уравнениям Эйнштейна плюс гармоническое координатное условие, столь успешно использовавшееся Фоком”. [10]
  • Вышеприведённые следствия из РТГ являются лишь следствием неточностей: несуществование чёрных дыр — следствием невозможности покрыть одним многообразием, эквивалентным пространству-времени Минковского, пространство-время сколлапсировавшего в чёрную дыру объекта; космологических предсказаний — следствием принятых координатных условий в сочетании с совершенно произвольным дополнительным допущением о вложенности световых конусов реального пространства в конусы пространства Минковского.

Нетрудно заметить, что некоторые из этих аргументов противоречат друг другу, что, правда, само по себе, конечно, не означает, что все они неверны. Кроме того, многие из них в отношении РТГ следуют как бы из логики ОТО, а не из нейтральной или из более общей теории, что несколько снижает их значение и требует независимого подтверждения (например, экспериментом).

Теория Йордана-Бранса-Дикке[править]

В скалярно-тензорных теориях, самой известной из которых является теория Йордана-Бранса-Дикке (или просто Бранса-Дикке), гравитационное поле как эффективная метрика пространства-времени определяется не только воздействием тензора энергии-импульса материи, как в ОТО, но и как результат действия некоторого скалярного поля [4]. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Следовательно, скалярно-тензорные теории, как ОТО и РТГ, относятся к метрическим теориям, дающим объяснение гравитации только в терминах геометрии пространства-времени и его метрических свойств. Наличие скалярного поля приводит к двум тензорным уравнениям для метрики. Теория Йордана-Бранса-Дикке вследствие наличия скалярного поля может рассматриваться также как действующая в пятимерном многообразии, состоящем из пространства-времени и скалярного поля.[11]

Подобное имеет место и в РТГ, где второе тензорное уравнение появляется для учёта связи между неевклидовым пространством и пространством Минковского. Благодаря наличию безразмерного подгоночного параметра в теории Йордана-Бранса-Дикке, появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов.

Ковариантная теория гравитации[править]

Ковариантная теория гравитации (КТГ) включает в себя лоренц-инвариантную теорию гравитации (ЛИТГ) и метрическую теорию относительности (МТО). ЛИТГ справедлива в инерциальных системах отсчёта и в слабых гравитационных полях. В ЛИТГ сила гравитации является реальной физической силой, описывается уравнениями для напряжённостей поля согласно работам Сергея Федосина. [12][13] Уравнения ЛИТГ практически совпадают с уравнениями ОТО в пределе малого поля, [5] смотри также гравимагнетизм, и могут рассматриваться также как максвеллоподобные гравитационные уравнения. В международной системе единиц СИ уравнения гравитационного поля ЛИТГ имеют вид: $$~ \nabla \cdot \mathbf{\Gamma } = -4 \pi G \rho ,$$ $$~ \nabla \cdot \mathbf{\Omega} = 0 ,$$ $$~ \nabla \times \mathbf{\Gamma } = – \frac{\partial \mathbf{\Omega} } {\partial t} ,$$ $$~ \nabla \times \mathbf{\Omega} = \frac{1}{c^2_{g}} \left( -4 \pi G \mathbf{J} + \frac{\partial \mathbf{\Gamma }} {\partial t} \right) = \frac{1}{c^2_{g}} \left( -4 \pi G \rho \mathbf{v}_{\rho} + \frac{\partial \mathbf{\Gamma }} {\partial t} \right) ,$$

где:

Поле кручения является аналогом магнитной компоненты поля в электромагнетизме. Выражение для гравитационной силы имеет следующий вид: $$~\mathbf{F}_{m} = m \left( \mathbf{\Gamma } + \mathbf{v}_{m} \times \mathbf{\Omega} \right) ,$$

где:

  • m – масса частицы, на которую действует сила,
  • vm – скорость частицы.

Для кручения за пределами вращающегося тела из вышеприведенных уравнений поля можно вывести формулу: $$~\mathbf{\Omega } = \frac{ G }{2 c^2_{g}} \frac{\mathbf{L} – 3(\mathbf{L} \cdot \mathbf{r}/r) \mathbf{r}/r}{r^3},$$

где L есть момент импульса вращения тела.

Как следствие поля кручения в гравитационных явлениях возможен эффект гравитационной индукции.

Для плотности энергии и вектора плотности потока энергии гравитационного поля (вектора Хевисайда) получается: $$~u=-\frac{1}{8 \pi G }\left(\Gamma^2+ c^2_{g} \Omega^2 \right),$$ $$~\mathbf{H} =-\frac{ c^2_{g} }{4 \pi G }\mathbf{\Gamma }\times \mathbf{\Omega }.$$

Поскольку в ЛИТГ гравитационное поле является векторным, имеющим две компоненты (гравитационное ускорение и кручение ), то становится допустимым дипольное гравитационное излучение от ускоряемых массивных тел. Такое излучение может появиться, например, при ускоренном движении тела под действием негравитационной силы. Однако в закрытой системе тел общее дипольное гравитационное излучение стремится к нулю из-за взаимной компенсации излучений отдельных тел, и доминирующим становится квадрупольное излучение, как в ОТО.

В слабых полях пространство-время описывается единичным метрическим тензором пространства Минковского, и уравнения поля лоренц-инвариантны. При больших скоростях движения частиц или в достаточно сильных полях необходимо учитывать влияние гравитационного поля на результаты пространственно-временных измерений. Например, гравитация способна отклонять лучи света от первоначального направления и изменять их скорость. Для учёта подобных явлений осуществляется переход от ЛИТГ к КТГ, путём замены в формулах метрического тензора \(~ \eta^{ik}\) пространства Минковского на метрический тензор \(~ g^{ik}\) искривлённого псевдориманова пространства. Это позволяет представить уравнения КТГ в ковариантном тензорном виде и с учётом изменённого метрического тензора. Тензорные уравнения гравитационного поля в произвольной системе отсчёта через ковариантные производные имеют вид: $$~ \nabla_n \Phi_{ik} + \nabla_i \Phi_{kn} + \nabla_k \Phi_{ni}=0 ,$$ $$~\nabla_k \Phi^{ik} = \frac{4 \pi G }{c^2_{g}} J^i ,$$

где \(~J^i\) есть 4-вектор плотности импульса (плотности тока массы), порождающий гравитационное поле, \(~ \Phi_{ik}\) – антисимметричный тензор гравитационного поля, состоящий из компонент \(~ \mathbf{\Gamma }\) и \(~ \mathbf{\Omega}\).

С помощью тензора \(~ \Phi_{ik}\) строится тензор энергии-импульса гравитационного поля: $$~ U^{ik} = \frac{c^2_{g}} {4 \pi G }\left( -g^{im}\Phi_{mr}\Phi^{rk}+ \frac{1} {4} g^{ik}\Phi_{rm}\Phi^{mr}\right). $$

Благодаря этому тензору в ЛИТГ и в КТГ автоматически решается проблема ОТО с тензором плотности энергии-импульса гравитационного поля. Данный тензор участвует в решении всех задач при нахождении метрики. Совместно с граничными условиями (например, на поверхности массивных тел) это задаёт условия, необходимые для правильной идентификации систем отсчёта, позволяя избежать соответствующей проблемы ОТО.

КТГ отличается от ОТО своими уравнениями движения. Если в ОТО применятся одно и то же уравнение движения и для частиц и для квантов поля (как следствие принципа эквивалентности), то в КТГ уравнения движения для частиц и квантов различаются и являются развёрнутым применением закона сохранения энергии-импульса в векторно-тензорной форме. [14] При решении задач в КТГ необходимо решать систему дифференциальных уравнений трёх типов – уравнения для компонент гравитационного поля, уравнения для метрики, и уравнения движения. При этом движение масс как источников поля изменяет картину поля, и метрика меняется не только за счёт изменения конфигурации масс, но и за счёт изменения напряжённостей гравитационных полей. Уравнение движения вещества в КТГ, в отличие от ОТО, позволяет описывать реактивное движение, переходя в слабом поле в релятивистское уравнение Мещерского.

Метрическая теория относительности (МТО) используется как одно из оснований КТГ и позволяет производить преобразования физических величин из одной системы отсчёта в другую. Особенностью МТО является использование не принципа эквивалентности ОТО, а принципа эквивалентности энергии-импульса. Вместо приравнивания сил инерции и гравитации в МТО используется эквивалентность тензора энергии-импульса для описания подобных друг другу движений. Такой подход кажется предпочтительней, так как не силы, а именно энергии входят в формулы для определения метрики.

После осуществления аксиоматизации ОТО стало ясно, что общая относительность является частным случаем МТО, гравитационное поле в ОТО определяется как геометрическое тензорное поле метрики и отличается от физического векторного поля гравитационных потенциалов в КТГ, а уравнение движения материи ОТО может быть выведено из ковариантных уравнений движения КТГ. [15]

Сущность гравитации[править]

В ОТО гравитация возникает как следствие искривления пространства-времени вблизи массивных тел, однако причины подобного искривления не определяются. Структуру гравитационного поля пытаются определить также в квантовой гравитации с помощью методов квантовой теории поля. Одной из проблем здесь является то, что до сих пор не доказано, что гравитоны действительно должны иметь спин, кратный постоянной Дирака ħ. В теории бесконечной вложенности материи осуществляется подобие уровней материи и распределение всех природных объектов по различным уровням в зависимости от масс и размеров. Предполагается, что теория гравитации Лесажа справедлива для всех уровней материи, причём включение в потоки гравитонов заряженных релятивистских частиц позволяет дополнительно объяснить происхождение кулоновской силы между электрическими зарядами.[14] Согласно теории, каждый материальный объект состоит из частиц, принадлежащих низшим уровням материи, а каждый волновой квант может быть разложен на более мелкие кванты. Между веществом и квантами поля имеется связь, заключающаяся в том, что они генетически порождают друг друга на разных уровнях материи. В частности находится, что гравитонами для обычной гравитации могут быть кванты поля, излучаемые частицами, из которых строится вещество нуклонов. [5] В рассмотрение вводится также сильная гравитация, действующая на уровне элементарных частиц. На основе сильной гравитации и поля кручения обосновывается гравитационная модель сильного взаимодействия. Одним из следствий этого является то, что гравитационное и электромагнитное поля являются фундаментальными полями, действующими на разных уровням материи посредством полевых квантов с различной величиной своего спина и энергии, и с различной проникающей способностью в веществе.

  1. ↑ См. аналогии между слабым гравитационным полем и электромагнитным полем в статье [1]
  2. ↑ http://dulkyn.org.ru/ru/about.html
  3. ↑ Fedosin S.G. Mass, Momentum and Energy of Gravitational Field. Journal of Vectorial Relativity, September 2008, Vol. 3, No. 3, P.30–35; статья на русском языке: Масса, импульс и энергия гравитационного поля
  4. ↑ Логунов А.А., Мествиришвили М.А. Основы релятивистской теории гравитации. – Изд-во МГУ, 1986, с. 308.
  5. а б Комментарии к книге: Федосин С.Г. Физические теории и бесконечная вложенность материи. Пермь, 2009, 844 стр., Табл. 21, Ил.41, Библ. 289 назв. ISBN 978-5-9901951-1-0.
  6. ↑ C. Lämmerzahl, O. Preuss, H. Dittus. Is the physics within the Solar system really understood? arxiv:gr-qc/0604052v1, 11 Apr. 2006.
  7. ↑ Логунов А.А., Мествиришвили М.А. Релятивистская теория гравитации. – М: Наука, 1989.
  8. ↑ Логунов А.А., Мествиришвили М.А. Тензор энергии-импульса материи как источник гравитационного поля. – Теоретическая и математическая физика, 1997, Т. 110, Вып. 1, Стр. 5 – 24.
  9. ↑ Зельдович Я. Б., Грищук Л. П. ТЯГОТЕНИЕ, ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ И АЛЬТЕРНАТИВНЫЕ ТЕОРИИ. УФН, 1986, Т. 149, № 4, с. 695-707. С. 704.
  10. а б Зельдович Я. Б., Грищук Л. П. Общая теория относительности верна! УФН, 1988, Т. 155, № 3, с. 517-527. С. 521.
  11. ↑ Brans, C. H.; Dicke, R. H. (November 1 1961). “Mach’s Principle and a Relativistic Theory of Gravitation”. Physical Review 124 (3): 925–935. DOI:10.1103/PhysRev.124.925. Retrieved on 2006-09-23.
  12. ↑ Федосин С.Г. Физика и философия подобия от преонов до метагалактик, Пермь: Стиль-МГ, 1999, ISBN 5-8131-0012-1. 544 стр., Табл.66, Ил.93, Библ. 377 назв.
  13. ↑ S.G. Fedosin. «Electromagnetic and Gravitational Pictures of the World». Apeiron, Vol. 14, No. 4, P. 385-413, 2007; статья на русском языке: Электромагнитная и гравитационная картины мира.
  14. а б Федосин С.Г. Физические теории и бесконечная вложенность материи, Пермь, 2009, 844 стр., Табл. 21, Ил.41, Библ. 289 назв. ISBN 978-5-9901951-1-0.
  15. ↑ Fedosin S.G. The General Theory of Relativity, Metric Theory of Relativity and Covariant Theory of Gravitation: Axiomatization and Critical Analysis, International Journal of Theoretical and Applied Physics (IJTAP), ISSN: 2250-0634, Vol.4, No. I (2014), pp. 9-26; статья на русском языке: Общая теория относительности, метрическая теория относительности и ковариантная теория гравитации. Аксиоматизация и критический анализ.
  1. М.Л. Фильченков, С.В. Копылов, В.С. Евдокимов Курс общей физики: дополнительные главы.

traditio.wiki

Гравитация — WiKi

Гравита́ция (притяже́ние, всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas — «тяжесть») — универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых (по сравнению со скоростью света) скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. В квантовом пределе гравитационное взаимодействие предположительно описывается квантовой теорией гравитации, которая ещё не разработана.

Гравитация играет крайне важную роль в структуре и эволюции Вселенной (устанавливая связь между плотностью Вселенной и скоростью её расширения)[1], определяя ключевые условия равновесия и устойчивости астрономических систем[2]. Без гравитации во Вселенной не было бы планет, звёзд, галактик, чёрных дыр[3].

Гравитационное притяжение

  Закон всемирного тяготения

В рамках классической механики гравитационное притяжение описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m1{\displaystyle m_{1}}  и m2{\displaystyle m_{2}} , разделёнными расстоянием r{\displaystyle r} , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть:

F=Gm1m2r2{\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}} 

Здесь G{\displaystyle G}  — гравитационная постоянная, равная примерно 6,67×10−11 м³/(кг·с²)[4][5]. Этот закон выполняется в приближении при малых по сравнению со скоростью света v≪c{\displaystyle v\ll c}  скоростей и слабого гравитационного взаимодействия (если для изучаемого объекта, расположенного на расстоянии R{\displaystyle R}  от тела массой M{\displaystyle M} , величина GMc2R≪1{\displaystyle {\frac {GM}{c^{2}R}}\ll 1} [6]). В общем случае гравитация описывается общей теорией относительности Эйнштейна.

Закон всемирного тяготения — одно из приложений закона обратных квадратов, встречающегося также и при изучении излучений (см., например, Давление света), и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести, потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что, как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты — планеты, звёзды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами в космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, чёрные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель (IV в. до н. э.) считал, что объекты с разной массой падают с разной скоростью. И только много позже (1589) Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.

Небесная механика и некоторые её задачи

Раздел механики, изучающий движение тел в пустом пространстве только под действием гравитации, называется небесной механикой.

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух точечных или сферических тел в пустом пространстве. Эта задача в рамках классической механики решается аналитически в замкнутой форме; результат её решения часто формулируют в виде трёх законов Кеплера.

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе эта неустойчивость не позволяет предсказать точно движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: Солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы, аттракторы, хаотичность и т. д. Наглядный пример таких явлений — сложная структура колец Сатурна.

Несмотря на попытки точно описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса.

Сильные гравитационные поля

В сильных гравитационных полях (а также при движении в гравитационном поле с релятивистскими скоростями) начинают проявляться эффекты общей теории относительности (ОТО):

Гравитационное излучение

Одним из важных предсказаний ОТО является гравитационное излучение, наличие которого было подтверждено прямыми наблюдениями в 2015 году[7]. Однако и раньше были весомые косвенные свидетельства в пользу его существования, а именно: потери энергии в тесных двойных системах, содержащих компактные гравитирующие объекты (такие как нейтронные звезды или чёрные дыры), в частности, обнаруженные в 1979 году в знаменитой системе PSR B1913+16 (пульсаре Халса — Тейлора) — хорошо согласуются с моделью ОТО, в которой эта энергия уносится именно гравитационным излучением[8].

Гравитационное излучение могут генерировать только системы с переменным квадрупольным или более высокими мультипольными моментами, этот факт говорит о том, что гравитационное излучение большинства природных источников направленное, что существенно усложняет его обнаружение. Мощность гравитационного n{\displaystyle n}  -польного источника пропорциональна (v/c)2n+2{\displaystyle (v/c)^{2n+2}} , если мультиполь имеет электрический тип, и (v/c)2n+4{\displaystyle (v/c)^{2n+4}}  — если мультиполь магнитного типа[9], где v{\displaystyle v}  — характерная скорость движения источников в излучающей системе, а c{\displaystyle c}  — скорость света в вакууме. Таким образом, доминирующим моментом будет квадрупольный момент электрического типа, а мощность соответствующего излучения равна:

L=15Gc5⟨d3Qijdt3d3Qijdt3⟩,{\displaystyle L={\frac {1}{5}}{\frac {G}{c^{5}}}\left\langle {\frac {d^{3}Q_{ij}}{dt^{3}}}{\frac {d^{3}Q^{ij}}{dt^{3}}}\right\rangle ,} 

где Qij{\displaystyle Q_{ij}}  — тензор квадрупольного момента распределения масс излучающей системы. Константа Gc5=2,76×10−53{\displaystyle {\frac {G}{c^{5}}}=2,76\times 10^{-53}}  (1/Вт) позволяет оценить порядок величины мощности излучения.

Начиная с 1969 года (эксперименты Вебера (англ.)), создаются детекторы гравитационного излучения. В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (LIGO, VIRGO, TAMA (англ.), GEO 600), а также проект космического гравитационного детектора LISA (Laser Interferometer Space Antenna — лазерно-интерферометрическая космическая антенна). Наземный детектор в России разрабатывается в Научном центре гравитационно-волновых исследований «Дулкын»[10] республики Татарстан.

Тонкие эффекты гравитации

  Измерение кривизны пространства на орбите Земли (рисунок художника)

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и поэтому их обнаружение и экспериментальная проверка весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчёта (или эффект Лензе-Тирринга) и гравитомагнитное поле. В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли. Обработка полученных данных велась до мая 2011 года и подтвердила существование и величину эффектов геодезической прецессии и увлечения инерциальных систем отсчёта, хотя и с точностью, несколько меньшей изначально предполагавшейся.

После интенсивной работы по анализу и извлечению помех измерений, окончательные итоги миссии были объявлены на пресс-конференции по NASA-TV 4 мая 2011 года и опубликованы в Physical Review Letters[11]. Измеренная величина геодезической прецессии составила −6601,8±18,3 миллисекунды дуги в год, а эффекта увлечения — −37,2±7,2 миллисекунды дуги в год (ср. с теоретическими значениями −6606,1 mas/год и −39,2 mas/год).

Классические теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая[12] классическая теория гравитации — общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Общая теория относительности

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии. Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем — метрикой четырёхмерного пространства-времени, а напряжённость гравитационного поля — с аффинной связностью пространства-времени, определяемой метрикой.

Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих геометрические свойства пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырёхмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.

Известно, что в ОТО имеются затруднения в связи с неинвариантностью энергии гравитационного поля, поскольку данная энергия не описывается тензором и может быть теоретически определена разными способами. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия (так как спин протяжённого объекта также не имеет однозначного определения). Считается, что существуют определённые проблемы с однозначностью результатов и обоснованием непротиворечивости (проблема гравитационных сингулярностей).

Однако экспериментально ОТО подтверждается до самого последнего времени (2012 год). Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое только и доступно сейчас экспериментальной проверке.

Теория Эйнштейна — Картана

Теория Эйнштейна — Картана (ЭК) была разработана как расширение ОТО, внутренне включающее в себя описание воздействия на пространство-время, кроме энергии-импульса, также и спина объектов[13]. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана — Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса: один из них аналогичен ОТО, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением; второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения.
Получаемые поправки к ОТО, в условиях современной Вселенной, настолько малы, что пока не видно даже гипотетических путей для их измерения.

Теория Бранса — Дикке

В скалярно-тензорных теориях, самой известной из которых является теория Бранса — Дикке (или Йордана — Бранса — Дикке), гравитационное поле как эффективная метрика пространства-времени определяется воздействием не только тензора энергии-импульса материи, как в ОТО, но и дополнительного гравитационного скалярного поля. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Следовательно, скалярно-тензорные теории, как ОТО и РТГ, относятся к метрическим теориям, дающим объяснение гравитации, используя только геометрию пространства-времени и его метрические свойства. Наличие скалярного поля приводит к двум группам уравнений для компонент гравитационного поля: одна для метрики, вторая — для скалярного поля. Теория Бранса — Дикке вследствие наличия скалярного поля может рассматриваться также как действующая в пятимерном многообразии, состоящем из пространства-времени и скалярного поля[14].

Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского[15]. Благодаря наличию безразмерного параметра в теории Йордана — Бранса — Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана — Бранса — Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.

Квантовая теория гравитации

 

Несмотря на более чем полувековую историю попыток, гравитация — единственное из фундаментальных взаимодействий, для которого пока ещё не построена общепризнанная непротиворечивая квантовая теория. При низких энергиях, в духе квантовой теории поля, гравитационное взаимодействие можно представить как обмен гравитонами — калибровочными бозонами со спином 2. Однако получающаяся теория неперенормируема, и поэтому считается неудовлетворительной.

В последние десятилетия разработаны несколько перспективных подходов к решению задачи квантования гравитации: теория струн, петлевая квантовая гравитация и прочие.

Теория струн

В ней вместо частиц и фонового пространства-времени выступают струны и их многомерные аналоги — браны. Для многомерных задач браны являются многомерными частицами, но с точки зрения частиц, движущихся внутри этих бран, они являются пространственно-временными структурами. Вариантом теории струн является М-теория.

Петлевая квантовая гравитация

В ней делается попытка сформулировать квантовую теорию поля без привязки к пространственно-временному фону, пространство и время по этой теории состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время. Хотя многие космологические модели могут описать поведение вселенной только от Планковского времени после Большого Взрыва, петлевая квантовая гравитация может описать сам процесс взрыва, и даже заглянуть раньше. Петлевая квантовая гравитация позволяет описать все частицы стандартной модели, не требуя для объяснения их масс введения бозона Хиггса.

Причинная динамическая триангуляция

Причинная динамическая триангуляция (англ. Causal dynamical triangulation)[убрать шаблон] — пространственно-временное многообразие в ней строится из элементарных евклидовых симплексов (треугольник, тетраэдр, пентахор) размеров порядка планковских с учётом принципа причинности. Четырёхмерность и псевдоевклидовость пространства-времени в макроскопических масштабах в ней не постулируются, а являются следствием теории.

Гравитация в микромире

См. также

Примечания

  1. Вайнберг С. Первые три минуты. — М.: Энергоиздат, 1981. — С. 135.
  2. Нарликар Дж. Неистовая вселенная. — М.: Мир, 1985. — С. 25. — Тираж 100 000 экз.
  3. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 144. — Тираж 50 000 экз.
  4. ↑ Improved Determination of G Using Two Methods // Phys. Rev. Lett. 111, 101102 (2013), DOI:10.1103/PhysRevLett.111.101102
  5. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. M. Tino. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature (18 June 2014).
  6. Нарликар Дж. Неистовая вселенная. — М.: Мир, 1985. — С. 70. — Тираж 100 000 экз.
  7. LIGO Scientific Collaboration and Virgo Collaboration, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy. Observation of Gravitational Waves from a Binary Black Hole Merger // Physical Review Letters. — 2016-02-11. — Т. 116, вып. 6. — С. 061102. — DOI:10.1103/PhysRevLett.116.061102.
  8. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 87. — Тираж 50 000 экз.
  9. ↑ См. аналогию между слабым гравитационным полем и электромагнитным полем в статье гравитомагнетизм.
  10. ↑ Научный Центр Гравитационно-Волновых Исследований «Дулкын» Архивная копия от 25 сентября 2006 на Wayback Machine
  11. C. W. F. Everitt et al. Gravity Probe B: Final results of a space experiment to test general relativity, Physical Review Letters (1 мая 2011). Проверено 6 мая 2011.
  12. ↑ Канонической эта теория является в том смысле, что она наиболее хорошо разработана и широко используется в современной небесной механике, астрофизике и космологии, причём количество надёжно установленных противоречащих ей экспериментальных результатов практически равно нулю.
  13. Иваненко Д. Д., Пронин П. И., Сарданашвили Г. А. Калибровочная теория гравитации. — М.: Изд. МГУ, 1985.
  14. ↑ Brans, C. H.; Dicke, R. H. (November 1 1961). «Mach’s Principle and a Relativistic Theory of Gravitation». Physical Review 124 (3): 925—935. DOI:10.1103/PhysRev.124.925. Retrieved on 2006-09-23.
  15. ↑ С ортодоксальной точки зрения это уравнение представляет собой координатное условие.
  16. Яворский Б. М., Детлаф А. А., Лебедев А. К. Справочник по физике для инженеров и студентов вузов. — М.: Оникс, 2007. — С. 948. — ISBN 978-5-488-01248-6 — Тираж 5100 экз.
  17. Нарликар Дж. Гравитация без формул. — М.: Мир, 1985. — С. 145. — Тираж 50 000 экз.
  18. Вайнберг С. Первые три минуты. — М.: Энергоиздат, 1981. — С. 136.

Литература

  • Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900—1915). — М.: Наука, 1981. — 352c.
  • Визгин В. П. Единые теории в 1-й трети XX в. — М.: Наука, 1985. — 304c.
  • Иваненко Д. Д., Сарданашвили Г. А. Гравитация. 3-е изд. — М.: УРСС, 2008. — 200с.
  • Мизнер Ч., Торн К., Уилер Дж. Гравитация. — М.: Мир, 1977.
  • Торн К. Черные дыры и складки времени. Дерзкое наследие Эйнштейна. — М.: Государственное издательство физико-математической литературы, 2009.

Ссылки

ru-wiki.org

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *