Все формулы количество теплоты – Количество теплоты при нагревании тела (формула) – Формулы – Молекулярная физика и термодинамика – Фотоальбомы

Персональный сайт учителя физики – теплота формулы

Тепловые явления

Температура – это количественная мера нагретости тел. Она измеряется при помощи термометра и выражается в градусах Цельсия (ºC).

Кинетическая энергия всех молекул, из которых состоит тело, и потенциальная энергия их взаимодействия составляют внутреннюю энергию тела.

Внутренняя энергия зависит от температуры тела, агрегатного состояния вещества

Внутренняя энергия тела изменяется в процессе теплопередачи и при совершении работы.

Изменение внутренней энергии тела без совершения работы называется теплопередачей.

Теплопередача всегда происходит в направлении от тела с большей температурой к телу с меньшей температурой.

 Существует три вида теплопередачи.

  1. Теплопроводность – перенос энергии от одного тела к другому.
  2. Конвекция – это перенос энергии потоками жидкости или газа.
  3. Третий способ передачи энергии – излучение. Энергию излучают все нагретые тела.

Энергия, которую получает или теряет тело при теплопередаче, называется количеством теплоты Q. Количество теплоты зависит от массы тела, рода вещества и изменения температуры тела. Количество теплоты измеряется в джоулях (Дж).

Q = cm(t2 -t1)

Физическая величина, равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура увеличилась на 1 ºC, называется удельной теплоемкостью вещества c.  

Физическая величина, показывающая, какое количество теплоты выделяется при сгорании одного килограмма топлива, называется удельной теплотой сгорания q:

Количество теплоты, выделяемое при кристаллизации тела и поглощаемое телом при плавлении, отнесенное к единице массы тела, называется удельной теплотой плавления (кристаллизации) λ:

При отвердевании (кристаллизации) выделяется такое же количество теплоты, какое поглощается при плавлении.

Количество теплоты, необходимое для парообразования (выделяющееся при конденсации):

где L – удельная теплота парообразования (конденсации).

Абсолютная влажность воздуха ρ показывает плотность водяного пара. Относительной влажностью воздуха φ называют отношение абсолютной влажности воздуха ρ к плотности ρ0 насыщенного водяного пара при той же температуре, выраженное в процентах:

ф = Р/Р0*100%

Температура, при которой пар, находящийся в воздухе, становится насыщенным, называется точкой росы. 

i-a-ryzhkov.narod.ru

Количество теплоты

Внутренняя энергия тела может изменяться за счет работы внешних сил. Для характеристики изменения внутренней энергии при теплообмене вводится величина, называемая количеством теплоты и обозначаемая Q.

Количество теплоты – это физическая величина, показывающая, какая энергия передана телу в результате теплообмена.

В международной системе единицей количества теплоты, также как работы и энергии, является джоуль: [Q] = [A] = [E] = 1 Дж.

На практике еще иногда применяется внесистемная единица количества теплоты – калория. 1 кал. = 4,2 Дж.

Следует отметить, что термин «количество теплоты» неудачен. Он был введен в то время, когда считалось, что в телах содержится некая невесомая, неуловимая жидкость – теплород. Процесс теплообмена, якобы, заключается в том, что теплород, переливаясь из одного тела в другое, переносит с собой и некоторое количество теплоты. Сейчас, зная основы молекулярно-кинетической теории строения вещества, мы понимаем, что теплорода в телах нет, механизм изменения внутренней энергии тела иной. Однако, сила традиций велика и мы продолжаем пользоваться термином, введенным на основе неверных представлений о природе теплоты. Вместе с тем, понимая природу теплообмена, не следует полностью игнорировать неверные представления о нем. Напротив, проводя аналогию между потоком тепла и потоком гипотетической жидкости теплорода, количеством теплоты и количеством теплорода, можно при решении некоторых классов задач наглядно представить протекающие процессы и верно решить задачи. В конце-концов, верные уравнения, описывающие процессы теплообмена, были в свое время получены на основе неверных представлений о теплороде, как носителе теплоты.

Количество теплоты, передаваемое от одного тела к другому, может идти на нагревание тела, плавление, парообразование, либо выделяться при противоположных процессах – остывании тела, кристаллизации, конденсации. Теплота выделяется при сгорании топлива.

Рассмотрим более подробно процессы, которые могут протекать в результате теплообмена.

Нальем в пробирку немного воды и закроем ее пробкой. Подвесим пробирку к стержню, закрепленному в штативе, и подведем под нее открытое пламя. От пламени пробирка получает некоторое количество теплоты и температура жидкости, находящейся в ней, повышается. При повышении температуры внутренняя энергия жидкости увеличивается. Происходит интенсивный процесс ее парообразования. Расширяющиеся пары жидкости совершают механическую работу по выталкиванию пробки из пробирки.

Проведем еще один опыт с моделью пушки, изготовленной из отрезка латунной трубки, которая укреплена на тележке. С одной стороны трубка плотно закрыта эбонитовой пробкой, сквозь которую пропущена шпилька. К шпильке и трубке припаяны провода, оканчивающиеся клеммами, на которые может подаваться напряжение от осветительной сети. Модель пушки, таким образом, представляет собой разновидность электрического кипятильника.

Нальем в ствол пушки немного воды и закроем трубку резиновой пробкой. Подключим пушку к источнику тока. Электрический ток, проходя через воду, нагревает ее. Вода закипает, что приводит к ее интенсивному парообразованию. Давление водяных паров растет и, наконец, они совершают работу по выталкиванию пробки из ствола пушки.

Пушка, вследствие отдачи, откатывается в сторону, противоположную вылету пробки.

Оба опыта объединяют следующие обстоятельства. В процессе нагревания жидкости различными способами, температура жидкости и, соответственно, ее внутренняя энергия увеличивались. Для того, чтобы жидкость кипела и интенсивно испарялась, необходимо было продолжать ее нагревание.

Пары жидкости за счет своей внутренней энергии совершили механическую работу.

Исследуем зависимость количества теплоты, необходимой для нагревания тела, от его массы, изменения температуры и рода вещества. Для исследования данных зависимостей будем использовать воду и масло. (Для измерения температуры в опыте применяется электрический термометр, изготовленный из термопары, подключенной к зеркальному гальванометру. Один спай термопары опущен в сосуд с холодной водой для обеспечения постоянства его температуры. Другой спай термопары измеряет температуру исследуемой жидкости).

Опыт состоит из трех серий. В первой серии исследуется для постоянной массы конкретной жидкости (в нашем случае – воды) зависимость количества теплоты, необходимого для ее нагревания, от изменения температуры. О количестве теплоты, полученной жидкостью от нагревателя (электрической плитки), будем судить по времени нагревания, предполагая, что между ними существует прямо пропорциональная зависимость. Чтобы результат эксперимента соответствовал этому предположению, необходимо обеспечить стационарный поток тепла от электроплитки к нагреваемому телу. Для этого электроплитка была включена в сеть заранее, так чтобы к началу опыта температура ее поверхности перестала изменяться. Для более равномерного нагрева жидкости во время опыта, будем помешивать ее при помощи самой термопары. Будем фиксировать показания термометра через равные промежутки времени до тех пор, пока световой зайчик не дойдет до края шкалы.

Сделаем вывод: между количеством теплоты, необходимым для нагревания тела и изменением его температуры, существует прямая пропорциональная зависимость.

Во второй серии опытов будем сравнивать количества теплоты, необходимые для нагревания одинаковых жидкостей разной массы при изменении их температуры на одну и ту же величину.

Для удобства сравнения получаемых величин массу воды для второго опыта возьмем в два раза меньше, чем в первом опыте.

Вновь будем фиксировать показания термометра через равные промежутки времени.

Сравнивая результаты первого и второго опытов можно сделать следующие выводы.

Между массой вещества и количеством теплоты, необходимым для его нагревания, существует прямая пропорциональная зависимость.

В третьей серии опытов будем сравнивать количества теплоты, необходимые для нагревания равных масс различных жидкостей, при изменении их температуры на одну и ту же величину.

Будем нагревать на электроплитке масло, масса которого равна массе воды в первом опыте. Будем фиксировать показания термометра через равные промежутки времени.

Результат опыта подтверждает вывод о том, что количество теплоты, необходимое для нагревания тела, прямо пропорционально изменению его температуры и, кроме того, свидетельствует о зависимости этого количества теплоты от рода вещества.

Поскольку в опыте использовалось масло, плотность которого меньше плотности воды и для нагревания масла до некоторой температуры потребовалось меньшее количество теплоты, чем для нагревания воды, можно предположить, что количество теплоты, необходимое для нагревания тела, зависит от его плотности.

Чтобы проверить это предположение, будем одновременно нагревать на нагревателе постоянной мощности одинаковые массы воды, парафина и меди.

Через одно и то же время температура меди оказывается примерно в 10 раз, а парафина примерно в 2 раза выше температуры воды.

Но медь имеет большую, а парафин меньшую плотность, чем вода.

Опыт показывает, что величиной, характеризующей скорость изменения температуры веществ, из которых изготовлены тела, участвующие в теплообмене, является не плотность. Эта величина называется удельной теплоемкостью вещества и обозначается буквой c.

Для сравнения удельных теплоемкостей различных веществ служит специальный прибор. Прибор состоит из стоек, в которых крепится тонкая парафиновая пластинка и планка с пропущенными сквозь нее стержнями. На концах стержней укреплены алюминиевый, стальной и латунный цилиндры равной массы.

Нагреем цилиндры до одинаковой температуры, погрузив их в сосуд с водой, стоящий на горячей электроплитке. Закрепим горячие цилиндры на стойках и освободим их от крепления. Цилиндры одновременно прикасаются к парафиновой пластине и, плавя парафин, начинают погружаться в нее. Глубина погружения цилиндров одинаковой массы в парафиновую пластину, при изменении их температуры на одну и ту же величину, оказывается разной.

Опыт свидетельствует о том, что удельные теплоемкости алюминия, стали и латуни различны.

Проделав соответствующие опыты с плавлением твердых тел, парообразованием жидкостей, сгоранием топлива получаем следующие количественные зависимости.

Количество теплоты, необходимое для нагревания тела или выделяющееся при его охлаждении, прямо пропорционально массе тела и изменению его температуры.

Количество теплоты, необходимое для превращения жидкости в пар или выделяющееся при его конденсации, прямо пропорционально массе жидкости.

Количество теплоты, необходимое для плавления тела или выделяющееся при его кристаллизации, прямо пропорционально массе этого тела.

Количество теплоты, выделяющееся при сгорании топлива, прямо пропорционально его массе.

Во всех формулах, позволяющих рассчитывать количество теплоты для различных тепловых процессов, стоят коэффициенты пропорциональности, называемые удельными величинами, то есть приходящимися на единицу других величин. Удельные величины являются характеристиками веществ, а не тел.

Удельная теплоемкость вещества показывает, чему равно количество теплоты, необходимое для нагревания или выделяющееся при охлаждении 1 кг вещества на 1 К.


Удельные теплоты парообразования, плавления, сгорания показывают, какое количество теплоты требуется для парообразования, плавления или выделяется при конденсации, кристаллизации, сгорании 1 кг вещества.

Чтобы получить единицы удельных величин, их надо выразить из соответствующих формул и в полученные выражения подставить единицы теплоты – 1 Дж, массы – 1 кг, а для удельной теплоемкости – и 1 К.

Получаем единицы: удельной теплоемкости – 1 Дж/кг·К, остальных удельных теплот: 1 Дж/кг.

files.school-collection.edu.ru

Количество теплоты, теплота | Блог инженера теплоэнергетика

       Здравствуйте! Простой, казалось бы, вопрос — что такое теплота и количество теплоты. Однако, даже специалиста, работающего в теплоэнергетике не один год, он может поставить в тупик. Давайте разберемся.

     При взаимодействии тел, имеющих неодинаковые температуры может происходит передача энергии от тела с более высокой температурой к телу с более низкой температурой путем непосредственного соприкосновения и излучения. Такая форма передачи энергии называется теплотой, а количество переданной энергии – количеством теплоты.

     Количество теплоты, получаемого или отдаваемого телом, существенным образом зависит от характера процесса, то есть является функцией процесса. Принято количество теплоты, подводимого к телу, считать положительным, а отводимого от него – отрицательным.

     Если к рабочему телу подводится количество теплоты Q, которое полностью переходит в работу L, то работа строго соответствует (эквивалентна) количеству теплоты. В соответствии с этим принципом эквивалентности теплоты и работы, основывающемся на законе сохранении энергии, можно написать: Q = L. Здесь предполагается, что Q и L измеряются в одинаковых единицах (в системе СИ в Дж). Если Q и L измеряются в разных единицах, то принцип эквивалентности теплоты и работы может быть написан в виде:

Q = AL

     Коэффициент A в этом уравнении носит название теплового эквивалента работы. Во всех процессах перехода теплоты в работу коэффициент A имеет одно и тоже постоянное значение. Во внесистемной системе единиц обычно Q измеряется в ккал, L – в кгс*см, тогда, согласно многочисленным опытам,

A = 1/427 ккал(кгс*м).

     Это значит, что для получения 1 кгс*м работы требуется при полном переходе теплоты в работу 1/427 ккал. Наооборот, для получения 1 ккал необходимо преобразовать в тепло 427 кгс*м работы.

     Определим, к примеру, количество теплоты, эквивалентного применяемой в технике величины – 1 кВт*ч; 1 кВт – единица мощности, равная 1 кДж/с = 102 кгс*м/с. 1 кВт*ч (1 кВт в течение часа) есть работа:

L = 1*3600 = 3600 кДж;

L = 102*3600 = 367200 кгс*м.

Количество теплоты, эквивалентного 1 кВт*ч:

Q = L = 3600 кДж;

Q = AL = 1/427 * 367200 = 860 ккал.

Итак, 1кВт*ч = 3600 кДж = 367200 кгс*м = 860 ккал.

    Количество теплоты, затраченной на обогрев тела или выделившейся при его охлаждении можно найти из формулы:

Q = c*m * ΔT;

где Q – количество теплоты, c – удельная теплоёмкость вещества, из которого состоит тело, m – масса тела, ΔT – разность температур.

     Таким образом, та энергия, которую получает или теряет тело в процессе теплообмена с окружающей средой, и называется количеством теплоты, а форма передачи энергии – теплотой. Количество теплоты — это одна из основных термодинамических величин в технической термодинамике.


teplosniks.ru

Оставить комментарий