ΠΠ°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅ Ρ 0
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅? ΠΠ· ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠΈ ΡΠ»Π΅Π΄ΡΡΡ Π΄Π²Π° ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΡΡ ΠΏΡΠ½ΠΊΡΠ° ΡΡΠΎΠ³ΠΎ Π·Π°Π΄Π°Π½ΠΈΡ:
1) ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ.
2) ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΡΠΈΠΌΠ΅Ρ 1
ΠΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈΒ
Β Π² ΡΠΎΡΠΊΠ΅ΒΠ‘ΠΏΡΠ°Π²ΠΊΠ°:Β Π‘Π»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠΏΠΎΡΠΎΠ±Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½Ρ:
Π Π½Π΅ΠΊΠΎΡΠΎΡΡΡ Π·Π°Π΄Π°Π½ΠΈΡΡ Π±ΡΠ²Π°Π΅Ρ ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΡΡ ΡΡΠ½ΠΊΡΠΈΡ Β«ΠΈΠ³ΡΠ΅ΠΊΠΎΠΌΒ», Π° Π² Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΠ΅ΡΠ΅Π· Β«ΡΡ ΠΎΡ ΠΈΠΊΡΒ».Π‘Π½Π°ΡΠ°Π»Π° Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ:
ΠΠ°Π΄Π΅ΡΡΡ, ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΡΠΆΠ΅ ΠΏΡΠΈΠ½ΠΎΡΠΎΠ²ΠΈΠ»ΠΈΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΡΠ°ΠΊΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΡΡΡΠ½ΠΎ.
ΠΠ° Π²ΡΠΎΡΠΎΠΌ ΡΠ°Π³Π΅ Π²ΡΡΠΈΡΠ»ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² ΡΠΎΡΠΊΠ΅Β
:ΠΠΎΡΠΎΠ²ΠΎ.
ΠΠ΅Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΠ°Π·ΠΌΠΈΠ½ΠΎΡΠ½ΡΠΉ ΠΏΡΠΈΠΌΠ΅Ρ Π΄Π»Ρ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ:
ΠΡΠΈΠΌΠ΅Ρ 2
ΠΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈΒ
Β Π² ΡΠΎΡΠΊΠ΅ΒΠΠΎΠ»Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΈ ΠΎΡΠ²Π΅Ρ Π² ΠΊΠΎΠ½ΡΠ΅ ΡΡΠΎΠΊΠ°.
ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π² ΡΠΎΡΠΊΠ΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ Π² ΡΠ»Π΅Π΄ΡΡΡΠΈΡ Π·Π°Π΄Π°ΡΠ°Ρ : ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΠΏΠ°ΡΠ°Π³ΡΠ°Ρ),Β
ΠΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ Π² ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΡ ΡΠ°Π±ΠΎΡΠ°Ρ ΠΈ ΡΠ°ΠΌΠΎ ΠΏΠΎ ΡΠ΅Π±Π΅. Π, ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π² ΡΠ°ΠΊΠΈΡ ΡΠ»ΡΡΠ°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π΄Π°ΡΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ½ΡΡ. Π ΡΡΠΎΠΉ ΡΠ²ΡΠ·ΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΅ΡΠ΅ Π΄Π²Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°.
ΠΡΠΈΠΌΠ΅Ρ 3
ΠΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈΒ
Β Π² ΡΠΎΡΠΊΠ΅Β . Π‘Π½Π°ΡΠ°Π»Π° Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ:ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ, Π² ΠΏΡΠΈΠ½ΡΠΈΠΏΠ΅, Π½Π°ΠΉΠ΄Π΅Π½Π°, ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΡΡ ΡΡΠ΅Π±ΡΠ΅ΠΌΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅Β
. ΠΠΎ ΡΡΠΎ-ΡΠΎ Π΄Π΅Π»Π°ΡΡ ΡΡΠΎ Π½Π΅ ΡΠΈΠ»ΡΠ½ΠΎ Ρ ΠΎΡΠ΅ΡΡΡ. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΎΡΠ΅Π½Ρ Π΄Π»ΠΈΠ½Π½ΠΎΠ΅, Π΄Π° ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Β«ΠΈΠΊΡΒ» Ρ Π½Π°Ρ Π΄ΡΠΎΠ±Π½ΠΎΠ΅. ΠΠΎΡΡΠΎΠΌΡ ΡΡΠ°ΡΠ°Π΅ΠΌΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΡΠΏΡΠΎΡΡΠΈΡΡ Π½Π°ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ. Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΠΎΠΏΡΠΎΠ±ΡΠ΅ΠΌ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΡΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ :ΠΡ Π²ΠΎΡ, ΡΠΎΠ²ΡΠ΅ΠΌ Π΄ΡΡΠ³ΠΎΠ΅ Π΄Π΅Π»ΠΎ. ΠΡΡΠΈΡΠ»ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² ΡΠΎΡΠΊΠ΅Β
:Π ΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ ΠΠ°ΠΌ Π½Π΅ ΠΏΠΎΠ½ΡΡΠ½ΠΎ, ΠΊΠ°ΠΊ Π½Π°ΠΉΠ΄Π΅Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ, Π²Π΅ΡΠ½ΠΈΡΠ΅ΡΡ ΠΊ ΠΏΠ΅ΡΠ²ΡΠΌ Π΄Π²ΡΠΌ ΡΡΠΎΠΊΠ°ΠΌ ΡΠ΅ΠΌΡ. ΠΡΠ»ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ»ΠΈ ΡΡΡΠ΄Π½ΠΎΡΡΠΈ (Π½Π΅Π΄ΠΎΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅) Ρ Π°ΡΠΊΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΈ Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ,Β ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎΒ ΠΈΠ·ΡΡΠΈΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Β ΠΡΠ°ΡΠΈΠΊΠΈ ΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉΒ β ΡΠ°ΠΌΡΠΉ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠΉ ΠΏΠ°ΡΠ°Π³ΡΠ°Ρ. ΠΠΎΡΠΎΠΌΡ-ΡΡΠΎ Π°ΡΠΊΡΠ°Π½Π³Π΅Π½ΡΠΎΠ² Π½Π° ΡΡΡΠ΄Π΅Π½ΡΠ΅ΡΠΊΠΈΠΉ Π²Π΅ΠΊ Π΅ΡΡ Ρ Π²Π°ΡΠΈΡ.
ΠΡΠΈΠΌΠ΅Ρ 4
ΠΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈΒ
Β Π² ΡΠΎΡΠΊΠ΅Β .ΠΡΠΎ ΠΏΡΠΈΠΌΠ΅Ρ Π΄Π»Ρ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π§ΡΠΎΠ±Ρ Π·Π°ΠΊΡΠ΅ΠΏΠΈΡΡ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΠΉ ΠΏΠ°ΡΠ°Π³ΡΠ°Ρ, ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π·Π°Π΄Π°ΡΡ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊΠ³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Β«Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΉΒ» ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΠΉ ΠΏΡΠΈΠΌΠ΅Ρ.
Π‘ΠΎΡΡΠ°Π²ΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈΒ
Β Π² ΡΠΎΡΠΊΠ΅ Ρ Π°Π±ΡΡΠΈΡΡΠΎΠΉΒ . Π― ΡΡΠ°Π·Ρ ΠΏΡΠΈΠ²Π΅Π΄Ρ Π³ΠΎΡΠΎΠ²ΠΎΠ΅ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ (Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΡΡΠΎΠ³ΠΎ Π΄Π΅Π»Π°ΡΡ Π² Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π΅ ΡΠ»ΡΡΠ°Π΅Π² Π½Π΅ Π½Π°Π΄ΠΎ):Π‘ΡΡΠΎΠ³ΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π΄Π°ΡΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡΒ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½ΠΎ ΠΏΠΎΠΊΠ° ΠΌΡ ΠΎΡΠ²ΠΎΠΈΠΌ ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ°ΡΡΡ Π²ΠΎΠΏΡΠΎΡΠ°. ΠΠ°Π²Π΅ΡΠ½ΡΠΊΠ° ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π²ΡΠ΅ΠΌ ΠΈΠ½ΡΡΠΈΡΠΈΠ²Π½ΠΎ ΠΏΠΎΠ½ΡΡΠ½ΠΎ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ. ΠΡΠ»ΠΈ ΠΎΠ±ΡΡΡΠ½ΡΡΡ Β«Π½Π° ΠΏΠ°Π»ΡΡΠ°Ρ Β», ΡΠΎ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎΒ ΠΏΡΡΠΌΠ°Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΊΠ°ΡΠ°Π΅ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π²Β Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ
ΠΡΠΈΠΌΠ΅Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΊ Π½Π°ΡΠ΅ΠΌΡ ΡΠ»ΡΡΠ°Ρ: ΠΏΡΠΈΒ
Β ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°ΡΒ Β (ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅) ΠΊΠ°ΡΠ°Π΅ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅Β .Π Π½Π°ΡΠ° Π·Π°Π΄Π°ΡΠ° ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉΒ
.StudFiles.ruβ«>
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅? ΠΠ· ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠΈ ΡΠ»Π΅Π΄ΡΡΡ Π΄Π²Π° ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΡΡ ΠΏΡΠ½ΠΊΡΠ° ΡΡΠΎΠ³ΠΎ Π·Π°Π΄Π°Π½ΠΈΡ:
1) ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ.
2) ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΡΠΈΠΌΠ΅Ρ 1
ΠΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π² ΡΠΎΡΠΊΠ΅Π‘ΠΏΡΠ°Π²ΠΊΠ°: Π‘Π»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠΏΠΎΡΠΎΠ±Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½Ρ:
Π Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
Π·Π°Π΄Π°Π½ΠΈΡΡ
Π±ΡΠ²Π°Π΅Ρ ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΡΡ ΡΡΠ½ΠΊΡΠΈΡ Β«ΠΈΠ³ΡΠ΅ΠΊΠΎΠΌΒ», Π° Π² Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΡΠ΅ΡΠ΅Π· Β«ΡΡ ΠΎΡ ΠΈΠΊΡΒ».
Π‘Π½Π°ΡΠ°Π»Π° Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ:
ΠΠ°Π΄Π΅ΡΡΡ, ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΡΠΆΠ΅ ΠΏΡΠΈΠ½ΠΎΡΠΎΠ²ΠΈΠ»ΠΈΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΡΠ°ΠΊΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΡΡΡΠ½ΠΎ.
ΠΠ° Π²ΡΠΎΡΠΎΠΌ ΡΠ°Π³Π΅ Π²ΡΡΠΈΡΠ»ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² ΡΠΎΡΠΊΠ΅
:ΠΠΎΡΠΎΠ²ΠΎ.
ΠΠ΅Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΠ°Π·ΠΌΠΈΠ½ΠΎΡΠ½ΡΠΉ ΠΏΡΠΈΠΌΠ΅Ρ Π΄Π»Ρ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ:
ΠΡΠΈΠΌΠ΅Ρ 2
ΠΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π² ΡΠΎΡΠΊΠ΅ΠΠΎΠ»Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΈ ΠΎΡΠ²Π΅Ρ Π² ΠΊΠΎΠ½ΡΠ΅ ΡΡΠΎΠΊΠ°.
ΠΠ΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π² ΡΠΎΡΠΊΠ΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ Π² ΡΠ»Π΅Π΄ΡΡΡΠΈΡ
Π·Π°Π΄Π°ΡΠ°Ρ
: ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΠΏΠ°ΡΠ°Π³ΡΠ°Ρ), ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ, ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΏΠ΅ΡΠ΅Π³ΠΈΠ± Π³ΡΠ°ΡΠΈΠΊΠ°
ΠΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ Π² ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΡ ΡΠ°Π±ΠΎΡΠ°Ρ ΠΈ ΡΠ°ΠΌΠΎ ΠΏΠΎ ΡΠ΅Π±Π΅. Π, ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π² ΡΠ°ΠΊΠΈΡ ΡΠ»ΡΡΠ°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π΄Π°ΡΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ½ΡΡ. Π ΡΡΠΎΠΉ ΡΠ²ΡΠ·ΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΅ΡΠ΅ Π΄Π²Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°.
ΠΡΠΈΠΌΠ΅Ρ 3
ΠΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π² ΡΠΎΡΠΊΠ΅ .Π‘Π½Π°ΡΠ°Π»Π° Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ:
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ, Π² ΠΏΡΠΈΠ½ΡΠΈΠΏΠ΅, Π½Π°ΠΉΠ΄Π΅Π½Π°, ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΡΡ ΡΡΠ΅Π±ΡΠ΅ΠΌΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅
. ΠΠΎ ΡΡΠΎ-ΡΠΎ Π΄Π΅Π»Π°ΡΡ ΡΡΠΎ Π½Π΅ ΡΠΈΠ»ΡΠ½ΠΎ Ρ ΠΎΡΠ΅ΡΡΡ. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΎΡΠ΅Π½Ρ Π΄Π»ΠΈΠ½Π½ΠΎΠ΅, Π΄Π° ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Β«ΠΈΠΊΡΒ» Ρ Π½Π°Ρ Π΄ΡΠΎΠ±Π½ΠΎΠ΅. ΠΠΎΡΡΠΎΠΌΡ ΡΡΠ°ΡΠ°Π΅ΠΌΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΡΠΏΡΠΎΡΡΠΈΡΡ Π½Π°ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ. Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΠΎΠΏΡΠΎΠ±ΡΠ΅ΠΌ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΡΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ :ΠΡ Π²ΠΎΡ, ΡΠΎΠ²ΡΠ΅ΠΌ Π΄ΡΡΠ³ΠΎΠ΅ Π΄Π΅Π»ΠΎ. ΠΡΡΠΈΡΠ»ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² ΡΠΎΡΠΊΠ΅
Π ΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ ΠΠ°ΠΌ Π½Π΅ ΠΏΠΎΠ½ΡΡΠ½ΠΎ, ΠΊΠ°ΠΊ Π½Π°ΠΉΠ΄Π΅Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ, Π²Π΅ΡΠ½ΠΈΡΠ΅ΡΡ ΠΊ ΠΏΠ΅ΡΠ²ΡΠΌ Π΄Π²ΡΠΌ ΡΡΠΎΠΊΠ°ΠΌ ΡΠ΅ΠΌΡ. ΠΡΠ»ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ»ΠΈ ΡΡΡΠ΄Π½ΠΎΡΡΠΈ (Π½Π΅Π΄ΠΎΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅) Ρ Π°ΡΠΊΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΈ Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ, ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈΠ·ΡΡΠΈΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΡΠ°ΡΠΈΠΊΠΈ ΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ β ΡΠ°ΠΌΡΠΉ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠΉ ΠΏΠ°ΡΠ°Π³ΡΠ°Ρ. ΠΠΎΡΠΎΠΌΡ-ΡΡΠΎ Π°ΡΠΊΡΠ°Π½Π³Π΅Π½ΡΠΎΠ² Π½Π° ΡΡΡΠ΄Π΅Π½ΡΠ΅ΡΠΊΠΈΠΉ Π²Π΅ΠΊ Π΅ΡΡ Ρ Π²Π°ΡΠΈΡ.
ΠΡΠΈΠΌΠ΅Ρ 4
ΠΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π² ΡΠΎΡΠΊΠ΅ .ΠΡΠΎ ΠΏΡΠΈΠΌΠ΅Ρ Π΄Π»Ρ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
studopedia.ruβ«>
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ F(x) Π² ΡΠΎΡΠΊΠ΅ Π₯ΠΎ? ΠΠ°ΠΊ Π²ΠΎΠΎΠ±ΡΠ΅ ΡΡΠΎ ΡΠ΅ΡΠ°ΡΡ?
Sfash
ΠΡΠ»ΠΈ ΡΠΎΡΠΌΡΠ»Π° Π·Π°Π΄Π°Π½Π°, ΡΠΎ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΈ Π²ΠΌΠ΅ΡΡΠΎ Π₯ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π₯-Π½ΡΠ»Π΅Π²ΠΎΠ΅. ΠΠΎΡΡΠΈΡΠ°ΡΡ
Π’ΠΈΠΌΡΡ Π°Π΄ΠΈΠ»ΡΡ ΠΎΠ΄ΠΆΠ°Π΅Π²
ΠΠΎ-ΠΏΠ΅ΡΠ²ΡΡ
, Π½Π°Π΄ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ. ΠΡΠ»ΠΈ ΡΠΎΡΠΊΠ° Ρ
0 Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π² Π½ΠΈΠΆΠ½Π΅ΠΉ ΡΠ°ΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, ΡΠΎ Π·Π½Π°ΠΊ Π² ΠΎΡΠ²Π΅ΡΠ΅ Π±ΡΠ΄Π΅Ρ ΠΌΠΈΠ½ΡΡ, Π° Π΅ΡΠ»ΠΈ Π²ΡΡΠ΅, ΡΠΎ +.
ΠΠΎ-Π²ΡΠΎΡΡΡ
, Π½Π°Π΄ΠΎ Π·Π½Π°ΡΡ ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°Π½Π³Π΅Ρ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅. Π ΡΡΠΎ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅ΠΉ ΡΡΠΎΡΠΎΠ½Ρ (ΠΊΠ°ΡΠ΅ΡΠ°) ΠΊ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅ΠΉ ΡΡΠΎΡΠΎΠ½Π΅ (ΡΠΎΠΆΠ΅ ΠΊΠ°ΡΠ΅ΡΠ°) . ΠΠ° ΠΊΠ°ΡΡΠΈΠ½Π΅ ΠΎΠ±ΡΡΠ½ΠΎ Π΅ΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ΅ΡΠ½ΡΡ
ΠΎΡΠΌΠ΅ΡΠΎΠΊ. ΠΠ· ΡΡΠΈ ΠΎΡΠΌΠ΅ΡΠΎΠΊ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΈ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡ ΡΠ°Π½Π³Π΅Ρ.
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ f x Π² ΡΠΎΡΠΊΠ΅ x0?
Π½Π΅Ρ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎ ΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π²ΠΎΠΏΡΠΎΡΠ° β 3 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄Bk.Ru
Π ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅, ΡΡΠΎ Π±Ρ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ ΡΠΎΡΠΊΠ΅, Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°ΡΡ Π·Π°Π΄Π°Π½Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΠΎ ΡΡΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ. Π Π²Π°ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π₯. Π ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π²ΠΌΠ΅ΡΡΠΎ Π₯ ΠΏΠΎΡΡΠ°Π²ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈΠΊΡΠ° Π² ΡΠΎΠΉ ΡΠΎΡΠΊΠ΅, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π°Π΄ΠΎ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, Ρ.Π΅. Π² ΠΠ°ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π½ΡΠ»Π΅Π²ΠΎΠΉ Π₯ ΠΈ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΡ Π° Π²Π°ΡΠ΅ ΡΡΡΠ΅ΠΌΠ»Π΅Π½ΠΈΠ΅ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Π² ΡΡΠΎΠΌ Π²ΠΎΠΏΡΠΎΡΠ΅, Π½Π° ΠΌΠΎΠΉ Π²Π·Π³Π»ΡΠ΄, Π±Π΅ΡΡΠΏΠΎΡΠ½ΠΎ Π·Π°ΡΠ»ΡΠΆΠΈΠ²Π°Π΅Ρ +, ΠΊΠΎΡΠΎΡΡΠΉ ΡΡΠ°Π²Π»Ρ Ρ ΡΠΈΡΡΠΎΠΉ ΡΠΎΠ²Π΅ΡΡΡΡ.
Lady v
Π’Π°ΠΊΠ°Ρ ΠΏΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠ° Π·Π°Π΄Π°ΡΠΈ Π½Π° Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ°ΡΡΠΎ ΡΡΠ°Π²ΠΈΡΡΡ Π΄Π»Ρ Π·Π°ΠΊΡΠ΅ΠΏΠ»Π΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π½Π° Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. ΠΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ Π³ΡΠ°ΡΠΈΠΊ Π½Π΅ΠΊΠΎΠ΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΉ ΠΈ Π½Π΅ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΈ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (Π½Π΅ ΡΠ°ΠΌΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π·Π°ΠΌΠ΅ΡΡΡΠ΅!) Π² ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ Π₯0. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΡΡΡΠΎΠΈΡΡΡ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΠΎΡΠΊΠΈ Π΅Π΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠΎΡΠΎΠΌ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΡΠΎΠΉ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π² Π²ΠΈΠ΄Π΅ y=ΠΊx+b.
Π ΡΡΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΊ ΠΈ Π±ΡΠ΄Π΅Ρ ΡΠ²Π»ΡΡΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. ΠΎΡΡΠ°Π΅ΡΡΡ Π»ΠΈΡΡ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° b. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ ΠΏΡΠΈ Ρ =ΠΎ, ΠΏΡΡΡΡ ΠΎΠ½ΠΎ ΡΠ°Π²Π½ΠΎ 3 – ΡΡΠΎ ΠΈ Π΅ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° b. ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π² ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π₯0 ΠΈ Π£0 ΠΈ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΠΊ – Π½Π°ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅.
bolshoyvopros.ruβ«>
Π§ΠΈΡΠ°ΠΉΡΠ΅ ΡΠ°ΠΊΠΆΠ΅
zna4enie.ru
ΠΠ°Π΄Π°ΡΠ° 7 β Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ
Π Π·Π°Π΄Π°ΡΠ΅ B9 Π΄Π°Π΅ΡΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, ΠΏΠΎ ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΎΠ΄Π½Ρ ΠΈΠ· ΡΠ»Π΅Π΄ΡΡΡΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½:
- ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΡΠΊΠ΅ x0,
- Π’ΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° (ΡΠΎΡΠΊΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°),
- ΠΠ½ΡΠ΅ΡΠ²Π°Π»Ρ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ (ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎΡΡΠΈ).
Π€ΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΠ΅ Π² ΡΡΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅, Π²ΡΠ΅Π³Π΄Π° Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½Ρ, ΡΡΠΎ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΏΡΠΎΡΠ°Π΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ΅ ΡΠΌΠΎΡΡΡ Π½Π° ΡΠΎ, ΡΡΠΎ Π·Π°Π΄Π°ΡΠ° ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΡΠ°Π·Π΄Π΅Π»Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°, ΠΎΠ½Π° Π²ΠΏΠΎΠ»Π½Π΅ ΠΏΠΎ ΡΠΈΠ»Π°ΠΌ Π΄Π°ΠΆΠ΅ ΡΠ°ΠΌΡΠΌ ΡΠ»Π°Π±ΡΠΌ ΡΡΠ΅Π½ΠΈΠΊΠ°ΠΌ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π½ΠΈΠΊΠ°ΠΊΠΈΡ Π³Π»ΡΠ±ΠΎΠΊΠΈΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΠΎΠ·Π½Π°Π½ΠΈΠΉ Π·Π΄Π΅ΡΡ Π½Π΅ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ.
ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, ΡΠΎΡΠ΅ΠΊ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° ΠΈ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ² ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎΡΡΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΠΏΡΠΎΡΡΡΠ΅ ΠΈ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΡΠ΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ β Π²ΡΠ΅ ΠΎΠ½ΠΈ Π±ΡΠ΄ΡΡ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ Π½ΠΈΠΆΠ΅.
ΠΠ½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΈΡΠ°ΠΉΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ B9, ΡΡΠΎΠ±Ρ Π½Π΅ Π΄ΠΎΠΏΡΡΠΊΠ°ΡΡ Π³Π»ΡΠΏΡΡ ΠΎΡΠΈΠ±ΠΎΠΊ: ΠΈΠ½ΠΎΠ³Π΄Π° ΠΏΠΎΠΏΠ°Π΄Π°ΡΡΡΡ Π΄ΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ½ΡΠ΅ ΡΠ΅ΠΊΡΡΡ, Π½ΠΎ Π²Π°ΠΆΠ½ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²Π»ΠΈΡΡΡ Π½Π° Ρ ΠΎΠ΄ ΡΠ΅ΡΠ΅Π½ΠΈΡ, ΡΠ°ΠΌ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ.
ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. ΠΠ΅ΡΠΎΠ΄ Π΄Π²ΡΡ ΡΠΎΡΠ΅ΠΊ
ΠΡΠ»ΠΈ Π² Π·Π°Π΄Π°ΡΠ΅ Π΄Π°Π½ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ f(x), ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ ΡΡΠΎΠΌΡ Π³ΡΠ°ΡΠΈΠΊΡ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΡΠΊΠ΅ x
- ΠΠ°ΠΉΡΠΈ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π΄Π²Π΅ Β«Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΡΠ΅Β» ΡΠΎΡΠΊΠΈ: ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π΄ΠΎΠ»ΠΆΠ½Ρ Π±ΡΡΡ ΡΠ΅Π»ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΠΌΠΈ. ΠΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ ΡΡΠΈ ΡΠΎΡΠΊΠΈ A (x1; y1) ΠΈ B (x2; y2). ΠΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ Π²ΡΠΏΠΈΡΡΠ²Π°ΠΉΡΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ β ΡΡΠΎ ΠΊΠ»ΡΡΠ΅Π²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ, ΠΈ Π»ΡΠ±Π°Ρ ΠΎΡΠΈΠ±ΠΊΠ° Π·Π΄Π΅ΡΡ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠΌΡ ΠΎΡΠ²Π΅ΡΡ.
- ΠΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ, Π»Π΅Π³ΠΊΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Ξx = x2 β x1 ΠΈ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Ξy = y2 β y1.
- ΠΠ°ΠΊΠΎΠ½Π΅Ρ, Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ D = Ξy/Ξx. ΠΠ½ΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, Π½Π°Π΄ΠΎ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° β ΠΈ ΡΡΠΎ Π±ΡΠ΄Π΅Ρ ΠΎΡΠ²Π΅Ρ.
ΠΡΠ΅ ΡΠ°Π· ΠΎΡΠΌΠ΅ΡΠΈΠΌ: ΡΠΎΡΠΊΠΈ A ΠΈ B Π½Π°Π΄ΠΎ ΠΈΡΠΊΠ°ΡΡ ΠΈΠΌΠ΅Π½Π½ΠΎ Π½Π° ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ, Π° Π½Π΅ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ f(x), ΠΊΠ°ΠΊ ΡΡΠΎ ΡΠ°ΡΡΠΎ ΡΠ»ΡΡΠ°Π΅ΡΡΡ. ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ Π±ΡΠ΄Π΅Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΡ Ρ ΠΎΡΡ Π±Ρ Π΄Π²Π΅ ΡΠ°ΠΊΠΈΡ ΡΠΎΡΠΊΠΈ β ΠΈΠ½Π°ΡΠ΅ Π·Π°Π΄Π°ΡΠ° ΡΠΎΡΡΠ°Π²Π»Π΅Π½Π° Π½Π΅ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΠΎ.
ΠΠ°Π΄Π°ΡΠ°. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x) ΠΈ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ Π½Π΅ΠΌΡ Π² ΡΠΎΡΠΊΠ΅ Ρ Π°Π±ΡΡΠΈΡΡΠΎΠΉ x0. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) Π² ΡΠΎΡΠΊΠ΅ x0.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠΎΡΠΊΠΈ A (β3; 2) ΠΈ B (β1; 6) ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ:
Ξx = x2 β x1 = β1 β (β3) = 2; Ξy = y2 β y1 = 6 β 2 = 4.
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ: D = Ξy/Ξx = 4/2 = 2.
ΠΠ°Π΄Π°ΡΠ°. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x) ΠΈ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ Π½Π΅ΠΌΡ Π² ΡΠΎΡΠΊΠ΅ Ρ Π°Π±ΡΡΠΈΡΡΠΎΠΉ x0. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) Π² ΡΠΎΡΠΊΠ΅ x0.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠΎΡΠΊΠΈ A (0; 3) ΠΈ B (3; 0), Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ:
Ξx = x2 β x1 = 3 β 0 = 3; Ξy = y2 β y1 = 0 β 3 = β3.
Π’Π΅ΠΏΠ΅ΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ: D = Ξy/Ξx = β3/3 = β1.
ΠΠ°Π΄Π°ΡΠ°. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x) ΠΈ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ Π½Π΅ΠΌΡ Π² ΡΠΎΡΠΊΠ΅ Ρ Π°Π±ΡΡΠΈΡΡΠΎΠΉ x0. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) Π² ΡΠΎΡΠΊΠ΅ x0.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠΎΡΠΊΠΈ A (0; 2) ΠΈ B (5; 2) ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ:
Ξx = x2 β x1 = 5 β 0 = 5; Ξy = y2 β y1 = 2 β 2 = 0.
ΠΡΡΠ°Π»ΠΎΡΡ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ: D = Ξy/Ξx = 0/5 = 0.
ΠΠ· ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π³ΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠ° ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ: Π΅ΡΠ»ΠΈ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π° ΠΎΡΠΈ OX, ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅ ΠΊΠ°ΡΠ°Π½ΠΈΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π΄Π°ΠΆΠ΅ Π½Π΅ Π½Π°Π΄ΠΎ Π½ΠΈΡΠ΅Π³ΠΎ ΡΡΠΈΡΠ°ΡΡ β Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π²Π·Π³Π»ΡΠ½ΡΡΡ Π½Π° Π³ΡΠ°ΡΠΈΠΊ.
ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΡΠΎΡΠ΅ΠΊ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°
ΠΠ½ΠΎΠ³Π΄Π° Π²ΠΌΠ΅ΡΡΠΎ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π·Π°Π΄Π°ΡΠ΅ B9 Π΄Π°Π΅ΡΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡΠΈ ΡΠ°ΠΊΠΎΠΌ ΡΠ°ΡΠΊΠ»Π°Π΄Π΅ ΠΌΠ΅ΡΠΎΠ΄ Π΄Π²ΡΡ ΡΠΎΡΠ΅ΠΊ Π±Π΅ΡΠΏΠΎΠ»Π΅Π·Π΅Π½, Π½ΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π΄ΡΡΠ³ΠΎΠΉ, Π΅ΡΠ΅ Π±ΠΎΠ»Π΅Π΅ ΠΏΡΠΎΡΡΠΎΠΉ Π°Π»Π³ΠΎΡΠΈΡΠΌ. ΠΠ»Ρ Π½Π°ΡΠ°Π»Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌΡΡ Ρ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ:
- Π’ΠΎΡΠΊΠ° x0 Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ f(x), Π΅ΡΠ»ΠΈ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ: f(x0) β₯ f(x).
- Π’ΠΎΡΠΊΠ° x0 Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ f(x), Π΅ΡΠ»ΠΈ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ: f(x0) β€ f(x).
ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠ°Π³ΠΈ:
- ΠΠ΅ΡΠ΅ΡΠ΅ΡΡΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, ΡΠ±ΡΠ°Π² Π²ΡΡ Π»ΠΈΡΠ½ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ. ΠΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ°, Π»ΠΈΡΠ½ΠΈΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΌΠ΅ΡΠ°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠΎΡΡΠΎΠΌΡ ΠΎΡΠΌΠ΅ΡΠ°Π΅ΠΌ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΎΡΠΈ Π½ΡΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ β ΠΈ Π²ΡΠ΅.
- ΠΡΡΡΠ½ΠΈΡΡ Π·Π½Π°ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°Ρ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΡΠ»ΡΠΌΠΈ. ΠΡΠ»ΠΈ Π΄Π»Ρ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΡΠΊΠΈ x0 ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ fβ(x0) β 0, ΡΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ Π»ΠΈΡΡ Π΄Π²Π° Π²Π°ΡΠΈΠ°Π½ΡΠ°: fβ(x0) β₯ 0 ΠΈΠ»ΠΈ fβ(x0) β€ 0. ΠΠ½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π»Π΅Π³ΠΊΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠΌΡ ΡΠ΅ΡΡΠ΅ΠΆΡ: Π΅ΡΠ»ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π»Π΅ΠΆΠΈΡ Π²ΡΡΠ΅ ΠΎΡΠΈ OX, Π·Π½Π°ΡΠΈΡ fβ(x) β₯ 0. Π Π½Π°ΠΎΠ±ΠΎΡΠΎΡ, Π΅ΡΠ»ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΏΠΎΠ΄ ΠΎΡΡΡ OX, ΡΠΎ fβ(x) β€ 0.
- Π‘Π½ΠΎΠ²Π° ΠΏΡΠΎΠ²Π΅ΡΡΠ΅ΠΌ Π½ΡΠ»ΠΈ ΠΈ Π·Π½Π°ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. Π’Π°ΠΌ, Π³Π΄Π΅ Π·Π½Π°ΠΊ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Ρ ΠΌΠΈΠ½ΡΡΠ° Π½Π° ΠΏΠ»ΡΡ, Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΠΎΡΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°. Π Π½Π°ΠΎΠ±ΠΎΡΠΎΡ, Π΅ΡΠ»ΠΈ Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Ρ ΠΏΠ»ΡΡΠ° Π½Π° ΠΌΠΈΠ½ΡΡ, ΡΡΠΎ ΡΠΎΡΠΊΠ° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°. ΠΡΡΡΠ΅Ρ Π²ΡΠ΅Π³Π΄Π° Π²Π΅Π΄Π΅ΡΡΡ ΡΠ»Π΅Π²Π° Π½Π°ΠΏΡΠ°Π²ΠΎ.
ΠΡΠ° ΡΡ Π΅ΠΌΠ° ΡΠ°Π±ΠΎΡΠ°Π΅Ρ ΡΠΎΠ»ΡΠΊΠΎ Π΄Π»Ρ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ β Π΄ΡΡΠ³ΠΈΡ Π² Π·Π°Π΄Π°ΡΠ΅ B9 Π½Π΅ Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ.
ΠΠ°Π΄Π°ΡΠ°. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ f(x), ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [β5; 5]. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΎΡΠΊΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ f(x) Π½Π° ΡΡΠΎΠΌ ΠΎΡΡΠ΅Π·ΠΊΠ΅.
ΠΠ·Π±Π°Π²ΠΈΠΌΡΡ ΠΎΡ Π»ΠΈΡΠ½Π΅ΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ β ΠΎΡΡΠ°Π²ΠΈΠΌ ΡΠΎΠ»ΡΠΊΠΎ Π³ΡΠ°Π½ΠΈΡΡ [β5; 5] ΠΈ Π½ΡΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ x = β3 ΠΈ x = 2,5. Π’Π°ΠΊΠΆΠ΅ ΠΎΡΠΌΠ΅ΡΠΈΠΌ Π·Π½Π°ΠΊΠΈ:
ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, Π² ΡΠΎΡΠΊΠ΅ x = β3 Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Ρ ΠΌΠΈΠ½ΡΡΠ° Π½Π° ΠΏΠ»ΡΡ. ΠΡΠΎ ΠΈ Π΅ΡΡΡ ΡΠΎΡΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°.
ΠΠ°Π΄Π°ΡΠ°. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ f(x), ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [β3; 7]. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΎΡΠΊΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ f(x) Π½Π° ΡΡΠΎΠΌ ΠΎΡΡΠ΅Π·ΠΊΠ΅.
ΠΠ΅ΡΠ΅ΡΠ΅ΡΡΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ, ΠΎΡΡΠ°Π²ΠΈΠ² Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΎΡΠΈ ΡΠΎΠ»ΡΠΊΠΎ Π³ΡΠ°Π½ΠΈΡΡ [β3; 7] ΠΈ Π½ΡΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ x = β1,7 ΠΈ x = 5. ΠΡΠΌΠ΅ΡΠΈΠΌ Π½Π° ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΌ Π³ΡΠ°ΡΠΈΠΊΠ΅ Π·Π½Π°ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. ΠΠΌΠ΅Π΅ΠΌ:
ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, Π² ΡΠΎΡΠΊΠ΅ x = 5 Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Ρ ΠΏΠ»ΡΡΠ° Π½Π° ΠΌΠΈΠ½ΡΡ β ΡΡΠΎ ΡΠΎΡΠΊΠ° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°.
ΠΠ°Π΄Π°ΡΠ°. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ f(x), ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [β6; 4]. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ f(x), ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°ΡΠΈΡ ΠΎΡΡΠ΅Π·ΠΊΡ [β4; 3].
ΠΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π°Π΄Π°ΡΠΈ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅ΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ°, ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΡ ΠΎΡΡΠ΅Π·ΠΊΠΎΠΌ [β4; 3]. ΠΠΎΡΡΠΎΠΌΡ ΡΡΡΠΎΠΈΠΌ Π½ΠΎΠ²ΡΠΉ Π³ΡΠ°ΡΠΈΠΊ, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΡΠΌΠ΅ΡΠ°Π΅ΠΌ ΡΠΎΠ»ΡΠΊΠΎ Π³ΡΠ°Π½ΠΈΡΡ [β4; 3] ΠΈ Π½ΡΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π²Π½ΡΡΡΠΈ Π½Π΅Π³ΠΎ. Π ΠΈΠΌΠ΅Π½Π½ΠΎ, ΡΠΎΡΠΊΠΈ x = β3,5 ΠΈ x = 2. ΠΠΎΠ»ΡΡΠ°Π΅ΠΌ:
ΠΠ° ΡΡΠΎΠΌ Π³ΡΠ°ΡΠΈΠΊΠ΅ Π΅ΡΡΡ Π»ΠΈΡΡ ΠΎΠ΄Π½Π° ΡΠΎΡΠΊΠ° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° x = 2. ΠΠΌΠ΅Π½Π½ΠΎ Π² Π½Π΅ΠΉ Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Ρ ΠΏΠ»ΡΡΠ° Π½Π° ΠΌΠΈΠ½ΡΡ.
ΠΠ΅Π±ΠΎΠ»ΡΡΠΎΠ΅ Π·Π°ΠΌΠ΅ΡΠ°Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρ ΡΠΎΡΠ΅ΠΊ Ρ Π½Π΅ΡΠ΅Π»ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅ΠΉ Π·Π°Π΄Π°ΡΠ΅ Π±ΡΠ»Π° ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π° ΡΠΎΡΠΊΠ° x = β3,5, Π½ΠΎ Ρ ΡΠ΅ΠΌ ΠΆΠ΅ ΡΡΠΏΠ΅Ρ ΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π²Π·ΡΡΡ x = β3,4. ΠΡΠ»ΠΈ Π·Π°Π΄Π°ΡΠ° ΡΠΎΡΡΠ°Π²Π»Π΅Π½Π° ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΠΎ, ΡΠ°ΠΊΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π½Π΅ Π΄ΠΎΠ»ΠΆΠ½Ρ Π²Π»ΠΈΡΡΡ Π½Π° ΠΎΡΠ²Π΅Ρ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠΎΡΠΊΠΈ Β«Π±Π΅Π· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΡΠ° ΠΆΠΈΡΠ΅Π»ΡΡΡΠ²Π°Β» Π½Π΅ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ°ΡΡΠΈΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°ΡΠΈ. Π Π°Π·ΡΠΌΠ΅Π΅ΡΡΡ, Ρ ΡΠ΅Π»ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΠΌΠΈ ΡΠΎΡΠΊΠ°ΠΌΠΈ ΡΠ°ΠΊΠΎΠΉ ΡΠΎΠΊΡΡ Π½Π΅ ΠΏΡΠΎΠΉΠ΄Π΅Ρ.
ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ² Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π ΡΠ°ΠΊΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅, ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎ ΡΠΎΡΠΊΠ°ΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡΡΡΠΊΠ°ΡΡ ΠΎΠ±Π»Π°ΡΡΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΠ°ΠΌΠ° ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ ΠΈΠ»ΠΈ ΡΠ±ΡΠ²Π°Π΅Ρ. ΠΠ»Ρ Π½Π°ΡΠ°Π»Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅:
- Π€ΡΠ½ΠΊΡΠΈΡ f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°ΡΡΠ΅ΠΉ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [a; b] Π΅ΡΠ»ΠΈ Π΄Π»Ρ Π»ΡΠ±ΡΡ Π΄Π²ΡΡ ΡΠΎΡΠ΅ΠΊ x1 ΠΈ x2 ΠΈΠ· ΡΡΠΎΠ³ΠΎ ΠΎΡΡΠ΅Π·ΠΊΠ° Π²Π΅ΡΠ½ΠΎ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅: x1 β€ x2 β f(x1) β€ f(x2). ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
- Π€ΡΠ½ΠΊΡΠΈΡ f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ±ΡΠ²Π°ΡΡΠ΅ΠΉ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [a; b] Π΅ΡΠ»ΠΈ Π΄Π»Ρ Π»ΡΠ±ΡΡ Π΄Π²ΡΡ ΡΠΎΡΠ΅ΠΊ x1 ΠΈ x2 ΠΈΠ· ΡΡΠΎΠ³ΠΎ ΠΎΡΡΠ΅Π·ΠΊΠ° Π²Π΅ΡΠ½ΠΎ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅: x1 β€ x2 β f(x1) β₯ f(x2). Π’.Π΅. Π±ΠΎΠ»ΡΡΠ΅ΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΠΌ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ:
- ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ f(x) Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π»Π° Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [a; b], Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ, ΡΡΠΎΠ±Ρ Π΅Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π²Π½ΡΡΡΠΈ ΠΎΡΡΠ΅Π·ΠΊΠ° Π±ΡΠ»Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°, Ρ.Π΅. fβ(x) β₯ 0.
- ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ f(x) ΡΠ±ΡΠ²Π°Π»Π° Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [a; b], Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ, ΡΡΠΎΠ±Ρ Π΅Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π²Π½ΡΡΡΠΈ ΠΎΡΡΠ΅Π·ΠΊΠ° Π±ΡΠ»Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, Ρ.Π΅. fβ(x) β€ 0.
ΠΡΠΈΠΌΠ΅ΠΌ ΡΡΠΈ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ². Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΡΡ Π΅ΠΌΡ Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ² Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠ°Ρ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ ΠΏΠΎΡ ΠΎΠΆΠ° Π½Π° Π°Π»Π³ΠΎΡΠΈΡΠΌ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΡΠΎΡΠ΅ΠΊ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°:
- Π£Π±ΡΠ°ΡΡ Π²ΡΡ Π»ΠΈΡΠ½ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ. ΠΠ° ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠΌ Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π°Ρ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡ Π² ΠΏΠ΅ΡΠ²ΡΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΎΡΡΠ°Π²ΠΈΠΌ ΡΠΎΠ»ΡΠΊΠΎ ΠΈΡ .
- ΠΡΠΌΠ΅ΡΠΈΡΡ Π·Π½Π°ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π°Ρ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΡΠ»ΡΠΌΠΈ. Π’Π°ΠΌ, Π³Π΄Π΅ fβ(x) β₯ 0, ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, Π° Π³Π΄Π΅ fβ(x) β€ 0 β ΡΠ±ΡΠ²Π°Π΅Ρ. ΠΡΠ»ΠΈ Π² Π·Π°Π΄Π°ΡΠ΅ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ Π½Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ x, Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠ°Π΅ΠΌ ΠΈΡ Π½Π° Π½ΠΎΠ²ΠΎΠΌ Π³ΡΠ°ΡΠΈΠΊΠ΅.
- Π’Π΅ΠΏΠ΅ΡΡ, ΠΊΠΎΠ³Π΄Π° Π½Π°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ, ΠΎΡΡΠ°Π΅ΡΡΡ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΡΠ΅Π±ΡΠ΅ΠΌΡΡ Π² Π·Π°Π΄Π°ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ.
ΠΠ°Π΄Π°ΡΠ°. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ f(x), ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [β3; 7,5]. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ f(x). Π ΠΎΡΠ²Π΅ΡΠ΅ ΡΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΌΠΌΡ ΡΠ΅Π»ΡΡ ΡΠΈΡΠ΅Π», Π²Ρ ΠΎΠ΄ΡΡΠΈΡ Π² ΡΡΠΈ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ.
ΠΠ°ΠΊ ΠΎΠ±ΡΡΠ½ΠΎ, ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΡΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΠΈ ΠΎΡΠΌΠ΅ΡΠΈΠΌ Π³ΡΠ°Π½ΠΈΡΡ [β3; 7,5], Π° ΡΠ°ΠΊΠΆΠ΅ Π½ΡΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ x = β1,5 ΠΈ x = 5,3. ΠΠ°ΡΠ΅ΠΌ ΠΎΡΠΌΠ΅ΡΠΈΠΌ Π·Π½Π°ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. ΠΠΌΠ΅Π΅ΠΌ:
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π½Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (β 1,5) ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, ΡΡΠΎ ΠΈ Π΅ΡΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡΡΠ°Π»ΠΎΡΡ ΠΏΡΠΎΡΡΠΌΠΌΠΈΡΠΎΠ²Π°ΡΡ Π²ΡΠ΅ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π°Ρ
ΠΎΠ΄ΡΡΡΡ Π²Π½ΡΡΡΠΈ ΡΡΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π°:
β1 + 0 + 1 + 2 + 3 + 4 + 5 = 14.
ΠΠ°Π΄Π°ΡΠ°. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ f(x), ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [β10; 4]. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ f(x). Π ΠΎΡΠ²Π΅ΡΠ΅ ΡΠΊΠ°ΠΆΠΈΡΠ΅ Π΄Π»ΠΈΠ½Ρ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π³ΠΎ ΠΈΠ· Π½ΠΈΡ .
ΠΠ·Π±Π°Π²ΠΈΠΌΡΡ ΠΎΡ Π»ΠΈΡΠ½Π΅ΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ. ΠΡΡΠ°Π²ΠΈΠΌ ΡΠΎΠ»ΡΠΊΠΎ Π³ΡΠ°Π½ΠΈΡΡ [β10; 4] ΠΈ Π½ΡΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, ΠΊΠΎΡΠΎΡΡΡ Π² ΡΡΠΎΡ ΡΠ°Π· ΠΎΠΊΠ°Π·Π°Π»ΠΎΡΡ ΡΠ΅ΡΡΡΠ΅: x = β8, x = β6, x = β3 ΠΈ x = 2. ΠΡΠΌΠ΅ΡΠΈΠΌ Π·Π½Π°ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΠ»Π΅Π΄ΡΡΡΡΡ ΠΊΠ°ΡΡΠΈΠ½ΠΊΡ:
ΠΠ°Ρ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ, Ρ.Π΅. ΡΠ°ΠΊΠΈΠ΅, Π³Π΄Π΅ fβ(x) β₯ 0. ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΠ°ΠΊΠΈΡ
ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ² Π΄Π²Π°: (β8; β6) ΠΈ (β3; 2). ΠΡΡΠΈΡΠ»ΠΈΠΌ ΠΈΡ
Π΄Π»ΠΈΠ½Ρ:
l1 = β 6 β (β8) = 2;
l2 = 2 β (β3) = 5.
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ Π½Π°ΠΉΡΠΈ Π΄Π»ΠΈΠ½Ρ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π³ΠΎ ΠΈΠ· ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ², Π² ΠΎΡΠ²Π΅Ρ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ l2 = 5.
Π‘ΠΌΠΎΡΡΠΈΡΠ΅ ΡΠ°ΠΊΠΆΠ΅:
- ΠΠ°Π΄Π°ΡΠ° 7: ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ
- ΠΠ°Π΄Π°ΡΠ° 7: ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ β 2
- ΠΡΠΎΠ±Π½ΡΠΉ ΠΠΠ-2011 ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅, Π²Π°ΡΠΈΠ°Π½Ρ β4
- Π’Π΅ΡΡ ΠΏΠΎ ΡΠ΅ΠΎΡΠΈΠΈ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ΅ΠΉ (1 Π²Π°ΡΠΈΠ°Π½Ρ)
- Π‘ΠΏΠ΅ΡΠΈΡΠΈΠΊΠ° ΡΠ°Π±ΠΎΡΡ Ρ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ°ΠΌΠΈ Π² Π·Π°Π΄Π°ΡΠ΅ B15
- Π£ΠΏΡΠΎΡΠ°Π΅ΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π·Π°ΠΌΠ΅Π½Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ
www.berdov.com
ΠΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ: ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°Π½Π½ΡΠΉ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π²ΡΡΠΈΡΠ»ΡΠ΅Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π·Π°ΡΠ΅ΠΌ ΡΠΏΡΠΎΡΠ°Π΅Ρ Π΅Π΅.
Π ΠΏΠΎΠ»Π΅ ΡΡΠ½ΠΊΡΠΈΡ Π²Π²Π΅Π΄ΠΈΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x, Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ + ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, – Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅, / Π΄Π΅Π»Π΅Π½ΠΈΠ΅, * ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅, ^ β Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠΎΠ»Π½ΡΠΉ ΡΠΈΠ½ΡΠ°ΠΊΡΠΈΡ ΡΠΌΠΎΡΡΠΈΡΠ΅ Π½ΠΈΠΆΠ΅.
Π£ΠΏΡΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠΎΠΆΠ΅Ρ Π·Π°Π½ΡΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ Π²ΡΠ΅ΠΌΡ, Π΄Π»Ρ ΡΠ»ΠΎΠΆΠ½ΡΡ
ΡΡΠ½ΠΊΡΠΈΠΉ β Π²Π΅ΡΡΠΌΠ° ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅. ΠΡΠ»ΠΈ ΠΆΠ΄Π°ΡΡ Π΄ΠΎ ΠΊΠΎΠ½ΡΠ° Π½Π΅Ρ ΡΠΈΠ» β Π½Π°ΠΆΠΌΠΈΡΠ΅ ΠΊΠ½ΠΎΠΏΠΊΡ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ. Π£ ΠΌΠ΅Π½Ρ ΠΏΠΎΠ»ΡΡΠ°Π»ΡΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΏΡΠΎΡΡΠΎΠΉ Π²Π°ΡΠΈΠ°Π½Ρ ΡΠΆΠ΅ ΠΏΠΎΡΠ»Π΅ 10-15 ΡΠ΅ΠΊΡΠ½Π΄ ΡΠ°Π±ΠΎΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ.
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
ΠΠΎΠΏΡΡΡΠΈΠΌΡΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ: + – / * ^ ΠΠΎΠ½ΡΡΠ°Π½ΡΡ: pi Π€ΡΠ½ΠΊΡΠΈΠΈ: sin cosec cos tg ctg sech sec arcsin arccosec arccos arctg arcctg arcsec exp lb lg ln versin vercos haversin exsec excsc sqrt sh ch th cth csch
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ
Β
ΠΠΎΠΊΠ°Π·Π°ΡΡ Π΄Π΅ΡΠ°Π»ΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ°Π³ΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΡΠΌΡΠ»Ρ
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΡΠΌΡΠ»Ρ
Π‘ΠΎΡ ΡΠ°Π½ΠΈΡΡ share extension
Π‘ΠΈΠ½ΡΠ°ΠΊΡΠΈΡ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΡΠΎΡΠΌΡΠ»
Π ΠΎΠΏΠΈΡΠ°Π½ΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ Π΄ΠΎΠΏΡΡΠΊΠ°Π΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ (ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ ΠΊΠ°ΠΊ x), ΡΠΊΠΎΠ±ΠΎΠΊ, ΡΠΈΡΠ»Π° ΠΏΠΈ (pi), ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΡ (e), ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ: + β ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, – β Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅, * β ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅, / β Π΄Π΅Π»Π΅Π½ΠΈΠ΅, ^ β Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ.
ΠΠΎΠΏΡΡΠΊΠ°ΡΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ: sqrt β ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ, exp β e Π² ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, lb β Π»ΠΎΠ³Π°ΡΠΈΡΠΌ ΠΏΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ 2, lg β Π»ΠΎΠ³Π°ΡΠΈΡΠΌ ΠΏΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ 10, ln β Π½Π°ΡΡΡΠ°Π»ΡΠ½ΡΠΉ Π»ΠΎΠ³Π°ΡΠΈΡΠΌ (ΠΏΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ e), sin β ΡΠΈΠ½ΡΡ, cos β ΠΊΠΎΡΠΈΠ½ΡΡ, tg β ΡΠ°Π½Π³Π΅Π½Ρ, ctg β ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ, sec β ΡΠ΅ΠΊΠ°Π½Ρ, cosec β ΠΊΠΎΡΠ΅ΠΊΠ°Π½Ρ, arcsin β Π°ΡΠΊΡΠΈΠ½ΡΡ, arccos β Π°ΡΠΊΠΊΠΎΡΠΈΠ½ΡΡ, arctg β Π°ΡΠΊΡΠ°Π½Π³Π΅Π½Ρ, arcctg β Π°ΡΠΊΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ, arcsec β Π°ΡΠΊΡΠ΅ΠΊΠ°Π½Ρ, arccosec β Π°ΡΠΊΠΊΠΎΡΠ΅ΠΊΠ°Π½Ρ, versin β Π²Π΅ΡΡΠΈΠ½ΡΡ, vercos β ΠΊΠΎΠ²Π΅ΡΡΠΈΠ½ΡΡ, haversin β Π³Π°Π²Π΅ΡΡΠΈΠ½ΡΡ, exsecβ ΡΠΊΡΡΠ΅ΠΊΠ°Π½Ρ, excsc β ΡΠΊΡΠΊΠΎΡΠ΅ΠΊΠ°Π½Ρ, sh β Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΈΠ½ΡΡ, ch β Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠΎΡΠΈΠ½ΡΡ, th β Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ°Π½Π³Π΅Π½Ρ, cth β Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ, sech β Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅ΠΊΠ°Π½Ρ, csch β Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠΎΡΠ΅ΠΊΠ°Π½Ρ, abs β Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ (ΠΌΠΎΠ΄ΡΠ»Ρ), sgn β ΡΠΈΠ³Π½ΡΠΌ (Π·Π½Π°ΠΊ), logP β Π»ΠΎΠ³Π°ΡΠΈΡΠΌ ΠΏΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ P, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ log7(x) β Π»ΠΎΠ³Π°ΡΠΈΡΠΌ ΠΏΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ 7, rootP β ΠΊΠΎΡΠ΅Π½Ρ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ P, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ root3(x) β ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠΎΡΠ΅Π½Ρ.
ΠΡΡΠΏΠΏΠ°ΠΠΎΠ½ΡΡΠ°Π½ΡΡ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ΠΠΏΠ΅ΡΠ°ΡΠΈΠΈΠ’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈΠΠ±ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈΠΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
Π‘ΠΈΠ½ΡΠ°ΠΊΡΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ
planetcalc.ru
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ f'(x) Β· ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΠ½Π»Π°ΠΉΠ½
ΠΠ²Π΅Π΄ΠΈΡΠ΅ ΡΡΠ½ΠΊΡΠΈΡ, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
Π‘Π΅ΡΠ²ΠΈΡ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΠΠΠ ΠΠΠΠΠ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.
ΠΠ°ΠΉΠ΄ΡΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) – Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΠΈΠΌΠ΅ΡΡ
Π‘ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ
(ΠΊΠ²Π°Π΄ΡΠ°Ρ ΠΈ ΠΊΡΠ±) ΠΈ Π΄ΡΠΎΠ±ΠΈ
(x^2 - 1)/(x^3 + 1)
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ
sqrt(x)/(x + 1)
ΠΡΠ±ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠΎΡΠ΅Π½Ρ
cbrt(x)/(3*x + 2)
Π‘ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠΈΠ½ΡΡΠ° ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°
2*sin(x)*cos(x)
ΠΡΠΊΡΠΈΠ½ΡΡ
x*arcsin(x)
ΠΡΠΊΠΊΠΎΡΠΈΠ½ΡΡ
x*arccos(x)
ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ°
x*log(x, 10)
ΠΠ°ΡΡΡΠ°Π»ΡΠ½ΡΠΉ Π»ΠΎΠ³Π°ΡΠΈΡΠΌ
ln(x)/x
ΠΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠ°
exp(x)*x
Π’Π°Π½Π³Π΅Π½Ρ
tg(x)*sin(x)
ΠΠΎΡΠ°Π½Π³Π΅Π½Ρ
ctg(x)*cos(x)
ΠΡΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½Π΅ Π΄ΡΠΎΠ±ΠΈ
(sqrt(x) - 1)/sqrt(x^2 - x - 1)
ΠΡΠΊΡΠ°Π½Π³Π΅Π½Ρ
x*arctg(x)
ΠΡΠΊΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ
x*arΡctg(x)
ΠΠΈΠ±Π΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΈΠ½ΡΡ ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ
2*sh(x)*ch(x)
ΠΠΈΠ±Π΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ
ctgh(x)/tgh(x)
ΠΠΈΠ±Π΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π°ΡΠΊΡΠΈΠ½ΡΡ ΠΈ Π°ΡΠΊΠΊΠΎΡΠΈΠ½ΡΡ
x^2*arcsinh(x)*arccosh(x)
ΠΠΈΠ±Π΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π°ΡΠΊΡΠ°Π½Π³Π΅Π½Ρ ΠΈ Π°ΡΠΊΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ
x^2*arctgh(x)*arcctgh(x)
ΠΡΠ°Π²ΠΈΠ»Π° Π²Π²ΠΎΠ΄Π° Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ ΡΠΎΡΡΠΎΡΡΡ ΠΈΠ· ΡΡΠ½ΠΊΡΠΈΠΉ (ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄Π°Π½Ρ Π² Π°Π»ΡΠ°Π²ΠΈΡΠ½ΠΎΠΌ ΠΏΠΎΡΡΠ΄ΠΊΠ΅):
- absolute(x)
- ΠΠ±ΡΠΎΠ»ΡΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ x
(ΠΌΠΎΠ΄ΡΠ»Ρ x ΠΈΠ»ΠΈ |x|) - arccos(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – Π°ΡΠΊΠΊΠΎΡΠΈΠ½ΡΡ ΠΎΡ x
- arccosh(x)
- ΠΡΠΊΠΊΠΎΡΠΈΠ½ΡΡ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΡ x
- arcsin(x)
- ΠΡΠΊΡΠΈΠ½ΡΡ ΠΎΡ x
- arcsinh(x)
- ΠΡΠΊΡΠΈΠ½ΡΡ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΡ x
- arctg(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – Π°ΡΠΊΡΠ°Π½Π³Π΅Π½Ρ ΠΎΡ x
- arctgh(x)
- ΠΡΠΊΡΠ°Π½Π³Π΅Π½Ρ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΡ x
- e
- e ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΡΠ°Π²Π½ΠΎ 2.7
- exp(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠ° ΠΎΡ x (ΡΡΠΎ ΠΈ e^x)
- log(x) or ln(x)
- ΠΠ°ΡΡΡΠ°Π»ΡΠ½ΡΠΉ Π»ΠΎΠ³Π°ΡΠΈΡΠΌ ΠΎΡ x
(Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ log7(x), Π½Π°Π΄ΠΎ Π²Π²Π΅ΡΡΠΈ log(x)/log(7) (ΠΈΠ»ΠΈ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ Π΄Π»Ρ log10(x)=log(x)/log(10)) - pi
- Π§ΠΈΡΠ»ΠΎ – “ΠΠΈ”, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΡΠ°Π²Π½ΠΎ 3.14
- sin(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – Π‘ΠΈΠ½ΡΡ ΠΎΡ x
- cos(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – ΠΠΎΡΠΈΠ½ΡΡ ΠΎΡ x
- sinh(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – Π‘ΠΈΠ½ΡΡ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΡ x
- cosh(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – ΠΠΎΡΠΈΠ½ΡΡ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΡ x
- sqrt(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· x
- sqr(x) ΠΈΠ»ΠΈ x^2
- Π€ΡΠ½ΠΊΡΠΈΡ – ΠΠ²Π°Π΄ΡΠ°Ρ x
- tg(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – Π’Π°Π½Π³Π΅Π½Ρ ΠΎΡ x
- tgh(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – Π’Π°Π½Π³Π΅Π½Ρ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΡ x
- cbrt(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· x
- floor(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – ΠΎΠΊΡΡΠ³Π»Π΅Π½ΠΈΠ΅ x Π² ΠΌΠ΅Π½ΡΡΡΡ ΡΡΠΎΡΠΎΠ½Ρ (ΠΏΡΠΈΠΌΠ΅Ρ floor(4.5)==4.0)
- sign(x)
- Π€ΡΠ½ΠΊΡΠΈΡ – ΠΠ½Π°ΠΊ x
- erf(x)
- Π€ΡΠ½ΠΊΡΠΈΡ ΠΎΡΠΈΠ±ΠΎΠΊ (ΠΠ°ΠΏΠ»Π°ΡΠ° ΠΈΠ»ΠΈ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠΈ)
Π Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ:
- ΠΠ΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°
- Π²Π²ΠΎΠ΄ΠΈΡΡ Π² Π²ΠΈΠ΄Π΅ 7.5, Π½Π΅ 7,5
- 2*x
- – ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅
- 3/x
- – Π΄Π΅Π»Π΅Π½ΠΈΠ΅
- x^3
- – Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΡΡΠ΅ΠΏΠ΅Π½Ρ
- x + 7
- – ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅
- x – 6
- – Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅
www.kontrolnaya-rabota.ru
ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ | umath.ru
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π²ΡΡΠΈΡΠ»ΡΠ΅Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Π²ΡΠ΅Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΏΡΠΈΠ²ΠΎΠ΄Ρ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅. ΠΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ.
ΠΡΡΠΈΡΠ»Π΅Π½ΠΎ WolframAlpha.
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ β ΠΎΠ΄Π½ΠΎ ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡΠΈΡ ΠΏΠΎΠ½ΡΡΠΈΠΉ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·Π΅. Π ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΠΈΠ²Π΅Π»ΠΈ ΡΠ°ΠΊΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ, ΠΊΠ°ΠΊ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΎΡΠΊΠΈ Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ , Π΅ΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ΅Π½ ΠΏΡΡΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ , Π·Π°Π΄Π°ΡΠ° ΠΎ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅.
Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΏΡΠ΅Π΄Π΅Π» ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΊ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, Π΅ΡΠ»ΠΈ ΠΎΠ½ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. ΠΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ ΡΠΎΡΠΊΠΈ . Π’ΠΎΠ³Π΄Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠ΅Π΄Π΅Π», Π΅ΡΠ»ΠΈ ΠΎΠ½ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ
Β Β
ΠΠ°ΠΊ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ?
ΠΠ»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ Π½Π°ΡΡΠΈΡΡΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½ΡΠΆΠ½ΠΎ Π²ΡΡΡΠΈΡΡ ΠΈ ΠΏΠΎΠ½ΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ Π½Π°ΡΡΠΈΡΡΡΡ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠ°Π±Π»ΠΈΡΠ΅ΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ .
ΠΡΠ°Π²ΠΈΠ»Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ
ΠΡΡΡΡ ΠΈ β ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ, β Π½Π΅ΠΊΠΎΡΠΎΡΠ°Ρ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½Π°Ρ. Π’ΠΎΠ³Π΄Π°
β ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
β ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠ½ΠΊΡΠΈΠΉ
β Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ
β ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
β ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠ½Π»Π°ΠΉΠ½
ΠΠ°Ρ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π±ΡΡΡΡΠΎ ΠΈ ΡΠΎΡΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π»ΡΠ±ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠ½Π»Π°ΠΉΠ½. ΠΡΠΎΠ³ΡΠ°ΠΌΠΌΠ° Π½Π΅ Π΄ΠΎΠΏΡΡΡΠΈΡ ΠΎΡΠΈΠ±ΠΊΠΈ ΠΏΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΠΈΠ·Π±Π΅ΠΆΠ°ΡΡ Π΄ΠΎΠ»Π³ΠΈΡ ΠΈ Π½ΡΠ΄Π½ΡΡ ΡΠ°ΡΡΡΡΠΎΠ². ΠΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ»Π΅Π·Π΅Π½ ΠΈ Π² ΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° Π΅ΡΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ Π½Π° ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΡΠ²ΠΎΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅, ΠΈ Π΅ΡΠ»ΠΈ ΠΎΠ½ΠΎ Π½Π΅Π²Π΅ΡΠ½ΠΎ, Π±ΡΡΡΡΠΎ Π½Π°ΠΉΡΠΈ ΠΎΡΠΈΠ±ΠΊΡ.
umath.ru
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΠ½Π»Π°ΠΉΠ½ Ρ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΡΠ΅ΡΠ°Π΅Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ c ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ ΠΠΠΠ ΠΠΠΠ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ!
ΠΡΠΎ ΠΎΠ½-Π»Π°ΠΉΠ½ ΡΠ΅ΡΠ²ΠΈΡ Π² ΠΎΠ΄ΠΈΠ½ ΡΠ°Π³:
- ΠΠ²Π΅ΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΡ, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π°Π΄ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
ΠΠ΅ΡΠ΅ΠΉΡΠΈ: ΠΠ½Π»Π°ΠΉΠ½ ΡΠ΅ΡΠ²ΠΈΡ “ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ” β
ΠΡΠΎ ΠΎΠ½-Π»Π°ΠΉΠ½ ΡΠ΅ΡΠ²ΠΈΡ Π² ΠΎΠ΄ΠΈΠ½ ΡΠ°Π³:- ΠΠ²Π΅ΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΡ, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π°Π΄ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ°ΡΡΠ½ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅
- ΠΠ²Π΅ΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΡ, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π°Π΄ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
- ΠΠ²Π΅ΡΡΠΈ Π½Π°ΠΉΠ΄Π΅Π½Π½ΡΡ ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π² ΡΠΎΡΠΌΡ
- ΠΠ²Π΅ΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΡ, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π°Π΄ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
- ΠΠ²Π΅ΡΡΠΈ Π½Π°ΠΉΠ΄Π΅Π½Π½ΡΡ ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π² ΡΠΎΡΠΌΡ
- ΠΠ²Π΅ΡΡΠΈ Π½Π°ΠΉΠ΄Π΅Π½Π½ΡΡ Π²ΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΌΡ
ΠΠ²Π΅Π΄ΠΈΡΠ΅ ΡΡΠ½ΠΊΡΠΈΡ, Π·Π°Π΄Π°Π½Π½ΡΡ Π² Π½Π΅ΡΠ²Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅, Π²Ρ ΠΏΠΎΠ»ΡΡΠΈΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
ΠΡΠΎ ΠΎΠ½-Π»Π°ΠΉΠ½ ΡΠ΅ΡΠ²ΠΈΡ Π² ΡΡΠΈ ΡΠ°Π³Π°:
- ΠΠ²Π΅ΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΡ x = x(t)
- ΠΠ²Π΅ΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΡ y = y(t)
ΠΠ΅ΡΠ΅ΠΉΡΠΈ: ΠΠ½Π»Π°ΠΉΠ½ ΡΠ΅ΡΠ²ΠΈΡ “ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ” β
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ Π²Ρ ΡΠΌΠΎΠΆΠ΅ΡΠ΅ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π·Π΄Π΅ΡΡ
Π’Π°Π±Π»ΠΈΡΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
ΠΡ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠ°Π±Π»ΠΈΡΠ΅ΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ , ΡΡΠΎΠ±Ρ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π»ΡΠ±ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ, ΠΏΠ΅ΡΠ΅ΠΉΡΠΈ:
www.kontrolnaya-rabota.ru
ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅
ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅
ΠΡΠ»ΠΈ Π²Π°Ρ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡ ΠΎΠ±ΡΠΈΠ΅ Π²ΠΎΠΏΡΠΎΡΡ ΠΈ ΡΠ°ΠΌΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΡΠΈΠΊΠ» Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ Π²ΠΈΠ΄Π΅ΠΎΡΠΎΠ»ΠΈΠΊΠΎΠ² ΠΎΡ Π°Π²ΡΠΎΡΠ° Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΠΉΡΠ° ΠΠ°ΠΊΡΠΈΠΌΠ° Π‘Π΅ΠΌΠ΅Π½ΠΈΡ ΠΈΠ½Π° Π½Π° ΡΠ΅ΠΌΡ Β«ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉΒ».
- ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ (6:01)
- ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°ΡΡΠ΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ (2:05)
- ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ±ΡΠ²Π°ΡΡΠ΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ (2:18)
- ΠΠ° ΡΠ°Π·Π½ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°Ρ β ΡΠ°Π·Π½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ (4:15)
- Π‘ΡΠ΅Π΄Π½ΡΡ ΠΈ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ (3:38)
- Π‘ΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ (1:59)
- ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ°ΠΊ ΡΠΊΠΎΡΠΎΡΡΠΈ (2:50)
- ΠΡΠΈΠΌΠ΅Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ (3:46)
- ΠΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (1:41)
Π° ΡΠ°ΠΊΠΆΠ΅ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊ
ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ (14:51)
ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π·Π½Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅:
- Π’Π°Π±Π»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ.
- ΠΡΠ°Π²ΠΈΠ»Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ.
- ΠΠ°ΠΊ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π’Π°Π±Π»ΠΈΡΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° Π½ΠΈΠΆΠ΅:
ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠΌΠΌΡ, ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΈ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΡΡΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ:
ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»Π°
f(g(x))’ = f ‘(g(x)) Β· g‘(x)
ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ β Π²ΠΎΠΏΡΠΎΡ, Π·Π°ΡΠ»ΡΠΆΠΈΠ²Π°ΡΡΠΈΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΡ. ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΡΠΎΡΠΌΠΎΡΡΠ΅ΡΡ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊ Β«ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉΒ».
ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅
ΠΠ»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ:
– Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ;
– ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ
ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ.
ΠΡΠΈΠΌΠ΅Ρ. ΠΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ y = x2 Π² ΡΠΎΡΠΊΠ΅ Ρ
0 = 3.
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ: Ρ‘ = (Ρ
2)’ = 2Ρ
;
ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ Π² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ
0 = 3, ΠΏΠΎΠ»ΡΡΠΈΠΌ: Ρ‘(3) = 2 β 3 = 6.
ΠΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ
Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅
ΠΠ»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅, ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠΎΠΌ Π½Π° Π΄Π°Π½Π½ΠΎΠΉ ΡΡΡΠ°Π½ΠΈΡΠ΅. ΠΡΠΎΡΡΠΎ Π²Π²Π΅Π΄ΠΈΡΠ΅ ΡΠ°ΠΌΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΈ ΡΠΎΡΠΊΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ. ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π²ΡΡ ΠΏΠΎΡΡΠΈΡΠ°Π΅Ρ ΡΠ°ΠΌ ΠΈ Π²ΡΠ΄Π°ΡΡ ΠΎΡΠ²Π΅Ρ.
mathonline.um-razum.ru